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Abstract. Circular data are commonly encountered in the The von Mises distribution is commonly used for the sta-
earth sciences and statistical descriptions and inferencesstical analysis of circular data. The distribution has two pa-
about such data are necessary in structural geology. In thisameters, a mean direction and a concentration parameter,
paper we compare two statistical distributions appropriateThe latter parameter measures the dispersion of the variable
for complex circular data sets: the mixture of von Mises andabout the mean. At its minimurg, = 0, the von Mises dis-
the projected normal distribution. We show how the num- tribution is the uniform distribution over the unit circle. As

ber of components in a mixture of von Mises distribution increases so the von Mises distribution increasingly resem-
may be chosen, and how one may choose between the prddes the Gaussian with variancgxl

jected normal distribution and the mixture of von Mises for  The von Mises distribution has been widely used in earth
a particular data set. We illustrate these methods with a fewscience, and software for analysis of circular data includ-
structural geological data, showing how the fitted models caring methods based on the von Mises distribution have been
complement geological interpretation and permit statisticalmade available (e.dones2006. For exampleCoblentz and
inference. One of our data sets suggests a special case of tiichardson(1995 examined global data on maximum hor-
projected normal distribution which we discuss briefly. izontal compressive stress, and examined local evidence for
coherence of stress direction by the Rayleigh test, which is
equivalent to a comparison of the von Mises distribution with
« > 0 against a uniform alternativiVitts et al.(2012 used

a similar procedure to identify trends in palaeocurrent data
Circular data are commonly encountered in geology. A cir-from the dip and dip azimuth of sand bars in a Cenozoic sed-
cular variable may be a direction, such as the direction of digMmentary succession in Indonesten and Mamtan(2006

of a fault or bedding plane, or a palacomagnetic vector. Al-used thec parameter of the von Mises distribution to char-
ternatively a circular variable may be an orientation (which acterlsg the preferentlal orlentat|on_ of b|0t|Fe in t_hln sectlo.ns
could be expressed by either one of two opposite directions?f grgnlte which was related to _varlat]on_s in regional strain.
such as the orientation of vertical faults or bedding planes of© Brien et al.(2012 used von Mises distributions to charac-
the orientation of primary palaeocurrent lineations where thef€rise the orientations of fault plane solutions — with confi-
direction of flow is unknown. Directional variables are dis- dence intervals — before, during and after seismic swarms.
tributed on the unit circle, and so have the particular property 1he von Mises distribution is symmetrical and unimodal.
that the upper bound;2radians, and the lower bound, zero, Circular data in earth sciences may often have a more com-
are equivalent. They therefore cannot be treated as thougR!€X distribution than this. There may be continuous varia-
they were distributed over some subset of the real numberdion in the orientation of particular features; for example, the

and require special treatment for statistical analyiargia  Preferential directions of structures in sedimentary deposits
and Jupp2000. in palaeochannels are likely to respond to channel orientation

1 Introduction
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632 R. M. Lark et al.: Circular data

and flow direction, which will vary on metre to kilometre In this paper we demonstrate the use of the mixture of the
scales. Distributions of circular data may therefore be asymvon Mises and PN distributions as a model for three sets of
metric and multimodal. circular data from structural geology. We address the ques-
One way to model such complex variation is to treat it tion of how to select the number of componenisof the
as a mixture of von Mises distributions (MVM). The MVM MVM for a particular data set, and the decision whether the
model that we considered, wighcomponents, has3-1 pa- MVM or PN model is preferable in a particular case. We use
rametersg mean directions and valuesiofind theg — 1 in- maximum likelihood to estimate parameters of the PN distri-
dependent proportions of the components. By including suf-bution, and show how to test a hypothesis of the uniformity
ficient components it is possible to model a distribution of of the PN model over two data sets.
angles with multiple modes and asymmetry.
An alternative model for more complex distributions of
circular data is the projected normal (PN) distribution. This2 Methods
distribution, and its flexibility, can be understood intuitively.
Consider a distribution of points on a scatter plot formed by2.1  Selection of a mixture of von Mises distributions
observations drawn from a pair of correlated normal random
variables. One may draw a line from each point to the ori- The mixture of von Mises distributions, as used here, com-
gin, forming a vector with some angte If the correlation  prisesg different von Mises distributions, each with an as-
between the two variables was zero, and they each had meawociated mixture weight;,i = 1,2, ..., g which is the prob-
zero, then the angles will have a uniform distribution aroundability that an event is drawn from thiéh distribution. The
the circle. If the means were both zero but the correlationparameters of the MVM distribution, for specifigdcan be
were quite large, then an ‘antipodal’ circular variable with estimated by maximum likelihood estimation (MLE). The
two peaks in its distribution, separated from each other byMVM distribution is identifiable Holzmann et al. 2004,
7 radians (180 degrees), would be generated. By allowingout a numerical approximation to the likelihood function is
the means of the variables to vary the distribution of anglesneeded because the MLE of thgparameter includes a ratio
can be made unimodal, or bimodal but asymmetric and nonef Bessel functions. In this study we used thevMFproce-
antipodal. The model has considerable flexibility despite itsdure from the package of that name develope#ibynik and
simple conception. In mathematical termsyifs a realisa-  Griin (2013 for the R platform R development core team
tion of a bivariate random variabl&, on the planéR2, and  2013. This finds the MLE by an expectation maximisation
Pr{Y =0} = 0, then its radial projectiofy|| 1y is a ran-  algorithm (e.gBanerjee et a]2005.
dom vector on the unit circle which can be converted to a We are interested here in how many components to spec-
vector of random angles relative to some direction treated affy in the MVM model for a data set. The general problem
zero. In the PN distributiory is a realization of a bivariate is whether the improvement in the likelihood that we obtain
normal variableN2(u, X) on the plane. This distribution is by fitting g + 1 rather thary components with an additional
discussed byMardia and Jup2000 and a clear and suc- three parameters is justified. In general, two nested models,
cinct summary is provided bwang and Gelfang2013. If where the simpler (null) model is a particular case of the
n =0 andX | then the PN distribution is equivalent to more general one with parameters fixed to some value, may
a uniform distribution on the circle. Allowingt # 0 gives  be compared in their log-likelihood ratiéd, — ¢y, where
rise to a non-uniform but unimodal and symmetrical distribu- £4 and ¢, are the maximised log likelihoods obtained for
tion on the circle, and further generalisation so thas any  the more complex and null models respectively. It is nec-
valid covariance matrix gives rise to a flexible distribution essary, for inference, to know the distribution of the ratio
on the circle which can be asymmetrical and bimodédng  when the null model holds. In regular cases, asymptotically,
and Gelfand2013 explore the PN distribution in a Bayesian L = 2(¢4 — £y) is distributed asy? with degrees of free-
setting, including regression models in which the parametedom equal to the number of additional parameters in the
1 is modelled as a linear function of covariates. more complex model. However, mixture models are not reg-
The MVM and PN distributions are flexible models for ular because the null model is at the boundary of the pa-
complex distributions of circular data. We are not aware oframeter space for the alternative. The distributior_.ofan
any examples of their use in structural geology, althoughbe counterintuitive at the boundary of the parameter space;
they would clearly be suitable in circumstances where sim-see for exampl€lifford (2006. A solution to this problem
pler symmetrical and unimodal distributions would not be has been proposed for the comparison of the two-component
appropriate. Some practical questions remain for their appliMVM distribution with a single von Mises distribution, in
cation. First, how many components of the MVM model are the case where the parameter is common to both compo-
justified for a particular data set? Second, given that MVM nents of the MVM Fu et al, 2008. This does not address
for ¢ > 2 has more parameters than the PN model, how carthe general problem of comparing MVM models for increas-
one decide when the more complex model is justified? ing values ofg. For this reason we computed the distribution
0f Iy g1+1 = €441 — £ fOr any comparison between an MVM
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with ¢ components (log likelihood,) and one withg + 1 ratio, which allows a formal hypothesis test. Note that by us-
components (log likelihood,1) by Monte Carlo simula- ing this bootstrapping procedure we also avoid testing the
tion. This approach has been used previously to identify thdog-likelihood ratio against an asymptotic distribution by us-

number of components in a mixture model, éAgkin et al. ing an empirical distribution for the same sample size as our
(1981). The distribution of the log-likelihood rati , 1 un- data.

der some model witlk components may depend on the pa-

rameters of the components and how well separated they ard2 Maximum likelihood estimation of the projected

on the circle. For this reason we accounted for uncertainty ~ hormal distribution and comparison with the

in the estimated parameters of the null model by a boot-  selected mixture of von Mises distributions

strapping step. A bootstrap sample from the data was drawn o .
and an MVM model withg components was fitted. A sin- A PN distribution of angles can be specified by the parame-

gle parametric bootstrap sample from the fitted model waders of the bivariate no_rmal distributipn_whose ra_dial projec-
then drawn and the log-likelihood ratio for MVM models tiON corresponds to points on the unit circle. To give a unique
with ¢ andg + 1 components was calculated. This step wasParameterisation for any distribution on the circle we fol-

repeated to generate the full Monte Carlo sample of the log!oWed Wang and Gelfan¢2013 by fixing the variance of

likelihood ratio. We are not aware of a comparable combi-°"€ of the normal variables to 1.0. There are four parameters

nation of a bootstrap sample from the data with a parametrid® P€ estimated: the two elements of the mean veptothe

bootstrap, but note that it is comparable, although not iden_correlation coefficientp, which takes values in the interval
tical, to the “double bootstrapping” procedureMélachlan (=1, 1) and the standard deviation of the second normal vari-

and Pee(1997). The full procedure is described below. able,r, which takes values > 0. These were estimated by

We fitted MVM distributions withg andg +1 components ~ Maximum likelihood, using the PN density given ang
to ourn data, using thenovMFprocedure. We computed the and Gelfand2013:
log of the ratio of likelihoods for the two distributions, which 1
we denote by, ,41. To obtain a distribution for this ratio / (@1#.£.7) = C@p) [‘p?{“l’/‘?'o’ )+

under the null model we undertook the following steps. aD)®1 (D)} b {a(ulsine s cos@)/@”, )

1. A bootstrap sample was drawn from the data and the

parameters of the MVM model withcomponents were ~ Whereo is an angle, obtained from the radial projection of
estimated with thenovMFprocedure. the bivariate normal distribution by the arctafunction de-

fined by Wang and Gelfand2013, 5 is the vector of val-

2. The rmovMF procedure from thenovMFlibrary was ues[d, w1, u2, p, T, 2 (x1, x2|p, X) is the bivariate normal
used to generate a random sample from the MVM dis-probability density function (pdf) with specified parameters,
tribution (¢ components) with the parameters estimated¢1(x) is the standard normal pdf anbh (x) is the standard
from the bootstrap sample. normal distribution function,

3. We then fitted the MVM distribution witty and g + v _ [ 2 1p }
1 components to the simulated values, and computed o 1)

lg,g+1. -1
a= (r‘/l—,o2> ,

4. Steps 1-3 above were repeated 1000 times in total.

2 ; 2
The proportion of values of the log-likelihood ratio in the cm) =a (COSZO —prsind 4o sze)
resulting sample larger thah , .1 was computed?,. If
ﬁg > 0.05 then the null modelg(components) was accepted.
This procedure was followed starting wigh= 1 and testing
an alternative distribution with two components. If the null The maximum likelihood estimatgs o0 andz maximise the
model was rejected then a distribution with three componentdikelihood function L(u, p, t|0) = f (0|1, p, ), given the
was compared to the distribution with two and so on until thedata in6. The likelihood was maximised with theptim
null model for some; was accepted. procedure irR.

Note that the problem of the number of components in Forg > 2 the MVM distribution has more parameters than
an MVM distribution can be addressed by comparing alter-the PN. Having fitted both to a data set, the question remains
native models on information criteria such as Akaike’s in- whether the greater complexity of the MVM is justified by
formation criterion which we use for other purposes belowits goodness of fit. One common approach to selecting be-
(e.g.Mclachlan and PeeR000. However, information cri-  tween models of differing complexity, where the models are
teria are an informal basis for model comparison and, wheranot nested and so cannot be formally compared in the likeli-
possible, we prefer to use a statistic such as the log-likelihoodhood ratio, is to use information criteria which combine the

a?{p1(cosh — ptSing) + pot (7 SiNH — pco)}
D(y) = § .
CH) 2
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maximised log likelihood for each fitted model with a term predictor and set to 0 otherwise and
that penalises models for the number of parameters that must

be estimated. One such criterion is Akaike’s information cri- \y _ | #11 K12 ... H1P }
terion (AIC) due toAkaike (1973: M21 M22 ... H2P
A=—20+2N, ) where iy ; is the modelled value ofiy for an observation

corresponding to thgth level of the categorical predictor.

where is the maximised (full) log likelihood for a model The modelled values g are defined similarly to the ele-
with N, parameters. The model with the smallesis se- ~ ments of the second row &f. The elements oM may be
lected, so effectively the selection is based on the likelihoogestimated by maximum likelihood by substituting E4). for
with a penalty for the model complexity as measuredgy & in the likelihood function.

Another information criterion is the Bayes information crite-

rion (BIC) (Kass and Raftery2006: 3 Case studies

B = —2t+ Ny{log(2zn)}, ) 31 West cumbria dip directions
wheren is the number of observations. In both cases one S€311 The data
lects the model for which the information criterion is small-

est. The BIC penalises extra parameters more heavily thafpe first two data sets consist of the observations of dip di-
does AIC unless: is small. More fundamentally, the AIC  rection of the bedding planes of two sedimentary units in
selects a model which appears to be closest to the underlyhe British Geological Survey’s map sheets at50 000 in

ing but unknown model which generates the data, whereagyest Cumbria, northwest England. The units are the Sher-
the BIC selects a model with a maximised posterior probayood Sandstone Group (Triassic sandstone) and the Winder-
bility (Wit et al, 2012. The AIC is a basis for a pragmatic mere Supergroup (Ordovician—Silurian mudstone, sandstone
choice of model which seems to explain the data and offer ynd limestone). A total of 90 observations were available for
sound basis for prediction, whereas the BIC aims to identifythe Sherwood Sandstone Group and 572 for the Windermere
the “true” model Gpiegelhalter et 8l2014. The two crite-  sypergroup. The data are shown in Fig.and b by rose di-

ria are therefore not directly commensurate, and the questioggrams which show the relative frequency of observations in
of which is "best” depends on the principles and purposes objns of widthsr/10 radians. Note that this binning was done
model selectionWit et al, 2012. A detailed discussion of  gny for the presentation of the data as rose diagrams; all sta-
the two criteria is out of the scope of the present paper, so fofjstical analysis was done on the raw circular observations.
our present purposes we present results for both.

3.1.2 Mixture of von Mises distribution and comparison
2.3 Modelling variations in the mean vector of the with projected normal distribution

projected normal distribution

R Table 1 shows the results from comparison of MVM distri-
Wang and Gelfanq2013 showed that the PN distribution putions with increasing numbers of components. In the case
for circular observations can be fitted in the form of a lin- of the Sherwood Sandstone Group there was evidence to se-
ear model in which the elements of the mean vegtare  |ectthe MVM distribution with two components over a single
expressed as linear functions of predictors. The parameters yon Mises distribution, but not to reject the model with two
andp remain fixed, but considerable ﬂEXIbI'Ity in the form of components in favour of one with three. In the case of the
the circular distribution is still possible. The predictors could windermere Supergroup a mixture model with five compo-
be continuous variables (e.g. coordinates to model a spatiglents was selected. Tat2eshows the fitted parameters for
trend) or categorical variables (e.g. stratigraphic units), or ahe MVM models, the mean direction for each component is
combination of both. In this paper we consider a case whergn degrees clockwise from north, ardis a dispersion pa-
the predictor is a categorical variable with= 2 levels; the  rameter: the component has a narrow distribution if this is
observations are circular data that describe the orientation eigrge.
ther of anticlinal axial planes or of Landsat-derived linea- Table3 shows the results from the Comparison of the se-
ments. If there aré levels of the categorical predictor vari- |ected MVM model with a PN model for both the Sherwood
able then the modelled values of the mean vecton foloser- Sandstone Group and the Windermere Supergroup d|p direc-

vations are tions, and Fig2a and b shows the probability densities for
these two distributions wrapped around the circle. In both
r=MX, (4) cases the AIC and the BIC were both smaller for the more

. . o complex MVM distribution.
whereX is a P x n design matrix with elemerX {i, j, } set P

to 1 if theith observation is in thg¢th level of the categorical
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Figure 2. Density of fitted projected normal distributions (PN) and a

mixture of von Mises distributions (MVM) wrapped around the cir-

cle: direction of dip for(a) the Sherwood Sandstone group &byl

the Windermere Supergroup; orientations (doubled from the origi-

nal range of [0r]) for (c) Bangladesh anticline axial planes addl
angladesh Landsat-derived lineaments.

Figure 1. Data: direction of dip for(a) the Sherwood Sandstone
group (90 data) angb) the Windermere Supergroup (572 data);
orientations (doubled from the original range of, Q) for (c)
Bangladesh anticline axial planes (32 data) #dd Bangladesh
Landsat-derived lineaments (40 data). Note that segments of th
rose diagrams are proportional to relative frequency within each
data set separately, so are not comparable between data sets with
respect to numbers of observations. If all data appeared within a sin-

gle bin of the rose diagram then the corresponding segment would The_ greater complexity of the selected MVM model for
be equal in length to the radius of the circle. the Windermere Supergroup may partly reflect the fact that

there are more data available to support a complex model, but

the fitted model also makes geological sense. In the study
3.1.3 Key findings area the Windermere Supergroup is subject to cylindrical

folding which would be expected to give rise to dips of ap-
In the case of the Sherwood Sandstone Group the clear diffroximately equal frequency in a northwest and southeast
ference between the PN distribution and the MVM is that direction. Both fitted distributions as illustrated in Figp
in the latter there is a stronger contrast between the tightlyshow modes in these directions, but the dominant mode is
distributed subset of dip directions towards the southwesin a southeast direction (see the fourth component for the
(mean direction is 4.07 radians or 233 degrees clockwiséNindermere Supergroup in Tal#avith a mean direction of
from north, x = 38) and a second subset with a mean di- 141 degrees and a probability of occurrence of 0.35). The
rection close to north (6.03 radians or 346 degrees clockstructure of the Windermere Supergroup in the study areas is
wise from north) and a wider dispersion£ 0.6). Although ~ complicated by a major fault trending northeast-southwest.
the PN distribution is bimodal, the contrast between the twoThis may introduce different dominant dip directions locally,
modes is less pronounced, and the MVM distribution, whichwhich may explain the rather more complex form of the se-
is selected on statistical criteria, better captures this heterdected MVM distribution. In particular, some of the folding
geneity in the data. Geologically the southwest dips are foundn the vicinity of the fault is overturned, so that both limbs of
in the west of the study area in a relatively small area wherethe fold dip to the southeast. This accounts for the asymme-
there is a relatively simple consistent structure and good extry between the two dominant modes of both fitted distribu-
posure of the geology. The approximately northern dips ardions. The MVM model, giving three distinct modes as seen
found mainly in northern Cumbria, and their dispersion mayin Fig. 2b, in addition to the broader distribution of dip direc-
reflect the fact both that they are spread out along the crop ofions over the interval from due south to northwest, captures
the Sherwood Sandstone Group, encompassing greater struds complexity better than the PN, which shows two nearly
tural variability, and that they are subject to greater observaantipodal modes.
tion error because the dips are smaller.

www.solid-earth.net/5/631/2014/ Solid Earth, 5, 63539, 2014
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Table 1. Selection of a mixture of von Mises (MVM) distributions. Table 2. Parameters of a fitted mixture of von Mises (MVM) dis-
tributions. Theith component occurs with probability;, and has

Number of components meany; and dispersion parametey. Values for direction of dip
g (nul) g+ 1 (proposed) l‘g e+l ﬁg are degrees clockwise from north, and values for the Bangladesh
model model ' anticline axial planes and Landsat-derived lineaments are doubled

orientation angles.
Sherwood Sandstone Group

1 2 19.8 <0.001 .
5 3 20 0.973 i (component number) u; K o
Sherwood Sandstone Group direction of dip
Windermere Supergroup 1 346 0.6 0.68
1 2 196.3 <0.001 2 233 38.0 0.32
2 3 13.2 0.001
3 4 18.2 0.024 Windermere Supergroup direction of dip
4 5 17.1 0.031 1 112 112 0.12
5 6 11.6 0.064 2 47 1.04 0.18
3 345 16.6 0.14
Bangladesh anticline axial planes 4 141 252 0.35
1 2 10.3 0.003 5 116 119 0.21
2 3 0.1 0.823
Bangladesh anticline axial plane
Bangladesh Landsat-derived lineaments 1 231 21.0 0.74
1 2 5.8 0.022 2 294 198 0.26
2 3 2.0 0.263
Bangladesh Landsat-derived lineament
1 316 6.7 0.73
3.2 Bangladesh anticlinal axial planes and 2 246 205 0.27
Landsat-derived lineaments
3.21 Thedata 3.2.2 Mixture of von Mises distribution and comparison

with projected normal distribution

These two data sets, from eastern Bangladesh, are presented
by Davis and Sampso(2002. Unlike the data in the pre-  ag shown in Tablel, both these variables are better fitted by
vious section these data are orientations without a preferred, pmvm with two components than by a single von Mises
direction. As described bpavis and Sampso(2003, all  gistribution, but adding a third component is not justified.
orientation data can be expressed by pairs of vaweand A5 shown in Table3, the AIC was smallest for the MVM
m+ 7 radians representing the bearing for each end of gnggel in the case of the anticline planes, but for the PN
linear feature such as a fault or plane. Following Krumbein yogel in the case of the Landsat-derived lineaments; in this
(1939), these values can be doubled to give a single vaiue 2 |ater case the likelihood for the PN distribution was larger
(since 21 + 27 = 2m for values on the circle). The doubled  than for the more complex MVM distribution. Note that the
orientations are therefore distributed over the whole circle,ggme inference is supported by the BIC. Fig@deshows
and can be analysed with methods appropriate for circulagoy, the asymmetric and bimodal distribution seen in the rose
data. AI_I analyses reported hgre are for these QOubIed angleaiagram (Fig1d) is fitted by the two models. The MVM rep-

The first set of data comprises 32 observations of the orivesents the complex variation of the data with two distinct

entation of the axial plane of a series of anticlines. The SeCtomponents, the PN distribution is also asymmetric and bi-
ond set comprises orientations of 40 major lineaments ide”modal, but note in particular that the MVM has a tail giving

tified by interpretation of Landsat imagefjavis and Samp-  non-zero density between zero and aboy radians where
son(2002 compare the orientations in the two data sets bythere are no observations. The Landsat lineaments data illus-
an analysis assuming that each has an underlying von Misegate the flexibility of the PN distribution, which in this case

distribution. In this paper we compare the MVM and PN dis- its the data better than the MVM distribution but with fewer
tributions for the Landsat data set, and then evaluate eV'de”Cﬁarameters.

that the two sets of orientations are different by fitting PN

distributions. As described above the orientation data werez 5 3 Projected normal distributions for the combined
doubled so that they are distributed on the circle. Fidiore Bangladesh data sets

and d show the doubled orientation data as rose diagrams.

We considered the two data sets on orientations as a com-
bined data set, allowing us to examine the evidence that the

Solid Earth, 5, 631-639, 2014 www.solid-earth.net/5/631/2014/
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Table 3. Comparison of a mixture of von Mises (MVM) with components and projected normal (PN) distributions.

MVM PN
g Np ¢ AIC BIC Np ¢ AIC BIC
Sherwood Sandstone Group 2 5-137.39 284.78 288.54 4 —145.33 298.66 301.67
Windermere Supergroup 5 14-614.88 1257.76 1279.54 4 -635.38 1278.76 1284.98
Bangladesh anticline axial planes 2 5 —14.86 39.72 41.24 4 -183 44.6 45.81
Bangladesh Landsat-derived lineaments 2 5-34.84 79.68 81.68 4 -33.67 75.34 76.94
two variables correspond to the same structural features. Al- (@)

ternative models were fitted to the combined data set, and
these are detailed in Tabtealong with the maximised log
likelihood. Figure3 shows the density functions wrapped
around the circle for all three models.
Model 1 is a PN distribution with single values for all pa-
rameters, i.e. all parameters pooled for both the anticlines
and the Landsat lineaments. Model 2 has separate PN distri-
butions for the two orientations, but with common values of
the variance parametersandp. This corresponds to Ecf)
with “observation type” the categorical predictor variable
with two levels: anticlinal axial plane and Landsat-derived
lineament. The model therefore provides different values of .
the mean vectop for the orientation of the anticline planes . ‘~
and the Landsat-derived lineaments. !
A PN distribution was fitted to each data set separately, as ;
described in the previous section, for comparison with an al- }
ternative MVM distribution. These distributions considered }
together may be treated as a model for the combined data®
set with all parameters of the PN distribution differing be- !
tween the anticlines and Landsat lineaments. This is denotef)\ R
as Model 3 in Tablet and Fig.3. The log likelihood for this el
model is the sum of the two log likelihoods for the separaterigure 3. Density of projected normal distributions fitted to com-
fittings. Note that the parametgrapproaches the boundary pined Bangladesh data and wrapped around the ciajélodel 1,
value 1 for both the anticline planes and the Landsat lineawith all parameters pooled for the combined data &8tModel 2,
ments. We checked that the maximum likelihood estimationwith x modelled separately for anticline axial planes and Landsat
was reliable by computing the profile likelihood for this pa- lineaments{c) Model 3, with all parameters separate for anticline
rameter, and found that the likelihood increased smoothly agxial planes and Landsat lineaments.
p approached 1.
This sequence of models can be regarded as nested: Mod-

els 1 and 2 are particular cases of Model 3 with certain pa V€ can reject Model 1 in favour of Model 2 with different

rameters set to common values. A simpler model may pdoarameterge for the anticlines and the Landsat lineaments,
compared with a more complex one by computing the so we can conclude that there is reason to believe that the

statistic, twice the log-likelihood ratio. Under the null model, ©rientations of the Landsat lineaments differ from those of

the simpler one nested in the alternative, the asymptotic disth€ anticline axial planes. This is consistent with the conclu-
tribution of this statistic i 2 with degrees of freedom equal SiOn ofDavis and Sampsa2003), but our analysis treats the

to the difference in the number of independent parameterscOMPplex distribution of the data more plausibly.

However, in this case the distribution &fis not a simple " Model 3,0 approaches the boundaryat 1. The den-
x2 for any comparison with Model 3, becaugeis at the sity function given by Eq.%) is undef!neq at_thls bo_undary.
boundary (in principle one might obtain a sample distribu- Whene =1 andzu, # uy the PN distribution, which we
tion for L under these circumstances by bootstrapping, buf€note by PN, is continuous with support over half the cir-
this is a topic for further research). In Tableve present the

result for a comparison of Model 1 with Model 2. Note that

S 27 N Anticline planes
/
----- = Landsat lineaments

All parameters pooled
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Table 4.Projected normal distributions fitted to Bangladesh anticline axial plane and Landsat-derived lineament orientations (doubled direc-
tions). Subscript “A’ for a parameter denotes that it pertains only to observations of anticline axial plane orientations, subscript “L” denotes
a parameter of the distribution of Landsat lineaments, and subscript “P” denotes a pooled parameter.

Model Parameters V4
Model 1 K1,P K2,p P op
0.05 -3.49 3.94 0.83 —675
Model 2 1A KL H2,A M2l ™ oP
—2.94 234 —4.86 -3.39 3.66 0.72 —-52.9
Model 3 1A KL H2,A M2l ™A L PA oL

2,
—-9.30 225 -16.56 -35 1207 376 0999 0.99% -52.0

Comparison between models
Null Alternative L P %2 degrees of freedom

Modell Model2 29.2 &x1077 2

* These estimates @fare at the boundary of the parameter space.

The density of the PNdistribution is same conclusion, but in an analysis which made the implau-
sible assumption that the distribution of (doubled) orientation
el X ¢1(c X (r + COUO — bo)) — w2) (5)  angles within the two subsets was a simple von Mises. Our
sin(6 — 6p)? results here support the conclusion that the orientations of the
Landsat-derived lineaments have a signficantly different dis-
tribution from the those of the anticline axial planes, and that
the two variables cannot therefore be regarded as samples
from the same population. This suggests that the Landsat in-
terpretation identifies features which are not all aligned with
anticlinal axial planes.

[, 7) =

for values of6 betweenjy = arctartl/t) andép + = on the
side of the circle that faceg = (1, u2) and 0 on the side
that faces away from. The constant that appears in Eq5)
is defined as = ’(’ﬁ;’l‘)l and is guaranteed to be non-zero
in this case. Whem =1 andtuz = u1 (i.e. whenc = 0),
the PN distribution is discrete, with probabilities®f (—u2)
and 1- ®;(—uyp) in directionsfg and 6y + r respectively.
Similar results hold at the boundapy= —1. .
The PN distribution might be useful because it is more 4 Conclusions
parsimonious than the general PN distribution while retain-
ing flexibility for both unimodal and bimodal distributions.
However, as seen above, the support of BNrestricted to
an interval of widthr and so it does not include the uniform
distribution on the circle as a special case, which limits its
usefulness for inference.

The two case studies reported above show that both the pro-
jected normal (PN) distribution and a mixture of von Mises
(MVM) distributions can be used to model variations of cir-
cular data in the earth sciences which may be distributed in
a complex multimodal and asymmetric way.

It is possible to select the number of components in
3.2.4 Key findings an MVM distribution by a sequential testing procedure in

which the log-likelihood ratio is used as a test statistic to de-

These data were analysed previously,[bgvis and Samp- cide whether to add a component to the model, with the dis-
son (2002, who assumed a simple von Mises distribution. tribution of the statistic under the simpler model computed
Our results suggest that this distribution is not appropriate folby a Monte Carlo simulation. One may select the number of
these data; in both cases there was evidence that a mixture abmponents for an MVM distribution and compare the re-
two von Mises distributions was more suitable than a singlesult with the PN distribution, which is a more parsimonious
von Mises distribution, and in the case of the Landsat-derivedmodel, by computing the Akaike or Bayes information cri-
lineaments, the projected normal distribution was favouredteria for the two distributions. In our case studies the two
over the MVM. information criteria, which are not directly comparable, led

Using the PN distribution it was shown that there was to the same choice of model.
a significant difference between the orientations of the anti- In the West Cumbria example, and the case of the anti-
cline axial planes and the Landsat-derived lineaments frontlinal axial planes from Bangladesh, the MVM model was
eastern BangladesiDavis and Sampso2002 drew the  favoured over the PN, indicating that the complexity of the
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bility of the PN model, and its parsimony, the more complex nested spatial models, Commun. Stat. Simulat., 35, 779-788,
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