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the San Souci Volcanic Formation (SSVF) and passive margin sediments of the ~130-125 Ma Toco Formation. The
Group was trapped at the leading edge of the Pacific-derived Caribbean Plate during the Cretaceous-Palaeogene,
colliding with the para-autochthonous margin of Trinidad during the Oligocene-Miocene. In-situ U-Pb ion probe
dating of micro-zircons from a mafic volcanic breccia reveal the SSVF crystallised at 135.0 4= 7.3 Ma. The age of the
SSVF is within error of the age of the Toco Formation. Assuming a conformable contact, geodynamic models
indicate a likely origin for the SSVF on the passive margin close to the northern tip of South America. Immobile
element and Nd-Hf radiogenic isotope signatures of the mafic rocks indicate the SSVF was formed by <«10% par-
tial melting of a heterogeneous spinel peridotite source with no subduction or continental lithospheric mantle
component. Felsic breccias within the SSVF are more enriched in incompatible elements, with isotope signatures
that are less radiogenic than the mafic rocks of the SSVF. The felsic rocks may be derived from re-melting of mafic
crust. Although geochemical comparisons are drawn here with proto-Caribbean igneous outcrops in Venezuela
and elsewhere in the Caribbean more work is needed to elucidate the development of the proto-Caribbean sea-
way and its rifted margins. In particular, ion probe dating of micro-zircons may yield valuable insights into

magmatism and metamorphism in the Caribbean, and in altered basaltic terranes more generally.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/).
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1. Introduction

Rifting of the supercontinent Pangaea and the opening of the Central
Atlantic during the Mesozoic represents both a classic example of
continental break-up and passive margin development, and an endur-
ing enigma in assessing the role of mantle plumes in such a process
(e.g., Callegaro et al., 2013; Hill, 1993; McHone, 2000). One branch of
the Pangaea break-up story that has hitherto received little attention
is the rifting of North and South America from the latest Triassic on-
wards (e.g., Bartok, 1993; Ostos et al., 2005). This rifting generated
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both the Gulf of Mexico and the proto-Caribbean seaway (Pindell and
Dewey, 1982), and lasted until the onset of N-S convergence between
the Americas in the Late Cretaceous (Miiller et al., 1999). The Pacific-
derived Caribbean Plate has over-ridden much of the proto-Caribbean
since the Cretaceous. Only fragments of proto-Caribbean crust which
have been either accreted to the Caribbean Plate or thrust onto South
America remain, from which the tectono-magmatic evolution of the
proto-Caribbean oceanic crust have to be pieced together. Many
of these ‘fragments’ in South America have hitherto received little
attention.

During the Late Jurassic-Early Cretaceous, the proto-Caribbean sea-
way was fringed on its western margin by east-dipping subduction of
the Farallon Plate, generating the ‘inter-American Arc’ (e.g., Pindell
and Dewey, 1982). During the Early-Late Cretaceous (see Hastie and
Kerr, 2010; Pindell et al., 2011; Hastie et al., 2013; Escuder Viruete
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et al., 2014, for recent debate), east-dipping subduction beneath the
inter-American Arc ceased and was superseded by SW-dipping subduc-
tion of proto-Caribbean oceanic crust. Proto-Caribbean subduction gave
rise to the ‘Great Arc of the Caribbean’ (sensu Burke, 1988), a composite
of several island arc systems of debated origin and complexity (Neill
et al,, 2011; Wright and Wyld, 2011). This arc system includes much
of the present-day Greater Antilles, Aves Ridge, and Netherlands-
Venezuelan Antilles as well as Tobago and allocthonous terranes in
Venezuela, and marked the leading edge of the Pacific-derived Caribbe-
an Plate from the Cretaceous to the Palaesocene. These subduction sys-
tems shut down following roll-back of the proto-Caribbean slab and
were superseded by growth of the Palaeocene-Eocene to present-day
Lesser Antilles Arc system.

The central region of the Caribbean Plate consists of 7-20 km thick
crust of the Late Cretaceous mantle plume-derived Caribbean Oceanic
Plateau (see review in Kerr et al., 2003). Due to continued Atlantic
spreading and Andean-Cordilleran subduction, the Pacific-derived Ca-
ribbean Plate has moved east relative to the Americas from the Creta-
ceous to the present, with much of the proto-Caribbean oceanic crust
being subducted beneath the ‘Great Arc’ system. Therefore, models of
how and when North and South America broke apart remain to be test-
ed properly, and the role of igneous processes in continental break-up in
this region is still uncertain as we have little proto-Caribbean crust to
work with.

Fortunately, a few fragments of Mesozoic proto-Caribbean crust and
lithospheric mantle escaped subduction, having been either accreted to
the present-day Greater or Lesser Antilles (e.g., Jolly et al., 2008;
Marchesi et al., 2011; Neill et al., 2010) or been thrust onto northern

South America (Kerr et al., 2009; Ostos and Sisson, 2005; Wadge and
Macdonald, 1985) (Fig. 1). Nevertheless, a further problem remains in
studying such proto-Caribbean outcrops in that many of these contain
altered mafic rocks which are inherently difficult to interpret geochem-
ically and to date accurately due to mobilisation of major and trace ele-
ments. In this paper, we present new ion microprobe U-Pb zircon
geochronology along with immobile element and Nd-Hf radiogenic
isotope data from the San Souci Volcanic Formation of northeast
Trinidad (Fig. 2), the easternmost exposure of igneous rocks on the
Caribbean coast of South America. We use the new data to re-assess
the timing and source of magmatism at San Souci and its relationship
to both the break-up of the Americas and later Caribbean tectonics. Fur-
thermore, this work demonstrates the potential for accurate dating of
altered fine-grained Phanerozoic mafic rocks.

2. Geological setting and studied samples
2.1. The Caribbean-South American Plate boundary

Northern South America is a tectonically complex transpressive
plate boundary between the Caribbean and South American Plates.
South America is currently moving to the west at~20 mm a~ ! rela-
tive to the Caribbean Plate, with much of the motion taken up on
the El Pilar-San Sebastian fault system running through Trinidad
and Venezuela (Weber et al., 2001) and the offshore North Coast
Fault Zone to the north of Trinidad (Figs. 1,2). In pre-Cenozoic
times, northern South America was a passive margin of the proto-
Caribbean seaway between North and South America, with the future
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Fig. 2. (a) Geological map of the Trinidad and Tobago region showing major geological units and strike-slip fault systems. simplified from Robertson and Burke (1989), Algar (1998) and
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Coast Fault Zone and northern Trinidad, showing equivalent position of San Souci which lies to the east of the section. (c) Sample location map for San Souci and the Toco Formation after
Wadge and Macdonald (1985).
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Caribbean region lying in the Pacific to the west of South America
as part of the Farallon Plate (Maresch, 1974). After inception of
southwest-dipping subduction beneath the Great Arc, the Caribbean
Plate advanced north-eastwards relative to the Americas, consuming
proto-Caribbean oceanic crust. Tectono-stratigraphic data reveal that
the leading edge of the Caribbean Plate began to interact with north-
west South America by~75 Ma (Vallejo et al., 2006; Weber et al.,
2010). The Caribbean Plate then collided with the South American
passive margin diachronously from west to east during the Cenozoic,
generating mountainous terrain such as the Cordillera de la Costa in
Venezuela and the Northern Range of Trinidad (Escalona and Mann,
2010; Pindell and Barrett, 1990) (Fig. 1).

2.2. The Caribbean-South American Plate boundary zone in Venezuela

The present diffuse plate boundary in central Venezuela is divided
from north to south into five crustal units (Fig. 1a,b): (1) The most north-
erly unit is the Southern Caribbean Deformed Belt, a sub-sea wedge of
S-dipping sedimentary rocks (Bezada et al., 2010). (2) Next are the
Netherlands-Venezuelan Antilles, fragments of Caribbean Oceanic
Plateau and island arc rocks (see Kerr et al,, 1996; Loewen et al., 2013;
Wright and Wyld, 2011). (3) Third is the Falcon Basin, a series of pull-
apart basins filled with Neogene sediments (Muessig, 1984). (4) The
fourth unit is the Cordillera de la Costa, which is subdivided into six
belts (Urbani and Rodriguez, 2004), as: (a) the Coastal Belt, a fringe of
Mesozoic rocks characterised by high pressure-low temperature
(HPLT) mineral assemblages (Sisson et al., 1997); (b) the Avila Belt
consisting of Paleozoic continental rocks, meta-sediments and meta-
granitoids; (c) the Caracas Belt with Mesozoic passive margin sediments;
(d) the Caucagua-El Tinaco Belt, containing Neoproterozoic to Eocene
continental material; (e) the Loma de Hierro Belt, which is likely to be
an ophiolite of proto-Caribbean origin affected by low grade metamor-
phism (see discussion in Section 6.1); and (f) the Villa de Cura Belt, a
klippe which has overridden the passive margin units of northern
South America (Maresch, 1974). The latter is divided into two terranes,
the Villa de Cura sensu stricto with HPLT assemblages belonging to an
island arc-related subduction complex, and the unsubducted San
Sebastian Terrane which reaches prehnite-pumpellyite facies only. The
rocks of the Villa de Cura Belt are probably fragments of the inter-
American or ‘Great Arc’ and may correlate with rocks found on Margarita
and Tobago Islands to the east (Maresch et al., 2009; Neill et al., 2012;
Snoke et al.,, 2001a). (5) Finally, the fold-and-thrust belt of the Serrania
del Interior containing para-autochthonous sedimentary rocks is the
most southerly unit affected by Caribbean-South American Plate interac-
tion (Hung, 2005).

In northeastern Venezuela, the belts described from the Cordillera de
la Costa largely disappear beneath the Gulf of Cariaco (Fig. 1a) and are
replaced in the Araya-Paria region primarily by Mesozoic meta-
sedimentary rocks from the proto-Caribbean passive margin (Hackley
etal, 2005). There are also 2 km-scale exposures of Palaeozoic gneiss
(Hackley et al., 2005), suggesting that much of the Araya-Paria region
may be broadly equivalent to the Avila or Caucagua-El Tinaco Belts. On
the very northern coast of the Araya Peninsula, there are meta-tuffs, pil-
low basalts and serpentinites known as the El Copey Meta-volcanic For-
mation (McMahon, 2000; Seijas, 1971) (Fig. 1a). These are discussed in
Section 6.1 and are considered to be of proto-Caribbean origin.

2.3. The Caribbean-South American Plate boundary zone in Trinidad

Trinidad, unlike Venezuela, comprises relatively few igneous
and meta-igneous rocks. Much of the island developed para-
autochthonously on the Mesozoic to Early Cenozoic passive margin of
the proto-Caribbean Seaway (Algar, 1998). Exceptions are altered tho-
leiitic tuff horizons in the Barremian (~130-125 Ma) Maracas Forma-
tion of the Northern Range (Jackson et al., 1991) and the San Souci
Volcanic Formation (Wadge and Macdonald, 1985). Trinidad has

mountainous terrain to the north of the island (the Northern Range,
reaching up to 1 km above sea level) and basins (e.g., the Caroni
Basin) and low hills of a few hundred metres elevation (the Central
and Southern Ranges) to the south. The island is cut by successive
right-lateral strike-slip fault systems (Fig. 2a, Algar, 1998). The El Pilar
Fault (Fig. 2a,b) cuts the southern edge of the Northern Range and
roughly marks the boundary between non-metamorphic facies and
the metamorphic rocks of the Northern Range. The Northern Range
consists mostly of Jurassic to Upper Cretaceous proto-Caribbean passive
margin protoliths (Algar, 1998). The Range underwent Oligocene-
Miocene greenschist-facies metamorphism and penetrative deforma-
tion co-incident with collision between the Caribbean Plate and the pas-
sive margin (Algar and Pindell, 1991, 1993; Speed and Foland, 1991).

2.4. The San Souci Group': San Souci Volcanic Formation and Toco
Formation

The San Souci Group (Algar and Pindell, 1991) lies in an isolated
location on the northern coast of Trinidad, between the villages of
Toco and Grand Riviere (Fig. 2a,c) and is not geologically part of the
Northern Range. The Group consists of both sedimentary and igneous
rocks. The Caribbean ‘Great Arc’ rocks of Tobago Island (Snoke et al.,
2001a) are 35 km to the north, whilst the Toco-Grand Riviere fault sys-
tem separates the San Souci Group from the Northern Range meta-
sediments (Algar and Pindell, 1993) to the south. The Toco-Grand
Riviere fault system is a splay from the offshore North Coast Fault
Zone, marking the effective Caribbean-South American Plate boundary
(Robertson and Burke, 1989) (Fig. 2b). The San Souci Group consists of
the San Souci Volcanic Formation (SSVF), dominated by mafic sub-aerial
volcanic and hypabyssal rocks (described in more detail in Section 2.5),
and the Toco Formation which contains fine black shales and inter-
digitated coarse quartzo-feldspathic sandstone channels along with cal-
careous shales, grits and thin limestone bands (Barr, 1962; Wadge and
Macdonald, 1985). Exposure is severely limited by tropical weathering
and jungle vegetation.

The San Souci Group only reaches prehnite-pumpellyite facies
and does not show penetrative deformation. The oldest zircon fission
track ages from the Toco Formation range from the Permian to Early
Jurassic, coinciding with ages of granitoids in western Venezuela and
Colombia (Algar et al., 1998). The Toco Formation was thus likely de-
posited on the proto-Caribbean margin of South America, but was
then transported eastward relative to South America after accretion
to the leading edge of the Caribbean Plate. During fieldwork, the con-
tact between the SSVF and the Toco Formation was not exposed.

Barr (1962, 1963) identified solitary and colonial coral, bivalve, echi-
noderm, ammonoid and foraminiferal assemblages within calcareous
shale and limestone units of the Toco Formation, including the ammo-
nite Pulchellia, which is of Barremian age (130-125 Ma). However, the
youngest zircon fission track ages obtained from two sandstone sam-
ples cluster at~108 Ma (Albian) (Algar et al., 1998). The ages were pro-
posed to represent detritus from the ‘Great Arc’ or the then-undated
SSVF (Algar and Pindell, 1993; Algar et al., 1998), implying an Albian
age for part of the Toco Formation (incompatible with the faunal
ages), and/or a similar age for the SSVF. On the basis of our geochrono-
logical and isotope geochemistry results we can rule out both these pos-
sibilities and instead propose that the~108 Ma ages represent uplift
following a prehnite-pumpellyite facies metamorphic event which par-
tially annealed Toco Formation zircons. Wadge and Macdonald (1985)
obtained a K-Ar age of 87 + 4.4 Ma from a basalt of the SSVF at San
Souci Point (Fig. 1b) but this age is questionable given extensive hydro-
thermal alteration of the SSVF.

Limited geochemical data (Wadge and Macdonald, 1985) have
precluded detailed petrogenetic assessment of the SSVF. Previous

! Both ‘Sans Souci’ (Fr. ‘carefree’) and ‘San Souci’ are used in the literature. We use the latter
in direct reference to the village of the same spelling within the field area.
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interpretations of the origin of the SSVF range from proto-Caribbean
MORB (Algar and Pindell, 1993) or a seamount (Algar, 1993) to an out-
lier of the Caribbean Oceanic Plateau (Kerr et al., 2003; Wadge and
Macdonald, 1985).

2.5. Petrography of studied samples

The SSVF is dominated by massive sub-aerial mafic volcanic
rocks, thought to have been auto-brecciated by repeated magmatism
(Wadge and Macdonald, 1985) and perhaps also affected by interac-
tion with sea-water, although the lack of altered glass indicates these
are not hyaloclastites. Also present are hypabyssal dolerites which
appear to intrude the volcanic pile. A 100 m-wide dyke-like dolerite
body is said to lie in a fault-bounded unit 6 km to the south-east of
San Souci, and a gabbro-dolerite intrusion was noted from the mid-
dle of the formation by Wadge and Macdonald (1985), but neither
were exposed during fieldwork for this study due to dense vegetation.
The freshest available samples of the least brecciated and altered extru-
sive and intrusive rocks were collected from track cuttings near Grand
Riviere and from cuttings and shoreline at San Souci Point (Fig. 2c).
The coarser rocks of the SSVF are aphyric dolerites, of 1-2 mm grain
size, with a primary mineralogy of interlocking elongate plagioclase
and clinopyroxene. The finer-grained mafic auto-breccias contain elon-
gate, randomly-aligned plagioclase and stubby clinopyroxene. All rocks
have undergone alteration: plagioclase is partially replaced by clays and
sericite, and veins and small alteration patches contain assemblages
dominated by chlorite, with prehnite, pumpellyite, clays, calcite, epi-
dote, and Fe-Ti oxides.

During this study an outcrop of uncertain stratigraphic position was
discovered in a recent quarry towards the eastern end of the SSVF (Sam-
ple location 7 on Fig. 2¢). This outcrop consists of felsic plagioclase-phyric
auto-breccias with elongate to needle-like groundmass plagioclase,
quartz, squat clinopyroxene often altered to chlorite, and Fe-Ti oxides.
These felsic samples also contain some quartz-calcite veining. A single
sample from the Toco Formation was also collected, an impure sandstone
containing very fine angular quartz (~65%, approximately 0.25 mm grain
size), heavily altered calcified feldspar grains and some platy muscovite
(<5%).

3. In-situ geochronology of the SSVF
3.1. Methodology and textural information

Glass or mineral separates from fine-medium grained mafic igneous
rocks are normally dated by Ar-Ar methods. An earlier attempt to date
plagioclase crystals was unsuccessful owing to the degree of alteration.
Analysis was instead undertaken on zircons and baddeleyites found in
the SSVF following protocols outlined for the analysis of small
(<50 pm) grains using the secondary ion microprobe (SIMS) on
thick-sectioned samples (Chamberlain et al., 2010; Schmitt et al.,
2010). Baddeleyite (ZrO,) is an accessory mineral in mafic igneous
rocks (Krogh et al., 1987), whilst zircon replaces baddeleyite during
magmatic evolution and low-grade metamorphism as well as being a
primary magmatic phase (Heaman and LeCheminant, 1993). Sample
INSS6.3 was selected for analysis, an aphyric brecciated dolerite with
approximately 1 mm grain size. A thick section of sample INSS6.3 was
imaged using reflected light then mapped using a JEOLJXA8900 electron
microprobe at the University of Wyoming to find high-Zr phases, most
of which were between 5 and 30 pm in diameter. Back-scatter imaging
was then used for identification. The section contained isolated grains
of baddeleyite with minimal rims of zircon, at least as many mixed
grains with a core of baddeleyite and a mantle of zircon, plus numerous
zircons, either misshapen or euhedral, which lack baddeleyite entirely.
Examples of these textures are found in Supplementary Item A. Textural
analysis allows identification of grains which are unsuitable for analysis.
U-Pb ages are calculated assuming the crystal is solely one phase or the

other, so mixed grains are rejected. Finally, the distinct populations of
zircon are interpreted differently: misshapen zircons are probably late
overgrowths entirely replacing baddeleyite, whereas euhedral zircons
are considered to be magmatic.

Baddeleyites and zircons selected for dating were analysed on the
Cameca IMS 1270 SIMS instrument at the University of California, Los
Angeles in two runs during 2011 and 2012. An aperture in the transfer
section of the secondary beam column was used to reduce the effective
sampling diameter from ~20 pm to~8 pm. In line with previous protocol,
the sample chamber was flooded with oxygen (~3 x 10~> Torr for
zircon,~1 x 10~ Torr for baddeleyite) to enhance recovery of second-
ary ions of Pb approximately 10-fold (e.g., Schuhmacher et al., 1993;
Wingate and Compston, 2000). U/Pb relative sensitivity was calibrated
using UO,/U for baddeleyite using the Phalaborwa standard and using
UO/U for zircon using standard AS3. UO,/U ranged from 6.2 to 7.0
(2011 run) whilst UO/U ranged from 7.9-8.3 (2011) to 6.52-8.52
(2012). Pb values were corrected for common Pb using 2°*Pb for both
baddeleyite and zircon.

3.2. Zircon U-Pb results

Results are presented in Table 1 and graphically in Supplementary
Items B1 and B2. Of the dateable grains, 11 zircons give a 2°°Pb/238U
weighted mean age of 135.0 & 7.3 Ma. Misshapen zircons taken to be
replacing baddeleyite and euhedral zircons have ages within error of
one other, indicating that the baddeleyite-zircon transformation likely
occurred during crystallisation. A single baddeleyite grain (not included
in the weighted mean) gave an age close to being within error of the
other ages (Table 1). As baddeleyite cannot be generated by low-
grade metamorphic processes, this age strongly supports the magmatic
origin of the zircon population.

4. Whole-rock geochemistry
4.1. Analytical methods

Whole rock samples were prepared and analysed for major and trace
elements at Cardiff University using methods outlined in McDonald and
Viljoen (2006). Samples were powdered by agate ball mill and after de-
termination of loss on ignition (900 °C for 2 h) were fused on a propane
burner with LiBO, in platinum crucibles, and dissolved in HNOs. Analy-
sis by inductively coupled plasma optical emission spectrometry (ICP-
OES) was undertaken for major elements and Sc using a JY-Horiba Ulti-
ma 2 instrument. Mass spectrometric (ICP-MS) trace element analysis
was carried out using a Thermo Elemental X7 Series for minor, trace
and rare earth elements (REE). International mafic rock standards in-
cluding JB-1A and BIR-1 were run at regular intervals throughout the
analysis time. Precision for most major elements during standard runs
were better than 2.7% (except P,Os = 5.8%), and better than 3% for
most trace elements, excepting 5.1% for Ni, 4.1% for Cu, 7.6% for Rb
(10). Standard deviations were always better than 4.7% for the REE
(10). Results are presented in Table 2, including data produced for
mafic rocks at El Copey and Siquisique in Venezuela for Kerr et al.
(2009) (see Section 6.1). Standard runs are in Supplementary Item C.

Nd-Hf radiogenic isotope analyses were undertaken at NIGL in Not-
tingham, UK, by dissolution of non-ignited samples using a standard
HF-HNO; digestion technique. Hf was obtained using the LN-SPEC
column separation method (Miinker et al., 2001), and samples were
analysed on a Nu-plasma multicollector ICP-MS. Reverse mass-bias
correction with empirically determined 76Yb/!”3Yb and '7®Lu/!”°Lu
ratios was employed, although separation techniques ensured samples
contained little Yb and no Lu was present. Results for standards
(JMC475: "78Hf/177Hf = 0.282161 =+ 0.000006 at 10, n = 45, 20an-
alytical uncertainty = 45 ppm; BCR2: '7SHf/!'77Hf = 0.282866 +
0.000006 at 10, n = 7, 20 analytical uncertainty = 40 ppm) were
comparable to preferred values of 0.282160 for J]MC475 (Nowell and
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Table 1
SIMS data from in-situ analyses of zircon and baddeleyite in sample INSS6.3, San Souci Volcanic Formation.
Ages (Ma) Ratios Run
Grain  Description  Size 205pp;  +1se. r%pb U Th/ 207ph*/  1se.%  2%Pb*/  1se.% rho uo,/ U0/
(um) 238 % ppm us 235 238 U U
Zircon Weighted mean 2°°Pb/>38U zircon date = 135.0 + 7.3 Ma (20) (MSWD 1.4)
18z bd rep 20x 8 175 14 97.7 621 2.6068 0.165 43 0.0274 8 0422 7.8 03/03/2011
25z bd rep 28 x 10 162 12 989 741 23079 0.184 24 0.0254 8 0458 79 03/03/2011
21z euhedral 25x5 145 11 100.0 739 2.07074 0.175 30 0.0227 7 0457 8.1 03/03/2011
22z bd rep 22 x 10 145 9 98.4 772 2.74694 0.168 39 0.0227 7 0474 8.6 03/03/2011
6z euhedral 22 x 18 141 8 103.0 469  1.9976 0.334 14 0.0221 5 0.570 83 24/01/2012
19z euhedral 18 x 8 138 10 99.3 754 0.99078 0.138 15 0.0216 8 0.552 79 03/03/2011
3z bd rep 30x 8 137 7 92.0 769 1.2496 0.131 16 0.0215 6 0430 8.1 24/01/2012
17z euhedral 22 x10 134 9 99.0 1159 3.83572 0.123 37 0.0209 7 0.400 8.0 03/03/2011
10z bd rep 50 x 10 126 9 98.6 641 22176 0.166 26 0.0197 7 0470 75 24/01/2012
4z bd rep 18 x 6 125 7 86.0 658 1.5928 0.265 27 0.0196 5 0.550 93 24/01/2012
2z bd rep 15x5 125 8 100.0 844 2464 0.224 32 0.0195 6 0.640 83 24/01/2012
Baddeleyite Baddeleyite grain not included in final date
24bd thin z rim 12x8 155 8 93.8 545 0.93492 0.056 81 0.0244 5 0.355 53 03/03/2011

Notes: values in parentheses are absolute errors at one sigma level for ages, percent for ratios.

bd =baddeleyite, z =zircon, rep = zircon replacing bd.
r?%Ppb = radiogenic 2°°Pb in percent.
$ = SIMS ThO/UO data converted to atomic Th/U.

* = radiogenic Pb value corrected for initial Pb using >**Pb method for both baddeleyite and zircon.

rho = correlation coefficient of error ellipses.

Parrish, 2001) and 0.282879 for BCR2 (Blichert-Toft, 2001), so no cor-
rections were made. Light rare earth elements (LREE) were concen-
trated on Eichrom AG50 cation columns, and analysed using a
Thermo Scientific Triton TIMS machine in multi-dynamic mode.
The *3Nd/'**Nd results for the La Jolla standard were: 0.511846 +
0.000003 at 10 (n = 6, 20 analytical uncertainty = 12 ppm). Here,
results are normalised to a preferred value of **Nd/!*Nd =
0.511860. Isotope results are presented in Table 3, along with results
for El Copey and Siquisique (Section 6.1) produced for Kerr et al.
(2009).

4.2. Mafic rocks

Hydrothermal alteration, low-grade metamorphism and weathering
mean that fluid-mobile major and large ion lithophile element (LILE)
concentrations are not likely to be representative of the original SSVF
magma, whereas Th, REE, transition metals and High Field Strength
Elements (HFSE) are relatively immobile under such conditions (Cann,
1970). Therefore we will focus on these immobile elements in further-
ing our assessment of the petrogenesis of the SSVF. The Th vs. Co and
Zr/Ti vs. Nb/Y classification diagrams designed for such altered rocks
(Hastie et al., 2007; Pearce, 1996) indicate that the majority of SSVF
mafic rocks are tholeiitic basalts and basaltic andesites, with just 3
samples classified as calc-alkaline basaltic andesites (Fig. 3a, b).

San Souci samples contain~46-56 wt.% SiO, and<8 wt.% MgO
(Mg# = 55-66), indicating that they are not primary magmas (Fig. 3¢
and e, Table 2). Immobile, incompatible element variation diagrams
such as TiO, vs. Yb (Fig. 3d) show that most samples lie on a broad
trend, and might therefore be related to each other by fractional
crystallisation, although a single sample lies off-trend and may be repre-
sentative of a distinct magmatic suite. Chondrite-normalised REE
diagrams have relatively flat patterns (10-30 times chondrite), with
slight LREE/HREE (light/heavy REE) enrichment (Lacn/Ybeny = 0.9-2.3)
(Fig. 4a). Small Eu anomalies may be ascribed to plagioclase fractionation
or accumulation. The primitive mantle-normalised trace element pat-
terns for the rocks (Fig. 4b) have conspicuous negative Th anomalies
along with relatively small positive Nb-Ta and Zr-Hf anomalies. The
LREE-enriched samples have more conspicuous positive Nb-Ta anoma-
lies. The most evolved mafic samples have negative Ti anomalies.

4.3. Felsic rocks

The two felsic samples (SS7.1 and 7.3) plot as a calc-alkaline andesite/
dacite and shoshonitic dacite respectively on a Th-Co discrimination
diagram (Fig. 3a) or as trachy-andesite/phonolite on a Zr/Ti vs. Nb/Y
plot (Fig. 3b). They have lower Fe;0s, TiO,, MgO and CaO and higher
Al,05 and Na,0 compared to the mafic rocks (Table 2). The trace element
contents are also distinct, with very high HFSE concentrations and much
lower Ni and Cr compared to the mafic samples (Table 2). These felsic
rocks have concave chondrite-normalised REE patterns with high LREE/
MREE (middle REE) ratios (Fig. 4c). The samples have no depletion in
the HREE and appear to lack Eu anomalies. On a primitive mantle-
normalised trace element plot (Fig. 4d), the felsic rocks have large nega-
tive Ti anomalies and very large positive Zr-Hf and Nb-Ta anomalies with
moderate Nb/Ta (~15) but very high Zr/Hf (55). Th is slightly enriched
over the LREE.

The single sandstone from the adjacent Toco Formation has~81 wt.%
SiO, and low concentrations of Al,05 and K,0 (Table 2) probably de-
rived from muscovite, altered feldspar and clays. For the most part,
the sandstone has identical REE and normalised trace element patterns
to the felsic volcanic rocks, with the exception of a very large negative
Nb-Ta anomaly on the primitive mantle-normalised plot (Fig. 4d).
This discrepancy suggests that the volcanic and sedimentary rocks are
genetically unrelated.

4.4. Radiogenic isotopes

Isotopic ratios of the mafic rocks of the SSVF vary little, and are
more radiogenic than Bulk Earth, with initial values at 135 Ma of
eHf ~ 13.9 and eNd ~ 8.9 (Fig. 5, Table 3). The two felsic samples
from San Souci, also corrected to initial values at 135 Ma in the ab-
sence of better age constraints, are less radiogenic than the mafic
rocks, with ¢Hf of~9.7 and €Nd of ~6.1. The Toco Formation sand-
stone has isotopic signatures typical of mature continental crust
(eHf = —23,eNd = —14) so is not plotted on Fig. 5. There is clearly
no connection between the SSVF and the Toco Formation, nor does
the Toco Formation have isotopic signatures consistent with Carib-
bean Great Arc input (cf. the~110-105 Ma Tobago Volcanic Group;
Neill et al., 2013).
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Table 2

Major and trace element data for the San Souci Volcanic Formation, plus results from Kerr et al. (2009) for the El Copey and Siquisique localities discussed in the text. LOI—loss on

ignition. D =dolerite, B =breccia in sample names. bd =below detection.

Unit San Souci Volcanic Formation—mafic rocks
Sample

28-1/1 INSS3al INSS3a2 INSS3b1 INSS3b2 INSS3cD INSS3cB  INSS3d INSS3e INSS3f INSS6.1 INSS6.2 INSS6.3 INSS6.4 INSS6.5 INSS7.2
Si0, 50.86  45.60 4747 50.11 47.86 4934 52.89 5066 4815 4864 51.01 49.92 50.90 48.79 56.21 51.07
TiO, 1.84 1.47 1.69 131 1.54 1.63 130 0.99 1.92 1.69 191 1.20 1.55 197 1.18 1.24
AlLO5 1419 1477 1435 15.53 14.30 14.46 13.96 13.92 14.43 14.21 12.98 13.95 14.11 13.88 14.09 15.08
Fe,05(T)  10.05 9.48 10.57 9.02 8.60 9.06 8.12 793 11.65 11.77  10.56 9.02 9.44 11.00 6.48 8.78
MnO 0.14 0.17 0.14 0.16 0.14 0.15 0.12 0.12 0.18 0.18 0.14 0.16 0.16 0.18 0.12 0.17
MgO 6.40 6.69 7.62 7.30 5.84 6.05 7.83 7.80 7.20 8.18 6.20 7.00 6.68 6.76 422 7.85
Ca0 6.54 8.16 6.26 8.26 7.98 6.46 791 9.83 9.02 8.86 9.49 11.26 9.57 9.96 891 10.74
Na,O 529 432 3.63 427 454 437 4.70 471 3.50 313 3.29 335 438 3.77 513 3.66
K,0 0.16 0.19 0.13 0.15 0.09 0.13 0.34 0.39 0.09 0.09 0.03 0.16 0.14 0.04 0.13 0.12
P,05 0.24 0.16 0.16 0.12 0.17 0.16 0.19 0.10 0.21 0.16 0.23 0.14 0.15 0.21 0.17 0.13
LOI 3.01 9.88 9.10 3.56 9.66 8.85 2.69 397 342 3.76 3.04 2.77 246 2.89 247 2.82
Total 98.71 10090 101.12 99.79 100.72 100.65 100.05  100.42 99.78 100.68  98.89 98.93 99.55 99.44 99.13  101.65
Sc 333 324 37.0 35.0 31.0 313 33.2 28.6 404 383 374 35.5 341 375 321 34.1
\Y 2603  276.6 318.7 253.9 2749 289.6 256.2 208.1 341.1 3100  306.0 237.5 264.5 3238 201.2 2382
Cr 2088  180.3 2179 294.7 167.8 182.1 238.1 2833 1064  156.7 98.3 174.7 149.9 155.4 129.8 3438
Co 31.1 348 36.2 34.6 31.6 32.7 31.2 325 373 394 35.8 31.8 31.8 379 20.1 338
Ni 101.6 81.8 59.9 81.8 729 69.2 82.1 96.8 51.7 65.9 48.0 65.8 86.6 54.0 374 86.5
Rb 1.7 22 15 16 09 1.5 2.1 34 0.5 0.8 0.1 15 1.0 0.2 1.1 16
Sr 132 274 159 164 200 182 181 114 87 84 106 138 124 123 161 86
Y 431 319 385 27.3 324 329 26.8 221 41.5 373 42.7 27.6 30.7 459 39.3 253
Zr 1449 1217 1334 87.7 1393 1399 105.8 75.5 146.8 118.1 156.0 933 114.3 168.2 154.9 82.0
Nb 57 6.5 5.1 39 9.1 8.9 15.2 4.0 5.6 44 6.3 3.7 5.2 6.7 5.8 48
Ba 76 266 88 368 134 153 74 61 47 42 30 47 52 29 57 22
Hf 35 2.7 3.0 2.1 3.0 32 23 1.7 34 2.8 34 21 2.6 338 34 20
Ta 04 0.4 03 03 0.6 0.6 1.0 03 04 03 0.5 03 03 0.5 04 04
Th 03 0.5 03 0.2 0.8 0.9 1.0 04 03 03 0.5 03 03 0.5 0.5 0.5
La 5.6 6.2 59 39 7.5 7.6 84 3.8 6.1 52 71 45 4.7 7.0 6.6 49
Ce 16.5 16.0 16.5 113 182 188 20.0 10.5 17.7 15.0 20.1 12.5 135 20.2 184 127
Pr 2.8 2.3 26 1.8 25 2.6 26 16 2.8 24 3.0 19 2.1 3.1 2.8 19
Nd 152 11.7 135 93 123 129 12.2 79 14.6 125 155 9.8 109 164 14.1 94
Sm 49 35 43 3.0 3.6 3.8 32 24 46 4.0 4.7 3.0 34 5.1 43 29
Eu 13 1.2 22 1.0 13 13 1.1 09 15 14 14 09 12 16 15 1.1
Gd 5.7 42 5.2 3.7 43 46 3.7 3.0 5.7 49 5.7 3.6 42 6.2 53 35
Tb 1.1 0.7 0.9 0.6 0.8 0.8 0.6 0.5 1.0 0.9 1.0 0.6 0.7 1.1 09 0.6
Dy 6.9 5.0 6.0 44 5.1 54 43 3.6 6.7 59 6.8 43 50 74 6.2 4.1
Ho 14 1.0 12 09 1.0 1.1 0.8 0.7 13 12 14 09 1.0 15 12 0.8
Er 41 29 35 2.5 3.0 31 2.5 21 4.0 34 4.0 2.6 29 43 3.7 24
Tm 0.6 0.5 0.5 04 0.5 0.5 04 03 0.6 0.5 0.6 04 0.5 0.7 0.6 04
Yb 43 2.9 35 2.6 3.0 3.1 25 2.1 4.0 34 4.0 25 29 44 3.7 24
Lu 0.7 0.5 0.6 04 0.5 0.5 04 03 0.6 0.5 0.6 04 0.5 0.7 0.6 04

5. Discussion
5.1. Implications of the U-Pb results

The most immediate implication of the new 2°°Pb/?38U age is that
the SSVF is not an outlying fragment of the ~94-89 Ma Caribbean Ocean-
ic Plateau (Kerr et al., 2003; Wadge and Macdonald, 1985) but repre-
sents magmatic activity during the Lower Cretaceous at~135 Ma.
Given its structural relationship with the Great Arc and the margin of
Trinidad, and close temporal association with the passive margin sedi-
ments of the Toco Formation, we conclude that the SSVF was erupted
in the proto-Caribbean seaway offshore from northern South America.
The bulk of the SSVF does not contain large extractable zircons suitable
for fission track analysis, so the~108 Ma ages obtained by Algar et al.
(1998) from the Toco Formation are unrelated to the SSVF. There is
also an isotopic mismatch between the Toco Formation sandstone
and the felsic, probably zircon-rich volcanic rocks found within the
SSVF (Fig. 5). The unradiogenic Nd-Hf isotope signature of the Toco
Formation sandstone is incompatible with its origin as detritus from
the Caribbean Great Arc (cf. Nd-Hf isotope results in Neill et al., 2013).
The simplest explanation for the~108 Ma fission track ages from the
Toco Formation is that they are the result of partial thermal resetting
during metamorphism, whilst the Toco Formation itself was formed
during the Barremian (~130-125 Ma) by accumulation of continent-
derived sediments on the proto-Caribbean passive margin.

5.2. Tectonic setting of the mafic component of the SSVF

The lack of negative Nb-Ta, Ti, and Zr-Hf anomalies on the prim-
itive mantle-normalised plots (Fig. 4b, d, f) and no enrichment of Th
with respect to the MORB-OIB array on a Th/Yb vs. Ta/Yb diagram
(Fig. 6a; Pearce, 1983) clearly indicates that these rocks are not
subduction-related nor have they been influenced by typical conti-
nental crust. There is no clear temporal or geochemical correlation
between the rocks of the SSVF and either the island arc-related suites
of Tobago Island (Neill et al., 2013), or the Villa de Cura in Venezuela
(Unger et al., 2005). Given that the SSVF presently lies to the south
and east of the bulk of the Great Arc, its non-subduction-related geo-
chemical signature further confirms an origin in the proto-Caribbean
realm.

Incompatible trace element ratios in mafic rocks can be used to in-
vestigate the mantle source of the mafic SSVF as such ratios are largely
unaffected by modest degrees of magmatic differentiation. The flat
chondrite- and primitive mantle-normalised HREE patterns all indicate
a shallow, spinel-facies source (<75 km). On Fig. 6a, the SSVF samples
extend to high Ta/Yb ratios within the MORB-OIB array, normally
interpreted to indicate low degrees of partial melting of depleted man-
tle or melting of an incompatible element-enriched source. The Nb/Y vs.
Zr/Y plot (after Fitton et al., 1997; Fig. 6b), has previously been applied
to the Caribbean region to distinguish rocks derived from incompatible
trace element enriched or MORB-type mantle sources in the Caribbean
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San Souc i—felsic Toco sandstone  El Copey meta-volcanic rocks  Siquisique gabbros Siquisique basalts
rocks
INSS7.1  INSS7.3  INSS5.1 AKO1 AK02 AKO5 AK19 AK21 AK22 AK27 AK28 AK20 AK23 AK24 AK25 AK26
65.21 64.45 81.28 47.59 48.99 47.82 5223 49.71 49.15 49.12 4843 49.89 48.23 50.53 49.01 48.82
0.56 0.51 0.62 1.64 1.63 1.87 0.99 1.11 124 1.07 0.97 143 221 1.78 142 1.71
14.73 16.98 8.80 15.77 16.05 15.48 15.96 16.68 16.40 13.93 16.00 14.49 13.51 14.10 15.24 14.04
5.61 437 235 11.53 9.89 11.29 9.64 9.55 9.88 7.07 9.22 10.15 15.01 13.05 10.46 12.54
0.08 0.10 bd 0.18 0.21 0.23 0.13 0.17 0.16 0.10 0.14 0.18 0.23 0.20 0.19 0.21
2.38 1.95 031 7.57 7.42 731 746 7.04 7.38 7.54 6.66 8.09 6.51 7.13 8.16 7.39
2.54 254 043 7.87 9.27 10.18 7.96 10.31 9.88 12.96 11.10 9.34 8.82 9.34 9.84 10.07
6.43 745 0.57 130 1.55 1.17 4.00 2.95 293 312 323 347 293 2.99 299 3.40
0.08 0.12 125 0.14 0.38 0.06 0.59 044 042 0.06 0.13 0.23 031 0.42 0.38 0.16
0.25 0.29 0.04 0.15 0.14 0.18 0.18 0.11 0.11 0.12 0.07 0.15 0.19 0.16 0.14 0.16
2.26 1.66 3.77 447 3.48 2.61 240 193 2.10 3.14 3.17 2.56 1.80 1.58 2.64 2.52
100.12 10044 99.44 98.28 99.01 98.27 10156  100.02 99.66 98.22 99.15  100.01 99.81 10131 10051  101.06
8.0 72 71 43.1 445 38.7 393 413 439 41.1 425 45.0 464 472 452 472
63.7 527 425 301.5 330.1 326.2 183.7 2484 264.6 2029 2347 265.4 3838 330.0 2734 329.0
45.2 25.7 34.6 310.1 336.4 149.5 3353 439.0 383.7 79.6 166.1 337.7 125.0 143.1 3395 2254
134 74 56 48.6 49.0 314 372 364 37.8 30.2 337 42.0 50.0 422 438 442
bd bd bd 128.0 153.9 105.0 939 84.6 716 532 629 89.3 819 63.2 95.2 67.1
0.9 12 55.1 3.8 139 0.6 9.5 75 7.0 0.5 16 35 5.1 74 53 2.1
123 271 70 25 29 225 260 275 310 154 166 236 187 239 232 154
26.5 26.7 299 36.3 392 42.8 40.0 272 275 325 2238 303 478 40.6 30.6 382
3404 4763 659.9 117.8 110.6 144.9 159.0 76.9 73.0 108.3 64.1 103.3 1413 115.4 102.8 117.1
52.6 922 14.7 6.0 6.2 10.0 5.7 25 2.8 32 19 53 49 3.8 5.1 4.5
23 66 161 73 235 124 313 257 278 69 97 155 205 278 139 97
6.3 85 14.5 2.7 2.6 35 3.8 19 19 2.7 17 25 35 3.0 2.5 3.0
3.6 6.2 1.1 04 0.4 0.6 04 0.1 0.2 0.2 0.1 0.3 03 0.2 03 0.3
6.4 10.6 124 04 0.5 0.7 0.6 0.2 0.2 03 0.2 03 03 0.3 03 0.3
38.0 545 318 53 6.3 84 74 3.7 33 35 2.3 4.6 6.1 5.5 52 5.2
69.1 959 70.2 14.5 143 20.1 194 9.9 86 10.0 76 12.0 16.8 14.2 133 14.5
6.8 9.1 7.7 24 23 31 2.8 16 15 15 12 2.0 26 23 22 23
235 292 287 11.5 11.6 15.5 13.8 83 79 8.2 6.1 10.0 135 12.0 10.7 11.8
4.1 4.7 53 3.6 3.6 4.5 41 2.7 2.7 29 2.1 32 45 39 33 3.8
12 13 0.8 13 13 16 12 1.0 1.0 12 0.9 1.1 16 14 11 13
4.1 44 45 4.7 5.0 5.7 52 36 36 41 29 41 6.1 53 43 5.1
0.6 0.7 0.7 0.8 0.9 1.0 09 0.6 0.6 0.8 0.5 0.7 1.1 0.9 0.8 0.9
4.0 4.0 45 55 6.2 6.7 6.1 43 44 5.1 36 4.8 72 6.4 5.0 6.2
0.8 0.8 09 1.1 13 14 13 09 09 1.0 0.3 1.0 15 13 1.0 13
2.5 25 2.8 35 3.8 4.1 39 2.7 2.7 31 22 29 46 39 29 3.7
0.4 04 0.5 0.5 0.5 0.6 0.6 04 04 0.5 04 0.5 0.7 0.6 0.5 0.6
2.6 28 33 3.2 35 3.8 3.8 25 25 3.0 2.1 2.7 44 3.8 2.8 35
04 0.5 0.6 0.5 0.6 0.6 0.6 04 04 0.5 03 04 0.7 0.6 04 0.6

region (e.g., Kerr et al., 2002; Neill et al., 2011). On Fig. 6b most mafic
SSVF rocks plot just below the lower tramline, similar to N-MORB,
whilst the remaining samples plot within the tramlines. Variable
degrees of partial melting of a homogeneous source generate trends
parallel to the tramlines (Fitton et al., 1997), so the SSVF is likely to be
derived from the partial melting of a heterogeneous source with vari-
able depletion or enrichment in incompatible trace elements. The
most incompatible element-enriched mafic sample analysed for
isotopes (INSS3c) is isotopically similar to the other mafic samples
(Table 3), so there is no clear evidence for mixing between less
radiogenic melts and the mafic volcanic rocks. Indeed the lack of any
obvious relationship between isotope and trace element signatures in
the mafic rocks means that any heterogeneities in the mantle source
are likely to have been formed in the recent geological past.

These findings can be used to address the role of sub-continental lith-
osphere during rifting in the region. Mantle peridotites from the
Tinaquillo lherzolite massif in Venezuela (Ostos et al., 2005; Fig. 1) have
radiogenic isotope ratios (¢Hf up to + 50) which are decoupled from
the terrestrial array to high eHf for a given €Nd value (Choi et al,, 2007;
Fig. 4). This anomaly is taken to reflect an origin in the subduction-
modified South American sub-continental lithosphere (Choi et al.,
2007). Less extreme decoupling was reported in the Lower Cretaceous
North Coast Schist of Tobago (Fig. 5), and interpreted as mixing between

asthenospheric sources and rifted lithospheric fragments during
growth of the southern portion of the inter-American Arc whilst it lay
far to the west of its present location, in the eastern Pacific realm
(Neill et al., 2012). The decoupled isotopic signatures of the South
American sub-continental lithosphere are not present in the SSVF or
other exposures in Venezuela, so it is assumed that these rocks formed
from partial melts of convecting asthenosphere beneath the proto-
Caribbean seaway away from the influence of sub-continental litho-
spheric mantle.

5.3. Modelling the extent of partial melting to form the San Souci Volcanic
Group

We have calculated REE, Zr and Nb concentrations in melts using
non-modal batch partial melt equations (Shaw, 2005) for depleted-, av-
erage and enriched-depleted MORB mantle sources (D-DMM, DMM and
E-DMM, respectively) (Workman and Hart, 2005), and a hypothetical
oceanic plateau source consisting of primitive mantle from which 1% av-
erage continental crust has been extracted (Fitton and Godard, 2004).
Batch and fractional melting models are comparable at low degrees of
partial melting (<10%, Shaw, 2005). There is little fractionation of the
MREE/HREE in these mafic rocks (Dy/Ybpyn = 1.1), ruling out melting
of garnet peridotite, so a simple spinel lherzolite starting composition
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was used, with proportions of mineral phases from Johnson et al. (1990)
and partition coefficients from Pagé et al. (2009). Partial melting curves
are plotted on Fig. 7a along with the SSVF mafic rocks. Since olivine is
not present in the analysed rocks, and they are clearly not primary
melts, we have also attempted to account for fractional crystallisation
by subjecting some of the calculated partial melts to~20% Rayleigh
fractionation of an assemblage containing olivine and Cr-spinel in the
ratio 9:1. The results have been normalised to Primitive Mantle and
are presented on Fig. 7b for comparison with the low and high Zr/Nb
samples from San Souci.

No single starting composition adequately models the spread of data
from the SSVF—or indeed for data from outcrops at El Copey and
Siquisique in Venezuela (Kerr et al., 2009). Partial melt curves (Fig. 7a)
show that the composition of the majority of the SSVF rocks can be
modelled by 2-7% melting of a range of sources from D-DMM to E-
DMM. As indicated by the non-linear spread of samples on Fig. 7b and
variable Zr/Nb ratios (7-27), the mantle source of the SSVF was hetero-
geneous, and this is borne out by partial melt modelling. Fig. 7b shows
that the overall shape of the trace element patterns may be reasonably
reproduced by partial melting of heterogeneous sources followed by
removal of olivine and spinel. Further fractional crystallisation of
clinopyroxene and plagioclase may be necessary to raise incompatible
element concentrations to those observed in the analysed samples
without significantly affecting elemental ratios.

5.4. Causes of melting

The degree of partial melting (<7%) indicated by the models are sim-
ilar to the lowest reported figures for mid-ocean ridges (Hellebrand
et al,, 2001) but much lower than typical high-temperature plume-
related settings (e.g., Hastie and Kerr, 2010). The fact that melting
took place within the spinel stability field indicates that the SSVF was
not formed by melting beneath thick oceanic lithosphere as is more typ-
ically the case for ocean island basalts. The lack of any geochemical or
isotopic signatures typical of the melting of sub-continental lithosphere,
or crustal contamination, indicates that by the time the SSVF formed in
the Early Cretaceous, rifting was well advanced. Overall, the exact inter-
pretation of how the SSVF formed depends upon whether or not the
SSVF was erupted in the same location as the Toco Formation. If so,
the SSVF must have formed on a passive margin, perhaps as a seamount
(Algar, 1993), although the exact trigger for melting in this scenario is

unclear. Alternatively, Pindell and Kennan (2001) argue that during
the Late Jurassic-Early Cretaceous, a transform fault system developed
between Yucatan (Mexico) and the northern coast of South America
coupled to a spreading axis within the proto-Caribbean Seaway to the
northeast of the South American margin (Fig. 8). This fault system
would extend close enough to South America to receive clastic input
from the continent, and could have been the site of extension-related
magmatic activity.

5.5. Source of the felsic samples

As there are only two felsic samples, it is difficult to determine
their origin and differentiation history. Low concentrations of Ni
(~14 ppm), Cr (~35 ppm) and MgO (~2.1 wt.%) cannot be diagnostic
of a mantle or crustal source given that the samples are highly
evolved. However, their extreme LREE and HFSE enrichment and
slightly less radiogenic isotope signatures compared to the mafic
rocks indicates these are not simply highly fractionated lavas coeval
with the mafic rocks. The felsic samples are enriched in HFSE except
Ti, and have concave REE patterns with moderate HREE concentra-
tions and Dy/Ybcy < 1 (Fig. 4c—d). These patterns are dissimilar to
many common rock types: in particular the REE patterns with no sig-
nificant HREE depletion and the low Ti concentrations are unlike typ-
ical ocean island basalts.

The only samples we have found with similar trace element patterns
to the SSVF felsic rocks are the felsic volcanic rocks of the Aigiia Series
and the Valle Chico Igneous Complex, both from the Lower Cretaceous
of Uruguay, formed at the southern edge of the Parana-Etendeka conti-
nental flood basalt province (Kirstein et al., 2000; Lustrino et al., 2005).
These rocks have low Ti concentrations that have been proposed to be
the result of extensive fractionation, but very high Zr and Nb which
were attributed to complexing of these elements due to a high flux of
volatiles from underlying mafic magmas (e.g., Hildreth, 1981; Kirstein
et al, 2000). The Aigiia rocks, which have less radiogenic '*>Nd/***Nd
compared to the felsic SSVF samples, have been attributed to melting
of pre-existing Uruguayan mafic lower crust during rifting and plume
magmatism (Kirstein et al., 2000). It is possible that the San Souci felsic
rocks were evolved melts of young isotopically distinct lower crust,
perhaps proto-Caribbean oceanic material from the earliest phase of
spreading, with volatiles derived from ongoing mafic magmatism help-
ing induce complexing of HFSE.

Table 3
Age-corrected radiogenic isotope results for San Souci (135 Ma), El Copey (135 Ma) and Siquisique (90 Ma).
Unit and Sample 176HE/ TTHE eHf; 18Nd/*Nd eNd;
Measured +20 Initial Measured +20 Initial
San Souci Volcanic Formation
Mafic
INSS3c 0.283139 0.000005 0.283084 +140 0.513088 0.000006 0.512932 +9.1
INSS6.5 0.283156 0.000007 0.283093 +143 0.513089 0.000005 0.512925 +9.0
INSS7.2 0.283140 0.000006 0.283070 +135 0.513065 0.000012 0.512901 +85
Felsic
INSS7.3 0.282956 0.000006 0.282936 +838 0.512856 0.000002 0.512770 +6.0
INSS7.1 0.283013 0.000008 0.282989 +10.6 0512878 0.000003 0.512784 +6.2
Toco Formation
INSS5.1 0.282066 0.000004 0.282052 —225 0511782 0.000002 0.511740 —14.1
El Copey meta-basalts
AKO1 0.283138 0.000007 0.283071 +135 0.513083 0.000026 0.512918 +88
AKO02 0.283141 0.000005 0.283065 +133 0.513061 0.000002 0.512895 +84
Siquisique basalts (b) and gabbro (g)
AK20b 0.283150 0.000006 0.283109 +13.9 0.513117 0.000006 0.513004 +94
AK25b 0.283148 0.000012 0.283107 +138 0513106 0.000005 0.512996 +9.2
AK19g 0.283144 0.000007 0.283097 +135 0513115 0.000006 0.512998 +9.3
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Fig. 3. Classification diagrams for the three locations followed by selected major element plots. (a) Th-Co classification from Hastie et al. (2007) and (b) Pearce, 1996. (c-f) SiO,, TiO,, MgO

and CaO versus immobile incompatible element Yb.

A major difference between the Uruguayan rocks (Lustrino et al.,
2005) and those from the SSVF is the concave REE patterns of the latter.
Amphibole (also apatite and zircon) as a residual or fractionating phase
may generate concave REE patterns as it is compatible with MREEs and
moderately compatible with the HREEs (Davidson et al., 2013). Hydrous
magmas that typically fractionate amphibole form in subduction-related
environments, unlike the SSVF samples. Amphibole is therefore most
likely to have been a residual phase in the source region. Positive Zr-Hf
anomalies relative to the MREE may simply be a product of the fact
that Zr and Hf are incompatible in amphibole (Klein et al., 1997) and

high Zr/Hf ratios may have originated by low degrees of melting with re-
sidual pyroxene or other phases capable of fractionating the HFSE (David
et al., 2000). Titanium and Nb-Ta usually display coupled behaviour as
Nb and Ta are compatible in titanates (Nielsen and Beard, 2000;
Tiepolo et al,, 2001), but Nb and Ta are incompatible in high-Ti amphi-
bole (e.g., Hilyard et al., 2000). Therefore residual high-Ti amphibole in
a rutile-free lower crustal source region would produce the observed
Nb-Ta-Ti anomalies of the felsic samples in a melt. Residual amphibole
may thus represent an alternative to volatile complexing as a source of
the unusual HFSE distributions in the SSVF.
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Fig. 4. Trace element plots from the SSVF with analyses of basalts from Venezuelan outcrops at El Copey (Barremian) and Siquisique (Turonian) for comparison (Kerr et al., 2009). See text
for details. Chondrite normalisation from McDonough and Sun (1995); Primitive Mantle normalisation from Sun and McDonough (1989).
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Fig. 5. Nd-Hf radiogenic isotope diagram comparing the SSVF with proto-Caribbean frag-
ments at Siquisique and El Copey in Venezuela (Kerr et al., 2009), sub-continental litho-
sphere of the Tinaquillo lherzolite, Venezuela (Choi et al., 2007), the mafic Parlatuvier
Formation of the North Coast Schist, Tobago, which has a sub-continental lithospheric
component (Neill et al,, 2012), and the Caribbean Great Arc rocks of the Tobago Volcanic
Group (Neill et al., 2013). Bulk Silicate Earth and the mantle array are from Choi et al.
(2007). The diagram shows measured ratios in black with grey symbols representing
age-corrected ratios in order to demonstrate that there is little change in results and inter-
pretation following correction.

6. Regional comparisons
6.1. Other basaltic outcrops in northern South America

Three other outcrops containing mafic volcanic rocks related to the
proto-Caribbean realm are found in Venezuela. At El Copey on the Araya
Peninsula (Fig. 1), meta-tuffs, pillow basalts and serpentinites are found
in apparently conformable contact overlying the calcareous graphitic
schists of the Neocomian-Barremian Caripano Formation and them-
selves are overlain by the Giiinimita Formation, a conglomeratic unit be-
lieved to be of Barremian-Aptian age (McMahon, 2000; Seijas, 1971).
Assuming there are no faulted contacts, the El Copey metavolcanics are
of Barremian age, and therefore penecontemporaneous with the SSVF
and may indeed be an along-strike equivalent of the latter. Elemental
and isotopic signatures are broadly comparable between the two units
(Figs. 4-5; Kerr et al., 2009), and the ratio-ratio plots and partial melting
models indicate~5% partial melting of a slightly more enriched source
than the bulk of the SSVF (Figs. 6-7).

The Siquisique basalts and gabbros of Los Algodones lie to the north-
west of the Cordillera de la Costa (Fig. 1). Recent Ar-Ar dating (Kerr et al,,
2009) and the ages of radiolarian-bearing cherts (Baumgartner et al.,
2013) indicate a Late Cretaceous age of ~95-90 Ma for the Siquisique vol-
canic rocks. Earlier interpretations of the unit as a fragment of Jurassic
proto-Caribbean crust (Bartok et al., 1985) were based on ammonites
said to be collected from a Palaeogene mélange (Baumgartner et al.,
2013). Geochemical comparisons and modelling show Siquisique was
derived from modest degrees of melting (3-4%) of a heterogeneous
mantle source roughly akin to depleted to average depleted MORB mantle
(Fig. 7). Proto-Caribbean spreading had largely ceased by~90 Ma (Miiller
etal, 1999; Seton et al,, 2012), so it is likely that the Siquisique basalts and
gabbros formed at a seamount or a localised extensional setting within
the proto-Caribbean realm rather than at a true spreading ridge.
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Finally the Loma de Hierro belt immediately north of the Villa de
Cura Klippe within the Cordillera de la Costa (Fig. 1) is another fragment
of proto-Caribbean mafic crust (Urbani and Rodriguez, 2004). A new
laser ablation 2°5Pb/?*8U zircon age of 127 + 1.9/— 4.3 Ma has been ob-
tained from a gabbroic sample (Marvin et al., 2013), comparable with
the SSVF. There remains little geochemical information about the
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mafic rocks of Loma de Hierro: three whole rock major and trace ele-
ment results showing incompatible element-depleted MORB-like signa-
tures were obtained following fieldwork in 2004 (A.C. Kerr, unpublished
data). The total outcrop of the Loma de Hierro covers at least 100 km?
and should be a target for future detailed study.

6.2. Proto-Caribbean crust in the Greater or Lesser Antilles

There are further examples of proto-Caribbean material preserved
within the present-day Greater or Lesser Antilles which may provide
insights into the development of the seaway. Cretaceous inception of
SW-dippingproto-Caribbean subduction resulted in the trapping of
proto-Caribbean crustal and lithospheric mantle sections within the
new ‘Great Arc’, some of which are discussed here. The Loma La Monja
gabbros and basalts of the Cordillera Central, Hispaniola (Escuder
Viruete et al., 2009), fall within the Iceland tramlines at slightly lower
Zr/Y ratios than San Souci (Fig. 6b). The Loma La Monja complex is
late Middle Jurassic in age, on the basis of radiolarian ages from overly-
ing cherts of the El Aguacate Formation (Montgomery et al., 1994).
These rocks are argued to be the product of low-degree melting in the
garnet stability field followed by 15-20% melting of N-MORB- and E-
MORB-like sources (Escuder Viruete et al., 2009). Escuder Viruete
et al. (2009) proposed the presence of a mantle plume to explain the
E-MORB source and high degree of partial melting. These figures for
partial melting are indeed higher than those for typical spreading
ridges (~10%) but slightly lower than the fast-spreading East Pacific
Rise (Niu and Hékinian, 1997), so there is no clear evidence for a
mantle plume origin for Loma La Monja aside from the incompatible
element-enriched mantle source. Melting might also be focussed at a
proto-Caribbean triple junction towards the western end of the Sea-
way related to opening of Mexican and Colombian back-arc basins
(e.g., Pindell, 1993; Pindell and Kennan, 2001; Fig. 8).

In contrast, the Late Jurassic volcano-plutonic complexes of La
Désirade, Guadeloupe, have a back-arc basin geochemical signature
and are derived from depleted mantle (Neill et al., 2010). These rocks
were probably formed in the westernmost proto-Caribbean close to
the then east-dippinginter-American arc system (Fig. 8). Like Loma La
Monja, La Désirade was accreted to the Great Arc during inception of
SW-dipping subduction (Corsini et al., 2011; Neill et al., 2010). Apart
from Tinaquillo in Venezuela, which may represent an intra-
continental rift adjacent to the proto-Caribbean Seaway (Ostos et al.,
2005), one of the few fragments of proto-Caribbean lithospheric mantle
is found at Monte de Estado in south-west Puerto Rico (Jolly et al., 2008;
Marchesi et al., 2011). Analysis of spinel and clinopyroxene composi-
tions in the Monte del Estado peridotite indicates removal of 2-15% par-
tial melt in the spinel stability field (Marchesi et al., 2011). This range
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extends slightly higher than for our analysed samples, and appears
consistent with melting beneath a reasonably fast-spreading ridge; the
exact palaeo-location within the proto-Caribbean realm is uncertain.

6.3. The break-up of Pangaea and importance to Caribbean tectonics

We have little evidence regarding a plume model for the initiation of
proto-Caribbean rifting, or of any relationship between the studied
proto-Caribbean rocks and the widespread 200 Ma Central Atlantic
Magmatic Province (CAMP). Unfortunately, there has not been a Hf iso-
tope study of CAMP magmatism with which to compare our results on
altered rocks to seek common mantle sources. However, we note that
the geochemical heterogeneities present in the SSVF and other locations
are restricted to trace elements and not isotope signatures, so modifica-
tion of their mantle sources had to have taken place recently before
their formation. Heterogeneous proto-Caribbean mantle sources and
locally enhanced degrees of partial melting might be explained by the
contamination or fertilisation of the upper asthenosphere and litho-
sphere by the CAMP plume a few tens of Ma prior to the opening of
the proto-Caribbean. Impingement of a plume beneath Pangaea may
also have weakened the lithosphere and pre-disposed the region to
rifting at a later date.

The Mesozoic tectonic evolution of the Caribbean region involves
the onset of southwest-dipping subduction of proto-Caribbean crust
beneath the ‘Great Arc’ starting at a contentious point in the Early or
Late Cretaceous (e.g., Hastie et al., 2013; Pindell et al., 2011). This
paper does not discuss this aspect of Caribbean tectonics, but it is perti-
nent to note the absence of large tracts of proto-Caribbean crust derived
from high degrees of partial melting. This finding indicates that the
proto-Caribbean crust was probably of normal (6-7 km) thickness,
and would subduct beneath the inter-American Arc given the right tec-
tonic circumstances. Those supporting Late Cretaceous initiation of sub-
duction beneath the Great Arc argue for collision between the Caribbean
Oceanic Plateau and the inter-American Arc (e.g., Burke, 1988; Kerr
et al., 2003), but there is also significant support for an Early Cretaceous

onset of SW-dipping subduction triggered by the fragmentation and
stretching of the inter-American Arc and its conversion into a
transpressive boundary during the westward drift of North America
(e.g., Pindell et al., 2011). Others have argued for Early Cretaceous chok-
ing of the proto-Greater Antilles Arc trench by old (i.e. pre-95 Ma)
plume-thickened Pacific crust, forcing a pre-Caribbean Oceanic Plateau
subduction polarity reversal (Corsini et al., 2011; Lardeaux et al., 2013;
Mauffrey and Leroy, 1997). The question of how young, thick and buoy-
ant the proto-Caribbean crust was becomes important: any subduction
polarity reversal or initiation would be aided by the presence of
comparatively thin crust on the proto-Caribbean side of the inter-
American Arc system (e.g., Stern, 2004).

7. Conclusions and recommendations

1) The San Souci Volcanic Formation is an Early Cretaceous unit in
Trinidad containing mafic volcanic and hypabyssal rocks which
originated close to the South American passive margin of the proto-
Caribbean Seaway as the Americas drifted apart during the break-up
of Pangaea.

Both the SSVF and the likely penecontemporaneous El Copey meta-
volcanic rocks and younger Siquisique basalts and gabbros (both in
Venezuela) formed by<7% partial melting of a spinel lherzolite
source containing both depleted and enriched components. Frag-
ments of proto-Caribbean crust and lithospheric mantle found
today in the Caribbean region confirm the presence of heteroge-
neous mantle sources across the proto-Caribbean at various times
during rifting, but fail to demonstrate that there was a singular
large-scale plume-related event during the Jurassic—Cretaceous in
this region.

This work shows the potential for micro-zircon to be used as a
revealing and reasonably precise chronometer in mafic rocks from
the Caribbean region where other methods, such as Ar-Ar dating,
fail. Further SIMS dating work to resolve the age of proto-
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Caribbean crust and help resolve the age and origin of the CCOP
could be fruitful.

Outcrops such as El Copey and Siquisique, and in particular the rela-
tively unknown Loma de Hierro belt of the Cordillera de la Costa,
require more detailed studies of their geochemical signatures, in a
similar manner to this work, to help build a picture of the nature of
proto-Caribbean spreading and development of the passive margin.
Furthermore, there remains a need to understand clearly the origin
and tectonic evolution of the Netherlands-Venezuelan Antilles,
Aves Ridge, Villa de Cura, and Tobago Island subduction-related
rocks in order to definitively reconstruct southern Caribbean tectonic
history, and by proxy that of the Caribbean Plate as a whole.

=

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.tecto.2014.04.019.
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