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Abstract A new generalized method is presented enabling the use of multiple donor sites when predicting
an index flood variable in an ungauged catchment using a hydrological regression model. The method is devel-
oped from the premise of having an index flood prediction with minimum variance, which results in a set of opti-
mal weights assigned to each donor site. In the model framework presented here, the weights are determined by
the geographical distance between the centroids of the catchments draining to the subject site and the donor
sites. The new method was applied to a case study in the United Kingdom using annual maximum series of peak
flow from 602 catchments. Results show that the prediction error of the index flood is reduced by using donor
sites until a minimum of six donors have been included, after which no or marginal improvements in prediction
accuracy are observed. A comparison of these results is made with a variant of the method where donor sites are
selected based on connectivity with the subject site through the river network. The results show that only a mar-
ginal improvement is obtained by explicitly considering the network structure over spatial proximity. The evalua-
tion is carried out based on a new performance measure that accounts for the sampling variability of the index
flood estimates at each site. Other results compare the benefits obtained by adding relevant catchment descrip-
tors to a simple regression model with those obtained by transferring information from local donor sites.

1. Introduction

Estimating the magnitude of design floods (here defined as the discharge associated with a predefined return
period) in ungauged basins is an important practical problem in applied hydrology, and one which has also
received considerable attention in the scientific literature; in particular as part of the IAHS Prediction in Unga-
uged Basin (PUB) decade [Bloschl et al., 2013]. A class of methods which has found favor among practitioners
and academics is regional flood frequency analysis, where, using statistical analysis of samples of extreme
flood or rainfall data from a geographical region, estimates at ungauged sites are obtained through transfer of
data from gauged sites. Numerous techniques for undertaking regional frequency analysis have been
reported in the literature [Cunnane, 1988; Bloschl et al., 2013]. One method in particular, the index flood
method, described by Dalrymple [1960] and more recently made popular in the L-moment version described
by Hosking and Wallis [1997], has been the subject of numerous studies [e.g., Pearson, 1991; Vogel et al., 1993;
Parida et al., 1998; Kachroo et al., 2000; Lim and Voeller, 2009; Yang et al.,, 2010; Salinas et al., 2013].

Underpinning the index flood method is a set of assumptions of which the most prominent, but simplistic, is
that within a homogeneous region the flood series from different sites are independent and identically distrib-
uted apart from a scale parameter, the index flood, often defined as the mean or median annual maximum
flood [Hosking and Wallis, 1997; Institute of Hydrology, 1999]. The estimation of the index flood at ungauged
sites is typically implemented using a regression-type model relating the index flood at gauged sites to a set of
relevant physiographic, geomorphologic, and climatic catchment descriptors such as catchment area, mean
annual rainfall, soil type, urban extent, etc. [Grover et al., 2002]. Estimation of the regression model parameters
can be undertaken using, for example, techniques such as ordinary, weighted, or general least squares (OLS,
WLS, or GLS) depending on the level of complexity adopted in the model building phase [Stedinger and Tasker,
1985]. Alternatively, the model parameters can be estimated using maximum-likelihood [Kjeldsen and Jones,
2009; Mediero and Kjeldsen, 2014] or Bayesian [e.g., Reis et al., 2005; Haddad et al., 2012] techniques.

The standard errors of estimates obtained at ungauged sites using this type of regression model are generally
relatively large. For example, the regression model developed by Kjeldsen and Jones [2009] for estimating the
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median annual flood at ungauged sites in the United Kingdom was based on annual maximum peak flow
data from 602 gauged catchments and has a factorial standard error (fse) of 1.431. Another example is the
study by Meigh et al. [1997] developing regression models linking the mean annual flood (MAF) to catchment
descriptors in regions from around the world. They reported values of fse in the range between 1.36 (24
basins in South Korea larger than 1000 km?) and 2.88 (162 arid and semiarid basins worldwide). In recognition
of this high level of uncertainty, the guidance provided in the United Kingdom on flood frequency estimation
in ungauged catchments [Institute of Hydrology, 1999] suggests that pure regression-based estimates should
be adjusted, where possible, through data transfer from hydrologically similar gauged donor catchments. This
strategy is in keeping with similar conclusions drawn by other researchers. For example, Merz and Bloschl
[2008] highlighted the benefit of incorporating local knowledge and data into flood frequency analysis. Con-
ceptually, the use of local data to adjust the regression-based estimate at a particular site can be viewed as an
attempt to compensate for exclusion of local flood controlling factors in the explanatory variables used in the
regression model [Kjeldsen and Jones, 2010]. The rules provided by Institute of Hydrology [1999] for selection of
suitable donor catchments were heuristic and included sites that were considered hydrologically similar in
terms of catchment area, mean annual rainfall, and soil type. Assessing the benefit of data transfer in the
United Kingdom, Kjeldsen and Jones [2010] found that superior performance was achieved when donor sites
were selected based on geographical proximity rather than hydrological similarity as measured by catchment
descriptors. A similar conclusion was reached by Merz and Bloschl [2005] and Viglione et al. [2013]. In a sepa-
rate study involving spatial generalization of flood statistics, Morris [2003] found that where donor sites were
upstream or downstream of the subject site, utilizing their location on the river network relative to the subject
site (primarily determined by similarity of catchment area) could significantly enhance the performance of the
data transfer methodology. Other researchers [Skaien et al., 2006; Guse et al., 2009; Ganora et al., 2013] have
also reported benefits when including river network geometry in flood frequency regionalization studies.

By studying the error structure of a hydrological regression model, Kjeldsen and Jones [2009, 2010] devel-
oped an optimal procedure for transferring data from a single gauged site to an ungauged subject site uti-
lizing a functional relationship between the spatial correlation of regression model errors and the
geographical distance between catchment centroids. Here, optimality is defined as minimizing the predic-
tion variance of the adjusted estimates of the index flood at the ungauged sites. Kjeldsen and Jones [2010]
found that the prediction error obtained when using estimates derived from the nonoptimal data transfer
procedure presented by the Institute of Hydrology [1999] in the Flood Estimation Handbook (FEH) is about
twice as large as the optimal data transfer procedure. The FEH method is to choose “similar” catchments as
donors, and these are not necessarily geographically close.

This paper presents a novel and generalized method for adjusting regression-based estimates of the index
flood at ungauged sites in the United Kingdom using data transfer from multiple gauged donor sites. The
analytical results are also extended to develop a new performance metric for the evaluation of regional
models that filters out the effect of at-site sampling noise. Based on a case study from the United Kingdom
considering an existing model for predicting an index flood in ungauged catchments, the benefit of using
data transfer from gauged donor catchments is illustrated and quantified.

2. A Framework for Data Transfer From Multiple Sites

The optimal data transfer procedure is intimately related to the structure of the regional regression model
used for predicting the index flood based on catchment descriptors only. Thus, before discussing the data
transfer procedure, the details of the regression model are described.

2.1. A Regression Model for Predicting the Index Flood at Ungauged Sites

Consider a region where annual maximum series (AMS) of peak flow events are available from i=1,....n
different gauged catchments. The median of each individual AMS is denoted m; and the corresponding log-
transformed value is y;. Following Stedinger and Tasker [1985], the sample estimate of y; can be written in
terms of a regression model as

yi:X}r9+l1,+8j:é/+Si (1

where subscript i refers to catchment number, &; is the true (but unknown) value of the log-transformed
median, ¢ is the sampling error of the log-transformed index flood (y;) and is assumed to be normally
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distributed with mean zero and a covariance matrix X,. The value of individual elements of X, depends on:
(i) record-length, (ii) the assumed distribution of the AMS series and, (iii) for nondiagonal elements, the dis-
tance between catchment centroids and length of overlapping record. An example of the sampling covari-
ance matrix X, of the log-transformed median annual maximum flood can be found in Kjeldsen and Jones
[2009]. The regression model parameters are denoted by 0, and x; is a (g+1)) vector of g catchment
descriptors for the ith site with a value of one in the first location. The term x! 0+7; is then the true value
expressed as a linear regression model based on catchment descriptors plus a model error terms due to the
inability of a simple regression model to represent complex basin hydrology. The model error, 7, is assumed
to have zero mean and the elements of the covariance matrix X, are defined as

2 i
oy i=j

Z’?»U:cov(niv ﬂj) = )

2 . .
G;]rﬂjf ! 7&]

where r, j is the correlation between model errors which Kjeldsen and Jones [2009] related to the geographi-
cal distance between catchment centroids, dj, as

I'nij= P1€XP [7(020',]] +(1 7(;)1) exp [7(,030"_]_] 3)

where ¢, ¢,, and @5 are model parameters that must be estimated along with the regression model parame-
ters 6 and the model error variance 6,2]. The model and sampling errors are assumed to be mutually independ-
ent but cross correlated within each set, and the spatial correlation of the model errors is a key part of the
data transfer scheme. The introduction of correlated model errors is an extension to the GLS model presented
by Stedinger and Tasker [1985], who assumed negligible or no correlation between model errors. Kjeldsen and
Jones [2009] provide a more detailed discussion of the difference between the two error types.

In the next section, a new procedure will be developed which allows for the estimates of the index flood
obtained using a regional model, such as equation (1), to be moderated using local data from neighboring sites.

2.2, Optimal Data Transfer From Multiple Sites
Suppose that a set of estimated regression model parameters, 0, such as those in Table 1, is available which
enables the prediction of the log-transformed index flood, y, at any site in the region of interest. The esti-
mate y, is given as

ye=x0 (4)
where the subscript s indicates a specific site, and the estimate in equation(4) therefore constitutes the
regression-only estimate at a specific site. Subsequently, this first estimate should be adjusted by using data
transfer from multiple donors. The regression-only estimate at the site of interest, y, from equation (4), is
adjusted using residuals from p nearby and gauged donor sites as a weighted average: a weight o (to be
determined) is applied to the regression residual (y;—y;) at each of the p sites. The resulting adjusted esti-
mate is denoted y, and is derived as

p
yszys—i_zai(yi_yi)
i=1

P
= X0+ o | X[ 0+ +e — x0 (5)
~~ = N e’ N
Vs Yi Vi

:x;mga,(x,r(e_@)ﬂ,,ﬂ,)

The set of weights o; is specified so as to ensure the prediction error variance of y. is as small as possible.
Note that there is no requirement for the weights o; to sum to unity. For example, if only one donor site is
used (p = 1), then the weight should decrease toward zero as the distance between the donor and the sub-
ject site increases [Kjeldsen and Jones, 2010]. Given that a reasonably large number of gauged sites is used
in the estimation of the regression model parameters, a reasonable assumption is 0 ~ 0, which reduces the
complexity of the equation above to

KJELDSEN ET AL.

©2014. American Geophysical Union. All Rights Reserved. 6648



@AG U Water Resources Research 10.1002/2013WR015203

p
Table 1. Summary Statistics for Regression Model Linking the Log Median )75 ~ XZ—G"'Z O‘i(”h""gi)- (6)
Annual Maximum Peak Flow to Catchment Descriptors [from Kjeldsen and =1

Jones, 2009]

Coefficient Parameter Standard Error t-Value p-Value The prediction error of y is denoted e,
Intercept - - - - and will be derived by utilizing the fact
Ln[AREA] 0.8510 0.0114 7435 0.000 that the true value at the subject site,

-1 . .
(SAAR/1000) —1.8734 0.0968 —1935 0.000 &, is defined as &=xT 0+, as discussed
Ln[FARL] 3.4451 0.2654 12.98 0.000 . . .
BFIHOST? 3080 01158 —26.60 0,000 previously (equation (1)). Thus, e is

defined as
€ :)75 =&

p
=x]0+> o +2) X[ 01,
i=1
p
~ _175“1‘20([(11[“1‘8,'): —ns+a’ (n+e)
i=1

which, as above, assumes that 6 = 0. The vector « contains the weights assigned to each of the p donor
sites, and similarly 1 and ¢ denote vectors of the model and sampling errors. Next, the variance of this pre-
diction error e; is defined as
var (e;)=var { —n,+o (n+2)}

=O'$+lZTVaI’ (n+e)a—20"b (8)

=a§+arﬂa—2bToc
The p X p covariance matrix of the combined error terms (1, +¢;) is denoted by Q. The vector containing
the covariance between the model error at the subject and each of the donor sites cov(n;, ;) is denoted by
b where the p elements are obtained directly from equation (3) considering the geometric distance, d;;
between the subject site s and each of the i=1, ..., p donor sites. In deriving equation (8), independence
between sampling and model errors is assumed. Next, the minimum prediction variance is found through
straight-forward differentiation of equation (8) with respect to the weights « as

Ovar (e)
Oa
As Q is symmetric, the optimal set of weights a can finally be derived by isolating « in equation (9) as

=0 = o (Q"+Q)-2b"=0 ©)

a=Q7'b (10)
If only one donor site is selected, the solution to equation (10) reduces to the corresponding analytical solu-
tion for a single donor presented by Kjeldsen and Jones [2010]. Thus, the result obtained in equation (10)
constitutes a new and more general framework for including local information into the estimation of the
index flood variable at ungauged sites.

Given that the variance of the model errors are typically much larger than the variance of the sampling
errors, it is likely that the weights will primarily be determined by the model errors (i.e., how well the regres-
sion model describes the data) rather than the sampling errors.

3. A Revised Performance Measure

A common approach for assessing the performance of a regional method is the mean squared error, or root
mean squared error (RMSE), based on the sum of squared errors, S. The version, S¢ that compares the
regional estimate with the sample estimate for each of the n gauged site in the region in turn is

Sc=>  (7s—ys) =) (7-y) (1)
s=1

where (y-y) is a vector containing the n residuals. However, the at-site sample estimates are themselves
only best estimates of the true values, &, and thus what would be more interesting to know is the value of
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n
Sr=_ (7:=&)"=(-9) (79 (12)
s=1
In the following, the relationship between Sc and Sy will be derived, allowing an estimate of Sy rather than S¢ to be
used for assessing the performance of the data transfer method. As before, the difference between 0 and 0is
ignored (e, 0 ~ 0) which is the same as ignoring the sampling error of 0, a reasonable assumption when a large
number of sites are included in the regression analysis. This analysis starts from a slightly revised version of the ear-
lier expression in equation (6), where the adjustment to the index flood estimate is represented here as a
weighted sum of the residuals from all n sites in the national data set. This leads to equation (6) being replaced by

n
ye=x[0+  os(yi—yi) (13)
i=1

but where the weights oy; are mostly zero except for the p sites chosen for the data transfer for the site s.
The difference between the donor adjusted estimate and the at-site estimate and true value, respectively,
can be expressed by combining equations (1) and (4) with the assumptions listed above. First, consider the
difference between the adjusted estimate (y,, equation (13)) and the at-site sampling value,

(vs, equation (1)):

n
VmYs=X 0+ eun(yi—y;)—ys

i=1

n
=x[0+> o | X[ 0+n;+e — X/ 0
A RS

Yi Vi (14)
—(XST@)+;15+85)

Vs

n

= il +e) = (n,+es)

=1
which in a vector format considering all n sites is given as
y-y=(A-hn+(Al)e (15)

where A is a matrix of the weights o | is an identity matrix, and 1 and ¢ are (nX1) vectors of model and
sampling errors, respectively. Analogous to equation (7), the difference between the adjusted estimate and
the true value is derived as

n
yg_cfs:ng'i_zasi(yi_yi)_cfs
i=1

1

n
:xsrf)-i-Zocs,» x| 0+n;+e — x[0
‘= —_——

Yi Vi (16)

- (x:é + 115>
5,_/
Cs
n

:Zo{,(ﬂi‘i‘gi)_ (n5)

i=
Again, the corresponding vector notation considering all n sites simultaneously is
y-E=(A-n+Ae (17)

Considering the two different definitions of residuals in equations (15) and (16), it can be seen that compar-
ing the predictions of the index flood with the observations directly (equation (14)) will contaminate the
residuals with a sampling error, & of the observed index flood. The result is that performance measures
such as RMSE will be inflated by this sampling error. As the sampling error depends on the record-length of
the at-site record, the RMSE will also become a function of record-length and it is not possible to ascertain
how much of the difference between predictions and observations is caused by model deficiency and how
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much is down to sampling noise in the at-site observations. However, the framework developed here allows
for a revised performance measure to be developed where the influence of the at-site sampling noise is
removed.

From the matrix representation of the differences in equations (15) and (17), the sum of squares defined in
equations (11) and (12) can now equally be written in matrix form as
Se=n"(A—D"(A—=Dn+e" (A—D)"(A—1)e
—2n" (A=1)" (A—1)e
Sr=n"(A—1)"(A—D)n+e"ATAe
2" (A—1)"Ae

(18)

(19)

By subtracting the two expressions in equations (18) and (19), the following relationship between Sc and S7
is obtained

Sc—=Sr=2n" (A—1)Te+e" (I-AT—A)e (20)
Next, the mean value of the difference between the two sums of squares is

E{SC—ST}:E{ZnT(A—I)Ts-i-gT(I—AT—A)s}
=0+E{e" (1I-A"—-A)e} 1)
=tr{(1I-AT-A)L,}
=tr{X,} —2tr{AZ;}

where tr is a trace function and, as previously, the model and sampling errors are assumed to be independ-
ent. For computational convenience, equation (21) is written as sums, i.e.,

n n n
E{Sc=Sr}=) Tes—2) > agZ.y (22)
s=1 s=1 i=1

The term in equation (22) can be considered a bias-correction term to be subtracted from the calculated
sum of squares, S¢ to obtain an improved estimate of S; denoted St.

4. A Case Study Using UK Data and Methods

The method developed above for using multiple donor sites to adjust a regression estimate for an unga-
uged site was tested using annual maximum series of instantaneous peak flow available at 602 nonurban
catchments located throughout the United Kingdom as shown in Figure 1. The data set is part of the
Hiflows-UK data set, consisting of peak flow series where the gauging authorities have sufficient confidence
in the rating curves that these stations can be recommended for use in flood studies.

Using the same data set, Kjeldsen and Jones [2009] adopted a maximum-likelihood method to estimate the
regression model parameters as well as the parameters in equation (3) controlling the relationship between
model error correlation and distance between catchment centroids, and the results are replicated in Table 1.

The four catchment descriptors used in the regression model are catchment area (AREA) in km?, standard
annual average rainfall as measured from 1961 to 1990 (SAAR) in mm, an index of flood attenuation due to
online reservoirs and lakes (FARL) which takes values between zero and one, (where a value of one indicates
no attenuation), and BFIHOST which is related to the hydrological properties of the catchment soils and can
take values between zero (impermeable) and one (completely permeable). Each of these descriptors is
transformed as shown in Table 1. A detailed description of the model development and performance is
reported in Kjeldsen and Jones [2009] and not repeated here.

The relative performance of the proposed donor transfer method was initially investigated by comparing
the performance for predicting in ungauged catchments based on three different cases:

1. Using the regression model only

2. Identify the geographically nearest gauged catchments
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3. Identify donors connected to
the subject site by being
located on the same river
network

58

Finally, an investigation was
conducted into the relative
value of the donor transfer
method using local data by
contrasting the performance to
that of a number of existing
regional models of varying
complexity.

56

Latitude
54

For all investigations, the per-
formance of the models will be
reported in terms of the facto-
rial standard error (fse), which
is defined as the exponential of
the standard error as derived
from the sum of squared

4 errors as

50

S
0 -8 6 -4 2 0 2 fse=exp ( m) (23)
Longitude

where § is the sum of square
errors defined either as S¢ from
equation (18) or the bias cor-
rected version Sz, m is the total number of catchments, and g is the number of catchment descriptors in the
regional regression model. The RMSE is defined from equation (23) as RMSE=log(fse), but the advantage of
the fse measure is that it can more easily be translated into confidence intervals than the RMSE measure,
e.g., Kjeldsen [2014].

Figure 1. Location of the 602 gauging stations used in this study.

4.1. Nearest Geographical Neighbors
For the data set at hand, the potential number of donors for each subject site is 601 when selecting based
on geographical distance only. Evaluating the performance of the adjustment procedure, the performance

criteria fsec=exp (1/Sc/(602—5)) and fser=exp ( §T/(602—5)) were both evaluated as a function of

the number of donor sites used to adjust the regression-only estimates of the index flood at the subject
sites. The results are plotted as a function of the number of donor-sites in Figure 2 for a range of different
cases: (i) the regression-only estimates (no donor adjustment), (ii) donor-adjusted estimates with and with-
out neglecting sampling errors when calculating weights using the matrix £ in equation (10), and (iii)
donor-adjusted estimates using the revised performance measure in combination with the full solution.

For the data set used in this study, a minimum level of fse (RMSE) values was reached when using six or
more donors, and the corresponding fse (RMSE) values are reported in Table 2 below. It is also evident from
Figure 2 that, in the case presented here, the omission of the sampling errors when calculating the weight
assigned to each donor site has a relatively minor effect on the performance.

It is clear that the inclusion of multiple donors is beneficial in terms of reducing the prediction variance. The
results suggest that the prediction accuracy is relatively insensitive to the actual number of donors, as long
as this number exceeds about five.

4.2. Drainage Network Structure
Results presented by Morris [2003], Skaien et al. [2006], Guse et al. [2009], and Ganora et al. [2013] suggest
that the connectivity of the site of interest and different gauging stations as determined by the river
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network structure can be an

important source of informa-
Regression only tion when estimating the index
Full solution . flood at ungauged sites. Thus,
Model error correction only an assessment of the benefit
Bias corrected . ]

from selecting donor sites con-
nected to the target site via
the river network was under-
taken. Based on the available
data set of 602 AMS, river
LN network-based donors were

++é4 selected by first searching
B Y Y IV Y Y VYV Y VYT YV VY VYTV YTy .
downstream from the subject

B LA I I o e e e e ) ) ) )
site until a gauging station was

encountered or the sea was
reached, and then searching in
an upstream direction up every
T T T | tributary in turn, in each case
0 10 20 30 40 stopping when a gauging sta-
Number of donors tion was encountered or the

head of the tributary was
figure 2. Factorial standa.rd error (fse) pIotted. asa functi?n of the nu.mber of sionor sitgs for reached. A maximum of seven
(i) the regression-only estimates (no donor adjustment), (ii) donor-adjusted estimates with .
and without neglecting sampling errors when calculating weights, and (iii) donor-adjusted donors was allowed as this was
estimates with and without using the revised performance measure. considered to be fully

adequate for the needs of the
original FEH statistical procedures. There are only 10 UK river reaches where the number of eligible gauges
exceeds seven, and here the preferred upstream donors are those whose catchment area is closest to that
of the subject site. At sites with fewer than seven network-based donors, additional donors are selected on
the basis of proximity, provided that their catchments are sufficiently similar to that of the subject site.
Because of the need for catchment similarity, not all of the subject sites have seven donors. Of the 602 loca-
tions in this study, 29 had no donors and 53 had between one and five donors.

1.50
|

1.45
|
o=

Factorial standard error (fse)
1.40
|

1.35
|

1.30

Comparing the results in Table 3 with the corresponding results in Table 2 obtained without consideration
of the river network structure, it can be observed that the resulting RMSE and fse values are generally
reduced slightly when incorporating information on river network structure, especially when not consider-
ing the influence of the sampling errors of the at-site estimates. Removing the error contribution from the
at-site samples, the resulting RMSE values are almost similar, suggesting that the actual network structure
does not add additional information over and above that already contained in the distance between catch-
ment centroids. This conclusion is derived from analysis of AMAX data, and it is of course possible that anal-
ysis of other types of hydrological data and indices would provide more insight into the role of the
drainage network geometry and its influence on runoff processes.

4.3. A Regional Model Versus Local Data

A comprehensive set of catchment descriptors are available for each of the catchments included in the UK
case study. However, other regions might have only a smaller subset of descriptors available, and in this
section the value of local data will be evaluated for two cases of catchment descriptor availability. The per-
formance of the data transfer scheme developed in this study will be compared when combined with a full
regional model, i.e., the model in Table 1 based on four different catchment descriptors (AREA, SAAR, FARL,
and BFIHOST) with a fse value equal to 1.43, and a second more simple model using catchment area (AREA)
only as a covariate and a fse value of 2.76. The catchment area (AREA) only model was developed previously
by Kjeldsen and Jones [2009]. The two models were contrasted in Kjeldsen and Jones [2010] who showed
that the omission of catchment descriptors in the simple model resulted in a much higher degree of model
error correlation. Based on these results, it was argued that the existence of high model error correlation
increases the value of data transfer as a compensation of the lack of explanatory power of the simple
regression model.
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Table 2. RMSE (fse) When Using Six Donor Sites for Estimating
the Index Flood at Each Target Site

Incl. Sampling Apply Bias

Errors in Q Correction? RMSE fse
Yes No 0311 1.365
Yes Yes 0.303 1.354
No No 0312 1.366
No Yes 0.304 1.355

Table 3. RMSE and fse When Selecting Donors Site Based on
Shared Network Structure

Incl. Sampling

Errors in Apply Bias Correction? RMSE fse

Yes No 0.308 1.360
Yes Yes 0.304 1.356
No No 0.308 1.360
No Yes 0.304 1.355

Figure 3 shows a comparison between the fse val-
ues obtained using the full and the simple regres-
sion model, respectively, in combination with the
data transfer scheme developed in this study. A
third model based on AREA and SAAR is also
shown, and this model has an fse value of 1.92
[Kjeldsen and Jones, 2009].

The horizontal lines represent the fse value for the
three regression models, i.e., using only catchment
descriptors but without the use of data transfer.
Clearly the fse of the simple AREA only model is
much higher than for the two more complex mod-
els, showing the importance of additional catch-
ment descriptors beyond catchment area for
describing the between-catchment variation in
the index flood.

When incorporating local data through use of the
data transfer scheme, the drop in fse observed in

connection with the simple AREA only model is much larger than the corresponding reduction in fse when
using the full model. In fact, the fse values obtained using the AREA only model in combination with data
transfer are lower than the fse values obtained when using a more complex regional model based on both
AREA and SAAR without data transfer. However, even with data transfer, the fse values obtained for the sim-
ple AREA-only model do not reach the low level associated with the four-descriptor model without data
transfer. Nonetheless, these results suggest that there is potentially a large gain to be had in predictive
power when using data transfer in combination with a simple regional model developed using catchment

area only.

A more detailed assessment of the link between the complexity of the regional model and the benefit of
data transfer can be made by studying more closely the behavior of the differences between the log-

<
(&)

transformed at-site values, and
corresponding log-transformed
values predicted using the

25

AREA only

AREA and SAAR

2.0

Factorial standard error
1.5

— + —— + Area only model + donor transfer

s —— =& Full model + donor transfer

regionalized models with and
without data transfer (resid-
uals). Figure 4 (top row) shows
the residuals (gray points) of
the full regression model plot-
ted against the four catchment
descriptor values used in the
model (AREA, SAAR, FARL, and
BFIHOST), and the correspond-
ing residuals (bottom row)

AREA, SAAR, FARL and BFIHOST

1.0

from the area-only model.
Note that the scale of the y axis
is the same in both rows to
better enable the comparison.
In each of the eight plots, the

T T T
0 2 4 6

Number of donors

T 1 spread of the residuals is indi-

8 10 cated by a convex hull span-

ning 95% of all the points
(solid line). A second convex

Fi .F ial f | functi f th f ites fi .
igure 3 f':lctona stan-dard error (fse) potFed as a function of the r‘1umber oAdonor Slte? or hull (dashed line) spans 95% of
the regression-only estimates (no donor adjustment) and donor-adjusted estimates for (i)

the full model and (ii) the simple catchment area only model. The fse for an intermediate
regression-only model based on catchment area and mean annual rainfall is shown as a

dashed line.

the second set of residuals
obtained when comparing at-
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Figure 4. Residuals plotted against key catchment descriptors. 95% convex hull for regression model residuals (solid line—points shown in gray), and residuals obtained using regression
model with data transfer from six donor sites (hatched line—points not shown). (top row) Results for full model and (bottom row) results for area-only model.

site values with estimates obtained by using data transfer with five donor sites. For this second set of resid-
uals, only the convex hull is shown but not the actual points. For both sets of residuals, the 95% convex hull
was chosen to limit the influence of outliers on a visual assessment of the general behavior of the residuals.

Considering first, the residuals of the full model in the top row, the second convex hull (dashed line) gener-
ally has the same shape and occupies an area that is marginally smaller than the convex hull spanning the
regression model only residuals (solid line). This is in line with the results shown in Figure 3, and suggests
that the utility of data transfer is more limited when the regression model accounts for the differences in
the index flood values observed in different types of catchments. In contrast, the difference between the
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two convex hulls is much more pronounced when considering the simpler area-only model (bottom row).
First, the area spanned by the residuals obtained using data transfer is much smaller than the residuals
from the regression model only and more similar to the shape observed for the full model in the top row.
Second, there are clear structures in the regression-only residuals (grey points), especially when plotted
against SAAR and BFIHOST, with underestimation in wet and impermeable catchments and, conversely,
overestimation in dry and more permeable catchments. However, using local flood records largely removes
this stratification from the residuals. For FARL (reservoirs and lakes), the results are less clear, but this is
caused by the relatively limited number of catchments with low FARL values (stronger influence of
upstream reservoirs and lakes) in the data set. These results show that using data transfer can (i) improve
the performance of a simple regression model, and (ii) effectively remove most of the structure in the per-
formance of regional models caused by not incorporating key catchment descriptors into the model.

5. Discussion and Conclusions

The procedure outlined in this study is a formal framework that will enable hydrologists to incorporate local
data when estimating an index flood variable at an ungauged site using a generalized regional procedure.
The adjusted estimates are shown to have a lower fse than those obtained from regression models only.
This is particularly important in regions where the available lumped catchment descriptors cannot be con-
sidered to adequately capture local flood controlling processes and mechanisms. The methodology was
developed for use with index flood estimates in the United Kingdom, where the optimal number of donors
was found to be five or more.

The study also presented a generalized procedure for removing the effects of sampling error from RMSE
(fse) and hence the effects of sample length available at each site. This is potentially an important result as
it will allow comparison of performance of methods between data sets from different regions.

Interestingly, the derivations presented in this study and in Kjeldsen and Jones [2010] show that if the corre-
lation between model errors is neglected (i.e., r, ;=0 in equation (3)) and not considered as part of the initial
construction of the hydrological regression model, then there is seemingly no benefit associated with trans-
fer of data to an ungauged catchment from nearby gauged catchments (as the regression model is then
assumed to explain all between-catchment variation). In most practical settings, this would be an untenable
position, and thus model error correlation should be considered an integral part of models attempting to
predict hydrological variables in ungauged catchments.

Comparing the performance of regional regression models (in terms of predictive ability) when combined with
data transfer from donor catchments showed that the benefit of data transfer in ungauged catchments, when
used in combination with a simple regional model using catchment area only outperforms the more advanced
regional model using both catchment area and mean annual rainfall as covariates if data transfer is not used.
Thus, careful consideration of model error correlation in the model building phase can help to address poor
model performance originating from access to only a limited subset of catchment descriptors. As such, the pro-
posed method is considered a valuable addition to the toolbox available for regional hydrological models.

The results obtained in this study are based on flood data from a relatively dense gauging network in the
United Kingdom. A case study by Mediero and Kjeldsen [2014] using the GLS framework to develop a model
linking at-site estimates of a 100 year design flood to catchment descriptors in a north-east Spain identified
model error correlation, suggesting that the method might also be useful in other geographical regions. How-
ever, further research is needed to verify the extent to which these conclusions are valid. In particular, the
influence of reservoirs and lakes on flood characteristics should be further examined. Finally, this study consid-
ered only the index flood variable, but similar analysis could have been undertaken in connection with any
hydrological variable where a regionalization model is the basis for prediction in ungauged catchments,
including statistical moments of high and low flow series as well as parameters in rainfall-runoff models.
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