Tidal water heights at Bunny Meadows salt marsh, River Hamble, Warsash, Hampshire

F.H. Dawson, PhD MIWEM CBiol FIBiol
P. Henville

INSTITUTE OF FRESHWATER ECOLOGY

- River Laboratory, East Stoke, Wareham, Dorset BH20 6BB

Tel: 0929462314
Fax: 0929462180

Tidal water heights at Bunny Meadows salt marsh, River Hamble, Warsash, Hampshire.

F.H. Dawson PhD MIWEM CBiol FIBiol
P. Henville

Project leader:	F.H.Dawson
Report date:	December 1992
Report to:	Institute of Terrestrial Ecology
	(Energy Tidal Study Unit, Harwell,
	for Department of Energy)
Contract No:	T08059q1
IFE Report Ref:	RL/T08059q1/1
TFS Project No:	TFS/08059q1

This is an unpublished report and should not be cited without permission, which should be sought through the Director of the Institute of Freshwater Ecology in the first instance.

The Institute of Freshwater Ecology is part of the Terrestrial and Freshwater Sciences Directorate of the Natural Environment Research Council.

CONTENTS

PageSUMMARY1. INTRODUCTION 1
2. METHODS 2
3. RESULTS 3
4. ACKNOWLEDGEMENTS 9
APPENDICES 10
APPENDIX 1 Water depth calibration.APPENDIX 2. Map and local information on lower Hamble River and Bunny Meadows,Warsash, Southampton.
APPENDIX 3. Program listing

SUMMARY

Sea water levels were monitored inside and outside the sea wall separating the salt marsh from the estuary during summer and autumn 1992.

The culvert restricted the water flow to the salt marsh and mud flat and reduced the tidal range by about a half inside the sea wall but this varied a little between spring and neap tides The upper limit was reduced by about 0.6 m on average whereas the lower limit was restricted by the level of the bed of the culvert.

Complex variation and interactions were monitored for other environmental variables in the water supplying and draining the mud flats such as daytime heating and nighttime cooling of the water, possible variations in oxygen related to irradiance, variations in optical density and small changes conductivity. Further analysis could be undertaken of such data or tidal water heights could be corrected to standard pressure.

1. INTRODUCTION

1.1 Background

Concern has been expressed about the possible extent of changes in the vegetation resulting from the construction of tidal barrages on estuaries. Such changes could include invasion or decline of vegetated areas with the associated direct effects on mud deposition or erosion but also consequential effects on biota such as feeding areas for wading birds. Such effects are thought likely to occur as a result of the asymmetrical changes to the tidal cycle primarily within the barrage in order to optimise power generation.

A site was identified on the River Hamble at Bunny Meadows, Warsash, during a survey of the Solent Estuary, which had the criteria both of typical vegetation and an altered tidal inundation regime (Appendix 2.). Sea water exchange was modified by construction of a bank to reclaim this area. The bank was breached, probably during the 1939-45 war, and reinstated in the mid 1980's with four openings of three single and one double culverts of 1.9 m wide by 1.5 m high, set approximately about the middle of the mean sea water level. A public path lies on top of the reinstated bank.

Vegetation has probably changed with a general decrease in Spartina townsendii more recently although there is a relatively large stand of Phragmites australis to the south-eastern end of the area; there is no discrete freshwater inflow in this area. S. townsendii may have extended it range down the tidal range but there is a general erosion mud from the flats to the channels (excavated?) and they are being filled except near the culverts where high erosive velocities and considerable scouring of bed and banks occur. There is no bed or bank protection near the culverts either to the seaward or marshward side except at one site where a incomplete low dam with little power dissipation and the absence of castellations, has been constructed.

1.2 Objective

Continuous monitoring of seawater level inside the wall to allow water depth or inundation and exposure, to be deduced for the salt marsh. Water temperature and water turbidity together with light intensity were also measured in part to allow for correction of the effects of variation in temperature of the height sensor and in part to give the opportunity for a fuller picture of the changes that occur during a lunar tidal cycle in a salt marsh. Seawater conductivity and dissolved oxygen changes were also measured for a short period.

2. METHODS

2.1 Monitoring of seawater level.

Levels were monitored using a multi-channel computerized field data collection system installed in agreement with Alan Grey of The Institute of Terrestrial Ecology, Furzebrook, at the northernmost culvert; in addition an extra sensor was installed to the seaward side of this culvert. The data collection system (Convertor 6) was fitted with sensors for water level, water temperature(using a thermistor mounted in a dissolved oxygen sensor, water turbidity.

Water depth was recorded using strain gauge pressure transducers (Sandhurst Scientific Instrument Company) mounted firmly just below the culvert level inside the wall and below mean low water springs to the seaward side of the wall. The transducer measures gauge pressure in the form of differential pressure using atmospheric pressure as a reference. This is achieved by venting the rear of the sensor through a tube within the cable. The sensors were calibrated in a 4 m water column in the laboratory before use and on return (Appendix 1). Water levels were corrected to Chart Datum using data supplied by Alan Gray. Barometric pressure was measured using a sealed differential pressure transducer (Penny \& Giles D5148/8) with a range of $950-1050 \mathrm{mb}$, powered by a standard voltage reference cell.

The water turbidity and water temperature/dissolved oxygen sensors were suspended in a shallow pool excavated within 3 m of the culvert and at a depth to ensure they were always covered with water. The temperature was measured using a Mackereth-type oxygen sensor.

Water turbidity (expressed as optical density; the logarithm of the ratio of the intensity of incident to transmitted light) was measured using single gap turbidity sensors operating in the infra red region so as to reduce problems associated with algal fouling of optical surfaces.

Mean surface irradiance was measured in an unshaded area using energy irradiance sensors (Skye Instruments).

1.2 Site visits

Periodic site visits were made to download data from the micro-computer and the following tasks were performed when visiting the monitoring sites:

1) Water level was recorded from the monitoring system and compared to that measured to the top edge of the north side of the culvert from the water surface
2) Any extraneous matter, eg. floating aquatic weed, was removed from the sensors and their surfaces carefully cleaned using a damp tissue or soft clean cloth.
3) Batteries were replaced by fully charged ones and recorded data downloaded to a portable computer for processing at the laboratory (Appendix 3.).
4) Any relevant environmental observations were recorded.

3. RESULTS

Sea water levels were monitored on the inside of the sea wall separating the salt marsh from the estuary during periods from June to November (Figure 1), but only outside the sea wall during June. Repeated attempts to monitor sea water levels failed due to damage to sensors and to cables; more substantial sensors and supports would be need to be installed if records were to be made in the future.

Comparison of water levels inside and outside the sea wall show that the tidal range was reduced by about a half inside the sea wall but this varied a little between spring and neap tides (Figure 2). The upper limit was reduced by about 0.6 m on average because the culvert restricted the water flow to the large open areas of mudflat inside the wall which failed to fill before the tide ebbed outside the wall (figure 3). The reverse situation occurred to some extent but the lower limit was restricted by the level of the bed of the culvert (Figure 4).

Complex variation and interactions were monitored between water level and other environmental variables which could be investigated further (Figure 5). Interaction noted in the water supplying and draining the mud flats at Bunny Meadows during several tidal cycles in June 1992 included:

1. daytime heating and nighttime cooling of the water depending upon the tidal cycle relative to the time of day or night
2. probable variation in oxygen (or local effects in the water surrounding the sensor)
3. correlation of 'oxygen' effect with irradiance
4. extreme and variable ranges of optical density
5. small but significant variation in conductivity.

Figure 1. Water levels, corrected to Chart Datum, on the salt marsh side of the wall at Bunny Meadows, Warsash, on the River Hamble, from late August to early October during several tidal cycles.

Figure 2. Comparison of water levels corrected to Chart Datum, on the salt marsh side (solid line) and on the estuary side of the sea wall on the River Hamble, Bunny Meadows, Warsash, from spring to neap tides during June 1992.

Figure 3. Detail of comparison of water levels, conected to Chart Datum, on the salt marsh side (solid line) and on the estuary side of the sea wall on the River Hamble, Bunny Meadows, Warsash, near the neap tides during June 1992.

Figure 4. Spring and neap water level standard curves for Southampton (from Practical Boat Owner Cruising Almanac for 1992, data from Admiralty Tide Tables).

Figure 5. Variation in environmental variables of water supplying and draining Bunny Meadows, Warsash, on the River Hamble, during several tidal cycles, June 1992.

4. ACKNOWLEDGEMENTS

Thanks are due to Richard Levett, area warden (office 0329-662145, home 0489-582503) and to Barry Duffin, both of Hampshire County Council (0329-662145); to the Harbour Master Capt. C.J. Nicholl (0489-576387 for arranging vehicle access for transport of the monitoring equipment to the northern end of the Bunny Meadows;

APPENDICES

APPENDIX 1 Water depth calibration.

Figure A1. Relationship between sensor output and water depth. (for equation see program, Appendix 4).

APPENDIX 2. Map, tidal, and local information on lower Hamble River and Bunny Meadows, Warsash, Southampton.

LOCAL INFUKNIAIIUN

Harbour Masier's Otice
Shore Road, Warsash.
Harbour Master
Captain C. J. Niclooil. OBE.,
Assistanl Harbour Master
Mr. D. Walker
Visilors Moorings
Piles 34 lo B7 ofl Warsash, and 3 to 16 oll Port tambere.
Coasiguards/Customs elc.
H.M. Coasiguards 0705552100
H.M. Cusloms 0703027350

Southampion Port Healit? Authority . 0703226631
Yacht and Sailing Clubs
Hamble River Sailing Club, Hamble.
Royal Alr Force Yachl Club, Hamble.
Royal Southem Yocht Club, Hambie.
Worsash Salling Club, Warsasti. (!/on. Secretary)
Marinas and Boatyards
Cabin Boatyard (Slipway, ponioon, repails, cranc)
Crableck Boalyard (Pontoons, waler)
Deacons Boalyard
(Ponioon, cranago, repairs, waler)
Easllands Boalyard (Hauling oun. repairs)
Elephanl Boalyard Lid. (Ponloon, slijpway, repairs)
Hambic Point Marina (M.D.L. Marinas) Lid.
(Aepairs, fugl, walar, cibandiory, boal sloragye)
Hamble Point Guay (Pontoon, slipway.
dry boal storagn, cranage, repairs, fucl, water)
Hamble River Boalyard, R.K. Matinc Lid.
(Ponloons, slipway, marine enginecrs)
Hambic Yachi Services, Porl Hamble
(Pontoons, boal hoist, building. repairs, layinn-up, cic.) 0703454111
Mercury Yachl Harbour (M.D.L. Marinas) Lid.
(Marina, boal hoisl, chandicry)
Pori Hamble Marina (M.D.L. Natinas) Lid.
(Marina, chandlery)
0703152070
0703152203 0703 A5.7271 0119534702

Alverside Boalyard, Foulkes \& Son.
(Ponioon, iepairs, salvage, diving, lowing) Salterns Boatyard
Sione Pier Yard (Vicloria Rampart Lid.)
(Yachl building, relits, repaits, ponloons. fuel)
Swanwlek Marina, A. H. Moody \& Son Lid. (Marina,
eranage, buiding, repairs, fuel, woler, chandlery)
0703 102515 0409572570

0703 4022.03 0703403556 0703403260 0703452464 0703452464 0409 203572/503585 Universal Shipyard (Soleni) Lld
(Ponloons, boal hoist, repairs, waler)
0109574272

Marine Engincers

Alpha Marine, (sterndives) (Yamaila Agers)
Eastlanós Doatyard
0409502777
Cougar Marine, Hambic
0703453513
Marine Power LId. (Engine repairs), Cabin Boatyard
Ollice: 0703403910 . Aller hours: 040357.3596
M.A. Yocht Engineers (Evimude Agent)
J. Poulter Marine Services, (Oulboaids)

Easlinnds Boalyard
R.K. Marine Lld. (Volvo Agen!)

Hamble fiver Boalyard

0403576307
Residence: 0409502:100
Residuence: 0323203544

hIGH KATEAS - zMPOATAKT NOTE, DOUBLE ḣGH KATERS OSCUR AT SOUTHAMPTON, THE PREDICTIONS AFE FOR THE fJAST HIGH mATER.

APPENDIX 3.

Listing of Fortran 77c program for conversion of voltage outputs to oxygen saturation, optical density, temperature, water depth and solar irradiance.

DIMENSION Y0(12),Y9(12),YMIN(12),YMAX(12),YNAME(12),Z(12) DIMENSION N(12,2)
DIMENSION YRANGE(10),YTICK(10),NTICK(10)
DIMENSION YP0(12),YP9(12),IPLIM(12)
DIMENSION TIME(6000),Y(6000,12),YC(6000)
DIMENSION MDAYS(12),CMON(12)
CHARACTER FNAME*17,GNAME*17,YNAME*20,CMON* 9 ,TNAME*20,ALINE*80 DATA CMON/'January ','February ','March ','April ',
\&'May ','June ','July ','August ','September', \&'October ','November ','December '/
DATA MDAYS $/ 31,28,31,30,31,30,31,31,30,31,30,31 /$
DATA YMIN/0,0,0,0,0,0,0,0,0,0,0,0/
DATA YMAX/30,5.50,200,20,2.0,32.0,5.50,99,20.00,99,99,20.0/
C Plot Tick limits follow :
DATA YRANGE/2.0,5,14,30,50,100,300,1000,3000,10000/
DATA YTICK/0.5,1,02,05,10,020,050,0100,0500,01000/
DATA NTICK/5,2,1,5,2,2,5,2,5,2/
$\mathrm{J}=0$
WRITE $(6,100)$
100 FORMAT(/' Program LOGGERPLOT2.NWP :'/
\&' Plots out Logger data for NW Pipeline Study :')
WRITE $(6,210)$
210 FORMAT(' Input Name of Logger Data File :')
READ(5,'(A17)') FNAME
OPEN(UNIT=7,FILE=FNAME,STATUS='OLD')
WRITE $(6,220)$
220 FORMAT(' Input Name for Output Calibrated Data File :')
READ(5,'(A17)') GNAME
OPEN(UNIT=8,FILE=GNAME,STATUS='UNKNOWN')
WRITE $(6,222)$
222 FORMAT(' Year of Data (eg 1992) :')
$\operatorname{READ}\left(5,{ }^{*}\right)$ IYEAR0
WRITE $(6,225)$
225 FORMAT(' Logger Calibration to be used (1-8) :')
WRITE $(6,226)$
226 FORMAT(' ENTER THE NUMBER CORRESPONDING TO THE CHOSEN LOGGER:'/
\&' (1) = LOGGER 1; RVX 116, 104, 8(UPSTREAM)'/
\&' (2) $=$ LOGGER 2; RVX 4, 8, 14, 6, 110, 101'/
\&' (3) = LOGGER 3; RVX 63, 107,milstream'/
\&' (4) = LOGGER 4; RVX 140, 130 (A), $8^{\prime} /$
\&' (5) = LOGGER 5; RVX 1, 24 '/

```
    &'(6) = LOGGER 6; RVX 116,HAMBLE'/
    &' (7) = LOGGER 7; RVX 130 (B- )'/
    &'(8) = LOGGER 8; OLD CONVERTOR, RVX 140,'/
    &' ')
    READ(5,*) LOGGER
    WRITE(6,232)
    232 FORMAT(' Print out each Time Point Line of Input on Screen ',
    &'(No=0;Yes=1) :')
    READ(5,*) IPRIN
C KVAR8 = Maximum no. of variables recorded in a logger file :
    KVAR8=12
C
C Name the Variables in Microchannel screen order :
C ie in array Z order.
    YNAME(1)='Temperature, C '
    YNAME(2)='Marsh Depth, m
    YNAME(3)='% Oxygen'
    YNAME(4)='Solar Radiation
    YNAME(5)='Optical density
    YNAME(6)='Conductivity
    YNAME(7)='River Depth, m'
    YNAME(8)='NOT USED'
    YNAME(9)='Barometric Pressure'
    YNAME(10)='NOT USED'
    YNAME(11)='NOT USED'
    YNAME(12)='Battery Power'
C
    WRITE(6,235) (K,YNAME(K),K=1,KVAR8)
235 FORMAT(' Original Order of Variables in Logger ='/,
    &(I5,' = ',A20))
    WRITE(6,237)
237 FORMAT(/' No. of graphs required on the page (1-12) :')
    READ(5,*) KVAR9
    WRITE (6,238)
238 FORMAT(/' Each graph contains a continuous line plot of the first',
    &' selected variable'/' and optionally a dotted line plot of the ',
    &'second selected variable.'/' (Enter -1 for the second variable ',
    &' if not required for that particular plot)'/
    &' eg to plot Depth as a solid line, and %Oxygen dotted,',
    &' enter 2,3'/
    &' to only plot say Conductivity on a graph, enter 6,-1')
    DO 241 K=1,KVAR9
    WRITE(6,240) K
    240 FORMAT(' Enter First,Second variable to be plotted on graph ',I2)
        READ(5,*) N(K,1),N(K,2)
    241 CONTINUE
C KPROB = Missing value used where required for 'problem values' :
    KPROB=-999999
```

WRITE $(6,246)$ KPROB
246 FORMAT(' What to do with problems values as defined in the',
\&' logger calibration section of this program :'/
\&' (1) = Leave Problem values unaltered'/
\&' (2) = Set Problems value to previous valid value'/
\&' (3) = Set Problem values to a missing value : ', I8)
READ(5,*) IPROB
C Set CONDUCT and POWER to missing values in case they were not recorded
C on the selected logger :
CONDUCT=KPROB
POWER=KPROB
C Read in Data calculating the range of each Variable :
C
DAY0 $=999999$
DAY=-999999
DO $250 \mathrm{~K}=1$,KVAR8
$\mathrm{Y} 0(\mathrm{~K})=999999$
Y9(K) $=-999999$
250 CONTINUE
C
300 CONTINUE
DO $305 \mathrm{~K}=1$,KVAR8
$305 \mathrm{Z}(\mathrm{K})=-999$
IF (LOGGER.EQ.1) THEN
C Logger Calibration 1:
READ(7,*,END=500) IDAY,IMON,IHOUR,IMIN,TMV,DEPTH,DOMV, \&AKIPP,CONDUCT,TURBID,POWER
TEMP $=11.4+0.000666^{*}$ TMV
DOST $=\operatorname{EXP}((3.3654+0.028505 * T E M P) * 2.303)$
OXYGEN=-((DOMV/DOST)*100.0)
AKIPP=-AKIPP/1000
DEPTH $=\left(+0.00199^{*}\right.$-DEPTH $)+0.41$

TURBID $=1.12+0.000036 *$ TURBID
ENDIF
C
IF (LOGGER.EQ.2) THEN
C Logger Calibration 2 :
READ(7,*,END=500) IDAY,IMON,IHOUR,IMIN,TMV,DEPTH,DOMV, \&AKIPP,CONDUCT,TURBID,POWER
TEMP $=(10.7+0.000631 * T M V)$
DOST $=\operatorname{EXP}((3.3802+0.0198 * T E M P) * 2.303)$
OXYGEN=(DOMV/DOST)* $100.0-35$
AKIPP $=$-AKIPP $/ 1000^{*} 5+0.4$
DEPTH $=-0.00203 *$ DEPTH +0.20

TURBID $=0.955+0.000032 *$ TURBID
ENDIF
C
IF (LOGGER.EQ.3) THEN
C Logger Calibration 3:
c turb changed was $0.973+(0.000034 *$ turb $)$ on 9692
READ (7,*,END=500) IMON,IDAY,IHOUR,IMIN,TMV,DEPTH,DOMV, \&AKIPP,CONDUCT,TURBID,POWER
TEMP $=10.5+0.000631 * T M V$
DOST $=\operatorname{EXP}((3.6902+0.0243 * T E M P) * 2.303)$
OXYGEN=(-DOMV/DOST)*100
DEPTH=0.00187* $(-$ DEPTH $)$
TURBID $=1.2+0.0000382 *$ TURBID
AKIPP=-AKIPP/ $1000+0.037$
ENDIF
C
IF (LOGGER.EQ.4) THEN
C Logger Calibration 4 :
READ(7,*,END=500) IMON,IDAY,IHOUR,IMIN,TMV,DEPTH,DOMV, \&AKIPP,CONDUCT,TURBID,POWER
TEMP $=10.1+0.000675 * T M V$
DOST $=\operatorname{EXP}((3.8451+0.0233 * T E M P) * 2.303)$
OXYGEN=(-DOMV/DOST) ${ }^{*} 100-10$
DEPTH $=0.00164^{*}$ DEPTH-0.10
TURBID $=1.05+0.000035^{*}$ TURBID
AKIPP=-AKIPP/1000 +0.01
ENDIF
C
IF (LOGGER.EQ.5) THEN
READ (7,*,END=500) IDAY,IMON,IHOUR,IMIN,TMV,DEPTH,DOMV,
\&AKIPP,CONDUCT,TURBID,POWER
TEMP $=10.2+0.000618^{*}$ TMV
DOST $=\operatorname{EXP}((3.869+0.0069 * T E M P) * 2.303)$
OXYGEN=(DOMV/DOST)*100.0+6
AKIPP=-AKIPP/1000
TURBID $=0.857+0.000029 * T U R B I D+0.1$
DEPTH $=0.00186 *$ DEPTH
ENDIF
C
IF (LOGGER.EQ.6) THEN
C Logger Calibration 6 :
READ(7,*,END=500) IDAY,IMON,IHOUR,IMIN,TMV,DEPTH,DOMV, \&AKIPP,CONDUCT,TURBID,RDEPTH,PRESSURE,POWER
TEMP $=10.1+0.000681 * T M V$
$\operatorname{DOST}=\operatorname{EXP}((3.6902+0.0243 * T E M P) * 2.303)$
OXYGEN=(-DOMV/DOST) ${ }^{*} 100.0$
AKIPP=-AKIPP/1000

```
    count=depth
    DEPTH=((0.208*depth+ -9.54)/100)+2.21
    rcount=rdepth
    RDEPTH=((0.0349*RCOUNT+6.87)/100.0)+1.26
    TURBID=0.973+0.000034*TURBID
    PRESSURE =PRESSURE/100
    ENDIF
C
    IF (LOGGER.EQ.7) THEN
C Logger Calibration 7 :
    READ(7,*,END=500) IMON,IDAY,IHOUR,IMIN,TMV,DEPTH,DOMV,
    &AKIPP,CONDUCT,TURBID,POWER
    TEMP=9.98+0.000610*TMV+0.7
    DOST=EXP((3.6902+0.0243*TEMP)*2.303)
    OXYGEN=-DOMV/DOST*100+15
    AKIPP=-AKIPP/1000+0.1
    DEPTH=(((0.207*depth)+12.2)/100)+1.97
    TURBID=1.12+0.000036*TURBID-0.1
    CONDUCT=CONDUCT/1000.0
    POWER=POWER/1000.0
    ENDIF
C
    IF (LOGGER.EQ.8) THEN
C Logger Calibration 8:
    READ(7,*,END=500)IMON,IDAY,IHOUR,IMIN,TMV,DEPTH,DOMV,
    &AKIPP,TURBID
    TEMP=16.4+(0.681*TMV).
    DOST=EXP((0.4843+0.0244*TEMP)*2.303)
    OXYGEN=-DOMV/DOST*100.0+0.5
    AKIPP=-AKIPP+0.23
    DEPTH=DEPTH+0.40
    TURBID=1.13+0.05*(TURBID*-1.0)
    ENDIF
C
C Check use of 'E OF' to Linearise FTU's.
C
C
    Z(1)=TEMP
    Z(2)=DEPTH
    Z(3)=OXYGEN
    Z(4)=AKIPP
    Z(5)=TURBID
    Z(6)=CONDUCT
    Z(7)=RDEPTH
    Z(8)=BLANK8
    Z(9)=PRESSURE
    Z(10)=BLANK10
    Z(11)=BLANK11
```

```
    Z(12)=POWER
C
C Set Time features :
    J=J+1
    TIME(J)=IDAY+FLOAT(IHOUR)/24+FLOAT(IMIN)/(24*60)
    IF (J.EQ.1) THEN
    IMON0=IMON
    IDAY0=IDAY
    ENDIF
    IF (IMON.NE.IMONO) THEN
    IMON1=IMON0
    410 TIME(J)=TIME(J)+MDAYS(IMON1)
    IMON1=IMON1+1
    IF (IMON1.GT.12) IMON1=1
    IF (IMON.NE.IMON1) GOTO 410
    ENDIF
    IF (IPRIN.EQ.1) THEN
    WRITE(6,315) IDAY,IMON,IHOUR,IMIN,TEMP,DEPTH,OXYGEN,AKIPP,
    &TURBID,RDEPTH,PRESSURE,POWER
    ENDIF
    WRITE(8,315) IDAY,IMON,IHOUR,IMIN,TEMP,DEPTH,OXYGEN,AKIPP,
    &TURBID,RDEPTH,PRESSURE,POWER
    315 FORMAT(4I4,8F10.3)
    DO 370 K=1,KVAR8
    YN=Z(K)
    IF (YN.LT.Y0(K)) Y0(K)=YN
    IF (YN.GT.Y9(K)) Y9(K)=YN
    370.Y(J,K)=YN
    IF (J.EQ.6000) THEN
    WRITE(6,*) ' Maximum No. of Time Points = 6000'
    STOP
    ENDIF
    IMON9=IMON
    IDAY9=IDAY
C
    GOTO 300
C
    500 CONTINUE
C End of reading in data.
    J9=J
    TIME0=AINT(TIME(1))
    TIME9=AINT(TIME(J9))+1
    WRITE(6,502) TIME0,TIME9
502 FORMAT(/' DATA LIMITS (Min , Max Days) = ',2F7.0)
    WRITE(6,503)
503 FORMAT(' Input Min,Max Day number to be plotted :')
    READ(5,*) TIME0,TIME9
```

WRITE(6,504)
504 FORMAT(/10X,' VARIABLE LIMITS :',8X,'STANDARD',12X,'THIS DATA'/
\&32X,'Min Max Min Max')
DO 508 K=1,KVAR8
IF (Y9(K).LT.999999) THEN
WRITE(6,505) K, YNAME(K), $\operatorname{YMIN(K),YMAX(K),Y0(K),Y9(K)~}$
505 FORMAT(I4,1X,A20,2F10.2,2X,2F10.2)
ELSE
WRITE(6,506) K, YNAME(K), YMIN(K), YMAX(K), Y0(K),Y9(K)
506 FORMAT(I4,1X,A20,2F10.2,2X,2E10.5)
ENDIF
508 CONTINUE
WRITE $(6,510)$
510 FORMAT($/ \rho$ Input Numbers ($1-12$) of the variables for which data ',
\&' rather than standard'/ limits are to be used in the plots ://
\&' (hit RETURN to use standard limits for all variables) :')
DO $512 \mathrm{~K}=1$, KVAR8
$\mathrm{YPO}(\mathrm{K})=\mathrm{YMIN}(\mathrm{K})$
$\mathrm{YP9}(\mathrm{~K})=\mathrm{YMAX}(\mathrm{K})$
$512 \operatorname{IPLIM}(\mathrm{~K})=-9$
READ(5,'(A80)') ALINE
READ(ALINE,*,END=514) (IPLIM(K),K=1,KVAR8)
514 DO $515 \mathrm{~K}=1, \mathrm{KVAR} 8$
$\mathrm{K} 1=\mathrm{IPLIM}(\mathrm{K})$
IF (K1.GT.0) THEN
$\mathrm{YP} 0(\mathrm{~K} 1)=\mathrm{Y} 0(\mathrm{~K} 1)$
$\mathrm{YP9}(\mathrm{~K} 1)=\mathrm{Y} 9(\mathrm{~K} 1)$
ENDIF
515 CONTINUE
C Initialise Plotting
WRITE $(6,518)$
518 FORMAT(' PLOTTER:'/' (1)=HP7475 ; (2)=HP7470 ;',
\&' (3) = Versatec ; (4)=Tektronics 4207 ; (9)=END :')
$\operatorname{READ}\left(5,{ }^{*}\right)$ IPDEV
IF (IPDEV.EQ.9) GOTO 9000
IF (IPDEV.EQ.3) IDEV=3436
IF (IPDEV.EQ.4) IDEV=4207
IF (IPDEV.EQ.2) THEN
IPSIZE=1
ELSE
WRITE $(6,520)$
520 FORMAT'(' PAPER SIZE: (1)=A4 ; (2)=A3 :')
$\operatorname{READ}\left(5,{ }^{*}\right)$ IPSIZE
ENDIF
IF (IPDEV.LE.2) THEN
WRITE $(6,530)$
530 FORMAT(' LONG SIDE is : (1)=Vertical ; (2)=Horizontal :') READ(5,*) IPLONG

```
IDEV=747000+(2-IPDEV)*500+(5-IPSIZE)*10+IPLONG
ENDIF
IF (IPSIZE.EQ.1) THEN
Z1=275.0
Z2=190.0
ELSE
Z1=400.0
Z2=275.0
ENDIF
IF (IPLONG.EQ.1) THEN
XDAREA=Z2
YDAREA=Z1
ELSE
XDAREA=Z1
YDAREA=Z2
ENDIF
XDAREA=XDAREA-20
YDAREA=YDAREA-20
XPAGE=XDAREA+40
YPAGE=YDAREA+40
CALL DEVICE(IDEV)
CALL PAGMAP(1)
CALL PAGE2(XPAGE,YPAGE)
CALL PAGBEG
C
C Set plotting limits to edge of page to get all points/errors drawn :
CALL GRASET
TLEN=2.4
CALL CHHITS(TLEN)
DO 2000 K=1,KVAR9
YS0=15+(1-FLOAT(K)/KVAR9)*YDAREA
CALL SHIFT0
CALL SHIFT2(25.0,YS0)
YDAT=YDAREA/KVAR9-15
CALL GRAFIX(XDAREA,YDAT,0.0)
C
C Plot axes and data for first( }\textrm{L}=1)\mathrm{ and then possible the second variable( }\textrm{L}=2
C on this graph :
    DO 1800 L=1,2
    K1=N(K,L)
    IF (K1.EQ.-1) GOTO 1800
    CALL DEFLA2(TIME0,TIME9,YP0(K1),YP9(K1))
    CALL POILIM(TIME0,TIME9,1)
    CALL POILIM(YP0(K1),YP9(K1),2)
    YR=ABS(YP9(K1)-YP0(K1))
C
    IF (L.GT.1) GOTO 1000
```

```
C Section to Draw and Label the Time axis neatly :
    CALL ANNINT(3)
    CALL TL2BEG(1)
    TIME1=TIME0
    900 CALL ANMSEL(1.0,0.0,1.4,0.0)
    CALL TICLA2(TIME1,0)
    CALL ANMSEL(0.0,0.0,0.0,0.0)
    DAY=TIME1
    IF (DAY.GT.MDAYS(IMON0)) DAY=DAY-MDAYS(IMON0)
    DAY1=TIME1+0.5
    IF (TIME1.LT.TIME9) CALL TICLB2(DAY1,DAY,1)
    TIME1=TIME1+1
    IF (TIME1.LE.TIME9) GOTO 900
    CALL TL2END
    IF (K.EQ.KVAR9) THEN
    TIME1=TIME0 +0.1
    Y1=YP0(K1)-0.05*YR*KVAR9
    WRITE(ALINE,'(A9,I5)') CMON(IMON0),IYEAR0
    CALL TEXLA2(TIME1,Y1,ALINE,1,14,1)
    IF (IMON9.GT.IMON0) THEN
    TIME1=TIME9-0.9
    CALL TEXLA2(TIME1,Y1,CMON(IMON9),1,9,1)
    ENDIF
    ENDIF
C
    1 0 0 0 ~ C A L L ~ A N M S E L ( 1 . 0 , 0 . 0 , 0 . 5 , 0 . 0 )
    JTIC=0
1020 JTIC=JTIC+1
    IF (YR.GT.YRANGE(JTIC)) GOTO 1020
    IF (YTICK(JTIC).LT.1) THEN
    CALL ANNFIX(4,1)
    ELSE
    CALL ANNINT(4)
    ENDIF
C Draw secondary Y axis if L>1
    IF (L.GT.1) CALL GRISEL(0,3,0)
    CALL AXILB2(YTICK(JTIC),NTICK(JTIC),2)
    IF (L.GT.1) CALL GRISEL (3,0,0)
    Y1=YP9(K1)+YR/30
    IF (L.EQ.1) TIME1=TIME0+0.2
    IF (L.GT.1) TIME1=TIME0+0.8*(TIME9-TIME0)
    CALL TEXLA2(TIME1,Y1,YNAME(K1),1,20,1)
    IF (K1.EQ.1) THEN
C Put o in Degrees C:
    TNAME='.
    TNAME(13:13)=CHAR(24)
    CALL CHSETS(3)
    CALL TEXLA2(TIME1,Y1,TNAME,1,20,1)
```

```
    CALL CHSETS(-1)
    ENDIF
    CALL LINSEL(1)
    CALL MARSEL(0)
C Plot second variable N2(K) as dotted line, if requested :
    DO 1200 J=1,J9
1200 YC(J)=Y(J,K1)
    IF (L.GT.1) CALL LNSETS(2)
    CALL PLOLA2(TIME,YC,J9)
    IF (L.GT.1) CALL LNSETS(1)
1800 CONTINUE
C
2000 CONTINUE
    CALL PAGEND
    CALL GCLOSE
    WRITE(6,'(1X,A80)') ALINE
9 0 0 0 ~ S T O P
    END
```

Natural
Environment
Research
Council

