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ABSTRACT - The varied aspect ratios observed in the Antarctic marine diatom Eucampia antarctica are 

described and quantified. Data are compiled from detailed measurements of the gross morphology of winter 

stage specimens found in samples of modern marine sediments. Surface sediment samples come from a 

range of oceanographic settings spanning almost 20 degrees of latitude from north of the Polar Front in the 

SW Atlantic to close to continental Antarctica in the southern Amundsen Sea. Results are compared with 

previously recorded morphological data ascribed to the polar and sub-polar varieties of E. antarctica 

(E. antarctica var recta and E. antarctica var antarctica) and reveal that the aspect ratio of both varieties 

responds independently of symmetry and colony structure. The discussion considers the likely basis of the 

observed aspect ratio distribution and whether the morphological diversity offers any potential for use as 

proxy evidence in Antarctic palaeoceanographic reconstructions. Although it requires further study, valve 

symmetry offers promising potential as a quantitative proxy for austral summer sea surface temperatures. 
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INTRODUCTION 

Palaeoclimatic reconstructions are an essential component of climate research, revealing the earth’s varied 

climatic history and providing the empirical data for testing the validity of modelled climate systems. 

Developing our understanding of existing proxies and assessing the potential of new proxies is an important 

aspect of this research. In the Southern Ocean where carbonate preservation is scarce, diatoms are 
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particularly useful for palaeoclimatic/ palaeoceanographic reconstructions as they are diverse, abundant and 

well preserved. Although diatom-based reconstructions rely principally on species relative abundance data, 

previous studies have provided good evidence that infraspecific morphological variation (‘polymorphism’) 

can be used as an additional palaeoenvironmental proxy (Fryxell, 1988;1994; Cortese & Gersonde, 2007). 

Although few Antarctic diatoms produce true resting spores, summer/winter and cold/warm water forms 

appear to be common amongst Antarctic diatom species and are usually morphologically distinct. These 

growth forms are probably an important adaptation to survive the extreme seasonality of the polar regions 

and transitions between these growth forms (resting spores, winter/summer, cold/warm water forms) are 

likely to be environmentally triggered (Palmisano & Sullivan, 1983; Doucette & Fryxell, 1985; Ligowski et 

al., 2012). Studies have already shown the proxy potential of these growth stages in several Antarctic marine 

diatoms (Leventer et al., 2002; Taylor & Sjunneskog, 2002). Nitrogen depletion is suggested as an important 

resting state trigger for Thalassiosira antarctica Comber and Chaetoceros Ehrenberg subgenus Hyalochaete 

Gran (Peters & Thomas, 1996; Ishii et al., 2011) whilst in other species, temperature, salinity, nutrient 

availability and light intensity may be the principal controls over different growth forms. The warm and cold 

water forms of T. antarctica are morphologically distinct, with different areolae sizes, cell size-range and 

silicification, that have been related to water temperature and ice formation and yield additional proxy tools 

for Antarctic palaeoceanographic reconstructions (Villareal & Fryxell, 1983; Doucette & Fryxell, 1985; 

Buffen et al., 2007). 

Morphological variety in the endemic Antarctic marine diatom Eucampia antarctica already provides 

a useful palaeoceanographic tool of relative temperature. Fryxell (1991) shows that the two morphologically 

distinct varieties E. antarctica (Castracane) Mangin var antarctica and E. antarctica var recta (Mangin) 

Fryxell & Prasad inhabit different oceanographic regions. The nominate variety, characterised by long 

chains (10+ cells) of asymmetric valves, being found in the sub-polar plankton and sediments north of the 

Polar Front whilst E. antarctic var recta, with short chains (typically 2-4 cells) of symmetric valves, inhabits 

areas within the seasonal sea-ice zone and cold waters close to the Antarctic continent. Down core variations 

in the ratio of the two varieties are used to infer relative temperature change. Fryxell (1991) also suggests 

that the aspect ratio of the E. antarctica valves is a feature of the same phenotypic response. Here I present 
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morphological evidence from a range of sites throughout the Antarctic Peninsula (AP) and Scotia Sea to 

assess whether the aspect ratio varies in tandem with temperature and matches the changes in gross colony 

morphology.  

 

Previous Studies 

Polymorphism is recognised in many diatoms and may reflect greater genetic diversity within a 

morphologically defined species (morphotype) (Beszteri et al., 2007; Poulíčková & Hašler, 2007; Bruder & 

Medlin, 2008; Balzano et al., 2011). The most common and obvious changes occur in the valve structure 

and ornamentation, such as the valve shape and size, valve symmetry, silicification and areolation pattern. 

Changes in the cell morphology over time may be in response to environmental or evolutionary conditions. 

Morphological changes over long time periods (≥105 years) are attributed to evolutionary adaptation whilst 

morphological transformations over short timeframes (≤104 years) are more likely to be a response to 

environmental dynamics, e.g. variations in temperature, salinity, nutrient or light availability. Where an 

organism is able to alter its observable characteristics in response to a change in the environment it is 

referred to as ‘phenotypic plasticity’ and it is this type of polymorphism that holds the most potential for 

developing morphological proxies. 

Several studies show that environmental conditions exert control over various aspects of valve 

morphology. In one of the early culture studies, Paasche et al. (1975) show that changing salinity causes 

variation in osmotic pressure that affects the length of siliceous processes in Skeletonema subsalsum (A. 

Cleve) Bethge. Similarly, Cattaneo et al. (2004) note a strong statistical relationship between valve length 

and metal contamination in diatoms from Lac Dufault (Québec, Canada). More recently, Balzano et al. 

(2011) investigated the impact of variable salinity across ten strains of Skeletonema and found evidence of 

morphological responses and diverse tolerances, even within species. These studies are usually concerned 

with monitoring water quality and understanding the potential legacy of pollution, so rarely include 

Antarctic diatom species.  

 

Eucampia antarctica 
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E. antarctica exhibits heteromorphy related to both cell position within the colony and environmental 

responses (Fryxell & Prasad, 1990). Fryxell (1991) summarises observations of E. antarctica prior to 1991 

and describes the two morphological variants of E. antarctica (var antarctica and var recta) in the context of 

their distribution in the waters and sediments of the Kerguelen Plateau and Prydz Bay. E. antarctica var. 

recta has symmetrical valves that create straight chains, short colonies (Fig. 1a), and is considered the ‘true 

polar’ variety associated with extremely cold, ice-covered waters and areas close to the continent. E. 

antarctica var. antarctica is characterised by asymmetric valve shapes that produce spiralling chains (Fig. 

1a) that tend to have many more cells than the colonies of the ‘recta’ variety. E. antarctica var antarctica is 

found in association with warmer waters of the Polar Front Zone (PFZ) and Subantarctic Zone (SAZ). In 

both varieties the terminal valves are distinguished by pointed ‘horns’ in contrast to the flattened horns 

found on the intercalary valves (Fig. 1a). The ratios of terminal and intercalary valves of the summer and 

winter forms are used to estimate colony length and rates of cell division and are found to be consistent with 

the environmental associations inferred from the cell symmetry (Fryxell, 1991; Kaczmarska et al., 1993). 

Fryxell (1991) also calculates valve volumes for the two samples and notes that together, the valve widths 

and volumes form a continuum rather than two independent populations, with valves from Prydz Bay 

expanded in the upper size range. Fryxell (1991) suggests that the larger cell size of the polar variety is 

another distinctive feature of the E. antarctica var recta morphotype. Although the ratio of E. antarctica’s 

valve symmetry and colony structure is now used in palaeoceanographic studies as a proxy for relative sea 

surface temperature (SST) (Leventer et al., 2002; Milliken et al., 2009), the ecological significance of 

E. antarctica’s relative abundance remains ambiguous. The down core pattern of E. antarctica relative 

abundance is notably consistent throughout the Southern Ocean and Burckle (1984) shows how it provides a 

useful chronostratigraphic marker for glacial-interglacial time frames in Southern Ocean sediments where 

dating is often problematic. The temporal and spatial distribution of peak E. antarctica relative abundances 

led Burckle (1984) to propose that high abundances are associated with coastal conditions and melting 

icebergs, whilst Kaczmarska et al. (1993) and Whitehead et al. (2005) advocate a link with winter sea-ice 

extent. Burkle’s (1984) assertion of a ‘pseudoneritic’ habitat for E. antarctica is gaining credence as authors 

recognize the potential links with nutrient (more specifically iron) availability and melt-water induced 
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buoyancy (Mohan et al., 2006; Armand et al., 2008; Salter et al., 2012). Although I will briefly discuss the 

ecological implications of E .antarctica’s pattern of relative abundance, I will focus primarily on assessing 

the morphological proxies. 

In addition to the valve symmetry and colonial position of E. antarctica valves, the heights and 

widths of E. antarctica valves will be measured to assess whether or not the two morphological varieties 

exhibit distinct aspect ratios, as originally suggested by Fryxell (1991). Examining the data geographically I 

will assess if there is a trend in the distribution of distinctively shaped valves and whether their distribution 

matches the trends of symmetry and colony structure already identified by previous authors or offers an 

independent facet of morphological diversity in E. antarctica valves. 

 

MATERIALS AND METHODS 

Box (BC), Trigger (TPC) and Gravity (GC) cores collected aboard the British Antarctic Survey vessel RRS 

James Clark Ross during research cruises to the Scotia Sea and AP between 1990 and 2008 were selected to 

represent a wide range of ocean and climate conditions in order to capture the greatest variability in 

morphological response. The ten core sites chosen for the study (GC 62, TPC 464, TPC 288, GC 37, 

TPC 460, GC 53, BC 519, BC 508, BC 497 and BC 483) span from north of the PFZ to the continental coast 

and cover a broad spectrum of temperature, light and sea-ice regimes (Fig. 2, Table 1). 

Site GC 62 is in the SAZ at the western end of the Falkland Trough in waters 3000 m deep and is 

located north of both the maximum extent of sea-ice and the PFZ. TPC 464 is also situated north of the 

maximum sea-ice limit but lies within the present day PFZ. The majority of the cores (TPC 288, GC 37, 

TPC 460, GC 53, BC 519; BC 508 and BC 497) are all south of the PFZ with varying exposure to seasonal 

sea-ice and covering a depth range from 495 m to 4229 m. BC 483 lies farthest to the south and closest to 

continental Antarctica (Fig. 2, Table 1). Sediments from the sites comprise diatom-bearing muds and 

diatomaceous muds, with varying contributions of foraminifera, radiolarians and sponge spicules. 

Terrigenous content is highest close to the continent at sites BC 483 and BC 519 and lowest at sites in the 

central Scotia Sea and NE Georgia Rise - TPC 288 and TPC 464. 
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Surface sediment samples from each of the cores were analysed for diatom assemblages and 

Eucampia antarctica morphometric data. Sediments were dried thoroughly in a warm oven at ~30 °C; then 

5-200 mg of bulk sediment was sub-sampled into 30 ml vials; these samples were cleaned and disaggregated 

using Hydrogen peroxide (30 %), dilute Hydrochloric acid and Calgon solution for a minimum of 12 hours 

in a water bath at ~50 °C. Quantitative slides were prepared following the method of Scherer (1994) and 

mounted using Norland Optical Adhesive (refractive index = 1.56). Assemblage and morphological counts 

were measured at x1000 magnification on an Olympus BH2 Light Microscope with x10 magnification eye 

pieces and an Olympus S Plan x100 oil immersion lens. Diatom concentrations (valves per gram of dry 

sediment) were calculated using the following equation after Scherer (1994): 

 

where: N = number of valves counted; B = area of beaker; (mm2); A = area of transect (mm2); F = number of 

transects counted; M = mass of dried sample (g) 

Assemblage counts (n=≥300) were used to determine the relative abundance of E. antarctica in each 

sample. A minimum of 100 specimens of E. antarctica in each sample were categorised (intercalary or 

terminal) and the height of both 'horns' (sides) and the basal width measured on each valve for 

morphological analyses. Morphometric measurements were only carried out on complete winter stage valves 

of E. antarctica in broad girdle view to avoid any bias from different morphological responses between 

vegetative and winter form cells. As some discrepancy in measuring the diatom frustules in 2D is possible, 

all valves exhibiting a height difference between the two 'horns' (sides) of ≤2 m were classed as 

symmetrical and only once a height difference of >2 m was exceeded were valves considered 

asymmetrical. These criteria hopefully ensure that symmetric valves lying askew were not miscounted as 

asymmetric. It is unlikely that valves with <2 m height difference are capable of producing the tightly 

spiralling colonies that characterise E. antarctica var antarctica and may represent an intermediate, 

transitional form. Even so, the number of 'asymmetric valves' in each sample is likely to be under-

represented and reflects the minimum contribution of asymmetric valves to a sample.  
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In order to assess the changes in aspect ratio between the samples, the broad girdle (basal) width and 

valve volumes were used to explore the statistical significance of the aspect ratio variability. The valve 

volume (V) was calculated using the following equation: 

V=abh 

where a = half of narrow girdle width, b = half of broad girdle width and h = averaged valve height.  

Fryxell (1991) shows that the narrow girdle width is typically between 16 and 20 m irrespective of the 

broad girdle width. As such, it is unlikely that this parameter has much influence on the changes in valve 

volume. As it is not possible to measure the narrow girdle width (a) with valves oriented in broad girdle 

view, I have assumed a set value of 18 m as the narrow girdle width for all valves based on the 

measurements made by Fryxell (1991). 

 

RESULTS 

Bulk diatom concentrations and assemblage composition 

Diatom absolute abundance in the surface sediments of the Scotia Sea and AP range from <10 x106 valves 

per gram of dry sediment (v/gds) to >300 x106 v/gds (Fig. 3a; Table 2). Highest diatom concentrations of 

327 x106 v/gds and 298 x106 v/gds are found in the surface samples from TPC 460 & TPC 288, sites that lie 

within the seasonal sea-ice zone of the southern Scotia Sea and away from the continent. The next highest 

concentration of 222.2 x106 v/gds occurs at site TPC 464, another site away from continental influences but 

north of the normal Scotia Sea seasonal sea-ice extent. Lowest diatom concentrations of 9.5 x106 v/gds and 

7.9 x106 v/gds are found at sites GC 62 and BC 483 respectively. These sites are at opposite ends of the 

latitudinal range of this study and exposed to very different oceanographic conditions: GC 62 is from the 

southeastern flank of the Falkland Plateau in the SAZ whilst BC 483 is from Pine Island Bay, ~ 230 km 

offshore from Pine Island Glacier. BC 508 from the deep Bellingshausen Sea also contains relatively low 

diatom concentrations of 11.4 x106 v/gds. Of the remaining sites, diatom concentrations at GC 37, GC 53 

and BC 497 average 83.2 (±3.7) x106 v/gds and concentrations reach 108.5 x106 v/gds at site BC 519 in 

Marguerite Bay, west AP. 
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Diatom assemblage composition of the surface sediment samples are comprised of one or two 

dominant species or species groups and other minor taxa (Table 2). Chaetoceros resting spore is the most 

common dominant group present at all except the Amundsen Sea site (BC 497), with relative abundances 

ranging from 17.8 % to 87.0 %. Fragilariopsis kerguelensis (O’Meara) Hustedt has relative abundances 

>10% at six of the study sites whilst E. antarctica, F. curta (Van Heurck) Hustedt, Rhizosolenia antennata 

(Ehrenberg) Brown and Thalassiosira lentiginosa (Janisch) G. Fryxell all exhibit relative abundances >10% 

at one or more of the study sites. 

 

Relative abundance of Eucampia antarctica 

E. antarctica is not the most dominant species in any of the surface sediments of the Scotia Sea and AP, 

comprising between <0.3 % to 14.1 % of the total assemblage (Fig. 3b; Table 2). Although at first glance it 

appears that the pattern of E. antarctica relative abundances in the AP and Scotia Sea exhibit a north-south 

trend, low percentages of E. antarctica at sites BC 497 and TPC 460 and the third highest relative abundance 

at site GC 62 are inconsistent with a north to south gradient of increasing relative abundance. The low 

correlation co-efficient (r2 = 0.25; Table 4) reveals the disparity between E. antarctica relative abundances 

and latitude. Greater relative abundances of E. antarctica are however weakly correlated with decreasing 

valve concentrations (r2 = 0.58) (cf. Figs 3a, 3b; Table 4). Highest relative abundances occur at sites 

TPC 483, BC 508 and GC 62 where sediments contain only 11.3 x106 v/gds or less and E. antarctica 

comprises 14.1 %, 8.9 % and 3.6 % of the assemblage respectively (Figs 3a, 3b). In contrast, lowest 

E. antarctica relative abundances of <0.3 % of the total diatom assemblage (being absent from the 

assemblage count of 300 valves) occur at site TPC 460 where diatom concentrations exceed 300 x106 v/gds. 

 

Morphology: symmetry and valve type 

The relative contributions of symmetric and asymmetric valves to the E. antarctica assemblages are stated in 

Table 3 and plotted in Fig. 3c. Highest numbers of the asymmetric E. antarctica var antarctica are found in 

the surface sediments from the Falkland Plateau and Northeast Georgia Rise (GC 62 and TPC 464) and the 

symmetrical E. antarctica var recta shows greatest dominance in samples of the northern Weddell Sea and 
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southern AP (GC 37, TPC 460 and BC 483) (Fig. 3c). Asymmetric valves comprise 42 and 44 % of the 

E. antarctica assemblage in samples GC 62 and TPC 464 respectively but only 16, 18 & 20 % in samples 

GC 37, TPC 460 and BC 483. Intermediate values between 20 and 40 % asymmetric valves occur in west 

AP and central Scotia Sea surface sediments at sites BC 497, BC 508, BC 519 and TPC 288. The highest 

proportion of symmetrical valves (84 %) occurs in sample BC 483 in the southern Amundsen Sea. 

Agglomerative hierarchical clustering (AHC) on these valve symmetry data reveal four groups of 

statistically similar samples (Fig. 4a).  

The relative numbers of intercalary and terminal valves (Table 3; Fig. 3d) yield useful information 

about the chain structures of the E. antarctica colonies. Although intercalary valves outnumber the terminal 

valves in every sample, the greater the number of pointed or ‘horned’ terminal valves, the more prevalent the 

shorter colonies of the polar E. antarctica var recta are. In sample TPC 483, 30 % of the specimens are 

terminal valves whilst in TPC 464 and GC 62 the samples have only 1 and 2 terminal valves respectively so 

are made up almost entirely of intercalary valves. AHC on these terminal versus intercalary valve form data 

reveal three significant groups of cores with the third group being split into two further (insignificant) sub-

groups (Fig. 4b). 

There is a good correlation between the ratios of valve symmetry and valve type (r2 = 0.706) (cf. Figs 

3c, 3d) and the groupings revealed by the AHC on the two datasets are broadly consistent also (Figs 4a, 4b).  

 

Morphology: aspect ratio 

The aspect ratio (width and average side height) of the 100 specimens measured in each sample are plotted 

as scattergrams (Fig. 5) to illustrate the morphological diversity within each sample. Cumulative frequency 

plots of the valve volumes are also included to illustrate the valve size distribution of each sample (Fig. 6). 

All axes and plots are drawn at the same scale for ease of comparison. 

There are clear differences in the valve shapes and in the range of sizes within a sample (Figs 5, 6). 

Sample GC 62 exhibits the least variety in valve shape, with all valves measuring shorter than 30 μm, 

narrower than 60 μm and having volumes of less than 15 x103 m3 (Fig. 6). In contrast, BC 519 displays the 

greatest variety of shapes and sizes, with valve heights and widths ranging from 17 to 108 μm, and 17 to 
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116 μm respectively and with the highest valve volumes spanning from 5.91 x103 m3 to 118.95 x103 m3 

(Fig. 6). 

Across the Scotia Sea there is a north-south trend of increasingly diverse valve shapes from GC 62 to 

TPC 460. A similar trend is evident along the southwest AP from BC 497, where valve shapes exhibit 

minimal diversity, to BC 519 where the wide range of valve shape and size is on a par with TPC 460 (Fig. 5, 

Table 1). All the remaining samples contain assemblages that evince intermediate size and shape variability.  

AHC analysis on the basal widths (Fig. 4c) and valve volume (Fig. 4d) sorts the samples into two 

identical clusters comprised of TPC 460, BC 483 & BC 519 in one and the other 7 samples (GC 62, 

TPC 464, TPC 288, GC 37, GC 53, BC 508 & BC 497) in the second. In the AHC of basal widths the 

second cluster can be further subdivided into two groups: the first containing GC 62, TPC 497 & TPC 464 

and the second containing TPC 288, GC 37, GC 53 & BC 508 (Fig. 4c). The AHC of valve volumes exhibits 

greater divergence between BC 483, TPC 460 and BC 519 (Fig. 4d). 

An interesting feature of the basal width data from E. antarctica specimens, is a disparity between 

site BC 483 and all other sites. Of the 100 E. antarctica valves measured in BC 483 no basal widths are less 

than 30 m, whilst minimum basal widths measure between 10 and 17 m at all the other sites presented 

here (Fig. 5). 

 

DISCUSSION 

Bulk diatom concentrations and assemblage composition 

Diatom absolute abundances (concentration) in marine sediments are a function of production, preservation, 

dilution and lateral transportation. In surface sediments of the Scotia Sea and AP diatom concentrations are 

broadly consistent with the oceanographic setting at each of the sites. Low diatom concentrations at site 

GC 62 are probably due to its location north of the PFZ, beyond the Southern Ocean’s ‘opal belt’ where 

exposure to silica-depleted waters inhibits diatom production and preservation. The position of site BC 483 

in the southern Amundsen Sea results in low concentrations of diatoms in the sediment due to the short light-

limited growth season at 74° south, episodic years of permanent ice cover as well as greater dilution from 

high inputs of glacial flour and ice-rafted debris.  
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Highest concentrations of diatom valves in the sediments of TPC 460 and TPC 288 reflect their 

position within the seasonal sea-ice zone and close to the Southern Boundary of the Antarctic Circumpolar 

Current (Fig. 2). High export production derives from sea-ice melt-induced spring blooms and long summer 

- autumn growth seasons supported by nutrient-rich upper circumpolar deep water (CDW) along the 

Southern Boundary (Tynan, 1998). These sites are too shallow to be exposed to the influence of Si-reduced 

bottom water and are located in bathymetrically sheltered positions protected from strong currents, allowing 

accumulating sediments to be preferentially preserved. 

In contrast, GC 37 has much lower absolute valve abundance in the surface sediments, readily 

explained once the regional oceanographic setting is considered. Here sea-ice is more persistent owing to the 

northern limb of the Weddell Gyre transporting cold waters and sea-ice into the area from the NW Weddell 

Sea (Figs 2b, 2c), and the absence of CDW which fails to penetrate through the south Scotia Ridge. Site 

GC 37 is also deep enough to experience Si depleted bottom waters exiting the Weddell Sea and may be 

exposed to winnowing currents (Carmack, 1973; Naveira Garabato et al., 2002).  

 

Relative Abundance of Eucampia antarctica  

The weak inverse correlation between Eucampia antarctica relative abundance and diatom concentration 

may provide valuable clues to the ecology of E. antarctica. The highest relative abundance of 14.1 % occurs 

in the surface sediments of BC 483 and suggests either that the oceanic setting is favourable for high 

production of E. antarctica or that production of other species is very poor at this southern site. The 

oceanographic conditions in the high latitude Amundsen Sea are dominated by sea-ice, icebergs and 

nearshore polynyas and are consistent with the initial concepts of E. antarctica’s ecological associations 

(Burckle, 1984; Kaczmarska et al., 1993; Whitehead et al., 2005). Although the southern Amundsen Sea 

may support high production of E. antarctica, the low diatom concentrations at site BC 483 are evidence of 

low diatom production, poor preservation and/or dilution with other (glacial) sediment sources, such that 

taphonomic conditions may explain the higher relative abundance of heavily silicified E. antarctica valves at 

the site. Similarly, the 3.6 % E. antarctica present in the assemblage of GC 62 may also be a result of 

taphonomic alteration in the reduced silica waters of the SAZ rather than a reflection of better growth 



12 

 

conditions in the surface waters. It is difficult to reconcile the pattern of relative abundances without a better 

understanding of the flux of valves from the surface or the ecological preferences of E. antarctica. 

 

Morphology: colony structure (symmetry and valve type) 

The distribution of symmetrical and terminal valves versus asymmetric and intercalary valves in surface 

sediments of the SW Atlantic and AP (Figs 3c, 3d) follow a broad north-south trend that corresponds well 

with water temperature in the region (Fig. 2b). GC 62 and TPC 464 are both located within the SAZ and 

PFZ beyond the influence of seasonal sea-ice (Figure 2c) and where summer SST’s are typically between 3 

and 7 °C (Fig. 2b). Consistent with the relatively warm SST at these sites, they contain the highest 

percentage of the asymmetric valve forms and least number of terminal valves, reaffirming the association 

of long, spiralling chains of E. antarctica var. antarctica with the warmer conditions of the PFZ and SAZ as 

originally proposed by Fryxell (1991) and supported by Kaczmarska et al. (1993) and Scherer et al. (2008). 

In contrast, BC 483 and TPC 460 contain the highest ratio of symmetrical and terminal valves within these 

morphometric data, reflecting the cold summer SST’s of <0.5 °C that characterise the Amundsen Sea 

embayment and the northwest Weddell Sea (Figures 2b).  

TPC 288’s valve morphological variety is consistent with its location within the seasonal sea-ice 

zone (Fig. 2c) but north of the South Boundary where circumpolar waters (>1.0 °C) of the Antarctic 

Circumpolar Current are prevalent (Fig. 2b) and probably represents a mix of the var. recta and var. 

antarctica valves or a transitional form.  

BC 519’s morphological assemblage differs from the other sites on the AP, having fewer symmetrical 

and terminal valves and suggesting a warmer environment than would be expected for its location on the AP 

inner shelf pattern. The pattern is consistent in both symmetry and colony length and may be explained by 

the modern intermittent upwelling of CDW along the Marguerite Bay Trough and/or thermal stratification 

that would yield localised ocean warming. 

The AHC analyses of valve symmetry and valve form yield very similar sample groupings in each to 

the two sets of data (Figs 4a, 4b) adding weight to the premise that both valve symmetry and valve shape 

respond to the same forcing conditions. The distribution pattern of short, straight-sided colonies inhabiting 
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colder, continental sites and the longer, spiralling colonies in the relatively warmer, permanently open 

Antarctic and sub-Antarctic waters is consistent throughout the Scotia Sea and AP and adds further 

legitimacy to this morphological change being a reliable proxy for relative temperatures. Linear regression 

between average summer SST and the ratios of symmetry and valve type delivers r2 values of 0.696 and 

0.467 respectively (Table 4), showing that the ratio of symmetrical to asymmetrical valves is a more 

accurate proxy for temperature than colony length. The strength of this relationship may be improved if it 

were possible to distinguish asymmetric valves accurately, irrespective of their orientation on the slide. The 

regression analysis also suggests that with additional data points there is scope to develop a quantitative 

proxy based on the ratio of valve symmetry. A quantitative proxy for SST’s down to -1.5 °C would be a 

valuable tool as most existing temperature proxies are either poorly calibrated for the Antarctic region or 

unable to resolve changes at low temperature.  

 

Morphology: aspect ratio 

The range of valve aspect ratios in the E. antarctica samples from the Scotia Sea and AP do not match the 

distribution pattern of valve symmetry. In particular, the 3 sites on the WAP outer-shelf - BC 497, BC 508 

and GC 53 - exhibit a west-east trend of increasing diversity in E. antarctica’s aspect ratio (Fig. 5) whilst the 

ratio of symmetrical to asymmetrical valves are broadly consistent across all three sites (Fig. 3c). These 

inconsistencies in size and shape distribution suggest that temperature is not the principal factor driving 

changes in aspect ratio. The AHC results yield groupings for basal widths and valve volume which are 

noticeably different from those for valve symmetry and valve type (cf. Figs 4a, 4d) and add weight to the 

suggestion that an alternative forcing mechanism (not temperature) lies behind the variety and distribution of 

valve shape evident in these aspect ratio data. 

Linear regression analyses between mean basal width and mean valve volume against temperature 

and sea-ice cover yield fairly low r2 values of 0.207, 0.364 and 0.218, 0.277 (Table 4) and provide further 

evidence that the aspect ratios are not sensitive to either temperature or sea-ice cover.  

Although I show that temperature and sea-ice cover do not provide a straight-forward explanation for 

the distribution of valve shapes found in the Scotia Sea and AP surface sediments, there are many other 
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environmental parameters and biological responses that could account for changes in aspect ratio. 

Comparing the locations of the AHC-defined group of samples with the least varied aspect ratios (GC 62, 

BC 497 & TPC 464; Figs 4c, 4d) it is immediately apparent that these sites are located in open ocean sites, 

far from continental influences (Fig. 2). Oceanographically this translates as distance away from inputs of 

terrigenous material, greater water column mixing, potentially less exposure to grazing pressures with 

distance north of the Southern Boundary (Tynan, 1998) and reduced iceberg concentration. These 

oceanographic conditions yield low nutrient inputs from terrestrial sources (iron?), increase mixed layer 

depth and may flush cells beyond their irradiance limit. Alternatively, the AHC-defined group of three 

samples containing the most diverse valve shapes (BC 483, BC 460 & BC 519; Figs 4c, 4d) are all within 

the seasonal sea-ice zone and much closer to the Antarctic continent (Fig. 2). These locations are likely to be 

characterised by high fluxes of glacial debris and icebergs, short growth seasons associated with stratified 

waters induced from sea-ice or glacier melt and episodic high productivity events associated with polynya or 

open water formation driven by katabatic offshore winds.  

From the descriptions of the broad oceanographic settings of the two groups (high and low diversity 

in aspect ratio) it is apparent that there are several environmental gradients that may potentially account for 

the observed variability in E. antarctica aspect ratio: input of terrigenous material; melt water flux; 

stratification and light intensity/availability. However, without better quantification of these parameters it is 

impossible to ascertain which, if any, of these environmental features may determine E. antarctica aspect 

ratio.  

 

CONCLUSIONS 

This paper expands on previously published data on Eucampia antarctica polymorphism and presents 

morphometric data covering the full range of cell structures and aspect ratio found in the surface sediments 

of the Scotia Sea and Antarctic Peninsula. Comparison of cell symmetry and colony length as proxies for 

temperature has shown that the ratio of cell symmetry is a more reliable temperature proxy than the ratio of 

terminal to intercalary valves. Augmenting the data presented here to include more samples from within the 

-1.5 °C to 8 °C temperature range would be useful in determining whether the match between valve 
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symmetry and sea surface temperature is consistent enough to establish a new quantitative austral summer 

SST proxy for Antarctic waters. 

As well as providing a more thorough grounding for existing proxies, the paper has also examined 

the aspect ratio as a new facet of E. antarctica polymorphism. Although the data show that the aspect ratio 

of the E. antarctica populations does not correlate with either temperature or sea-ice this may be considered 

a positive result for proxy development. Comparison with other environmental data may reveal the factor 

controlling morphological divergence in E. antarctica’s aspect ratio and offer the potential for a novel proxy.  
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 TABLES 

Table 1. List of core samples with associated geographic and environmental data referred to in the text.  

Table 2. Diatom assemblage composition including total concentrations and relative contributions (%) by 

major species. EUA - Eucampia antarctica; CRS - Chaetoceros resting spores; FKG - Fragilariopsis 

kerguelensis; FCU - Fragilariopsis curta; FCY - Fragilariopsis cylindrus; FOB - Fragilariopsis 

obliquecostata; RHIA - Rhizosolenia antennata; TLENT - Thalassiosira lentiginosa and TANT - 

Thalassiosira antarctica.  

Table 3. Summary of morphometric data referred to in the text. SYM - symmetrical valves; ASYM - 

asymmetrical valves; TERM - terminal valves and INT - intercalary valves. 

Table 4. Correlation coefficient (R2) values between environmental parameters and Eucampia antarctica 

valve characteristics. *logarithmic regression (all others are linear). 
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FIGURES 
 
Fig. 1. Morphological structure and measurements. a) Schematic drawing of colony structures of Eucampia 

antarctica indicating position of terminal and intercalary valves. The straight colonial form with 

symmetrical valves (left) is E. antarctica var. recta and the curved form comprised of asymmetric valves 

(right) is E. antarctica var. antarctica (after Whitehead et al., 2005). b) Illustration of valve measurements 

taken from light microscope images from different shaped Eucampia antarctica valves. 

Fig. 2. Location maps: a) Map of sample sites for Eucampia antarctica morphometric study; b) Average 

summer sea surface temperatures (SST) for the Antarctic Peninsula region compiled from MODIS SST data. 

The seasonal climatology comprises daily averaged data for the months of mid-December to mid-March for 

the years 2002 to 2012 (Feldman & McClain, 2012); c) Mean sea-ice duration data (days per year) are 

calculated from daily remote sensed readings that have been averaged into monthly mean values and then 

into a single grid for the period 1979-2007. 

Fig. 3. Maps illustrating (a) diatom concentrations (b) relative abundance of Eucampia antarctica in surface 

sediment samples from the Scotia Sea and Antarctic Peninsula; and the relative contributions of (c) 

asymmetric/symmetrical and (d) terminal/ intercalary valves to the Eucampia antarctica population in each 

sample.  

Fig. 4. Dendrograms presenting results of the agglomerative hierarchical clustering analysis on (a) the ratio 

of symmetrical versus asymmetrical Eucampia antarctica valves; (b) the ratio of terminal versus intercalary 

Eucampia antarctica valves; (c) the basal widths of Eucampia antarctica valves; and (d) the calculated 

volumes of Eucampia antarctica valves in surface sediment samples of the Scotia Sea and Antarctic 

Peninsula. 

Fig. 5. Scattergrams of the valve width and averaged height (aspect ratio) for each sample of Eucampia 

antarctica. 

Fig. 6. Cumulative plots of valve volumes for each sample of Eucampia antarctica.  
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Table	1:	
 

CORE  LATITUDE  LONGITUDE 
WATER 

DEPTH (m) 
CORE 

LENGTH (m) 
SUMMER 
SST (oC) 

SEA‐ICE COVER 
(days per year) 

GC 62  ‐52.925  ‐53.6833  3000  3.4  8.0  0 

TPC 464  ‐53.0452  ‐34.0048  3028  9.27  3.5  0 

TPC 288  ‐59.142  ‐37.96467  2864  1.16  1.5  100‐120 

GC 37  ‐61.105  ‐39.1783  4025  4.07  ‐0.5  200‐220 

TPC 460  ‐60.80914  ‐51.03374  2592  0.68  0.0  120‐140 

GC 53  ‐64.1367  ‐65.775  495  0.4  1.5  80‐100 

BC 519  ‐68.2375  ‐70.2035  697  0.135  0.5  280‐300 

BC 508  ‐68.3105  ‐86.0322  3560  0.295  0.0  200‐220 

BC 497  ‐69.2302  ‐108.3492  4229  0.385  0.0  220‐240 

BC 483  ‐73.9915  ‐107.3842  528  0.55  ‐1.5  340‐360 

 
Table	2:	
 

CORE 
DIATOM CONC. 
(x106v/gds) 

EUA  CRS  FKG  FCU  FCY  FOB  RHIA  TLENT  TANT  OTHER 

GC 62  9.4875  3.6  26.5  27.7 0.8 0.0 0.0 0.7 8.6  1.7  33.5 

TPC 464  222.21  1.8  27.0  28.2 1.4 0.8 0.0 3.7 6.7  5.8  28.9 

TPC 288  298.08  2.9  25.1  24.8 5.1 1.0 0.0 4.8 11.4  0.6  27.8 

GC 37  81.969  1.6  46.8  11.9 2.0 3.1 0.5 10.4 3.1  1.3  23.9 

TPC 460  327.85  <0.3  87.0  1.1 4.1 0.8 0.3 1.0 0.7  0.7  9.1 

GC 53  80.648  2.0  53.1  7.2 4.2 0.0 0.0 1.3 4.2  5.9  26.1 

BC 519  108.46  1.2  71.3  0.6 6.1 0.2 0.0 0.9 0.6  7.4  16.0 

BC 508  11.361  8.9  17.8  36.1 2.5 0.0 0.0 0.0 2.5  1.0  37.1 

BC 497  86.904  0.3  4.0  60.3 5.9 0.0 0.3 0.3 3.6  0.0  26.2 

BC 483  7.9544  14.1  33.6  0.3 23.5 2.0 2.0 0.0 0.7  7.6  20.2 

 
Table	3:	
 

CORE  SYM   ASYM  TERM  INT 
SYM 
RATIO 

COLONY 
RATIO 

MEAN BASAL 

WIDTH (m) 

MEAN VALVE 
VOLUME  

(x103 m3) 

GC 62  58  42  2  98  0.72  0.02  30.7  7.49 

TPC 464  56  44  1  99  0.79  0.01  31.3  10.66 

TPC 288  66  34  10  90  0.52  0.11  37.9  11.05 

GC 37  80  20  17  82  0.25  0.21  36.2  11.42 

TPC 460  82  18  30  70  0.22  0.43  45.8  25.84 

GC 53  74  26  22  78  0.35  0.28  38.2  12.06 

BC 519  67  33  18  82  0.49  0.22  56.5  28.52 

BC 508  77  23  15  85  0.30  0.18  35.1  11.07 

BC 497  73  27  11  89  0.37  0.12  26.8  10.96 

BC 483  84  16  30  70  0.19  0.43  52.4  19.93 
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Table	4:	
 

 
DIATOM CONC 

(x106v/gds) 
LATITUDE 

TEMPERATURE 
(SST) 

SEA‐ICE COVER 

DIATOM CONC 
(x106v/gds) 

‐  0.173  0.004  0.123 

EUA %  *0.581  0.253 0.059 0.214 
SYM RATIO  0.016  0.532 0.696 0.500 

COLONY RATIO  0.003  0.371 0.467 0.347 
MEAN BASAL WIDTH 

(m) 
0.004  0.239  0.207  0.364 

MEAN VALVE VOLUME  

(x103 m3) 
0.071  0.176  0.218  0.277 

*Logarithmic regression (all others are linear). 
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Figure 1. 

 



22 

 

Figure 2. 
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Figure 3. 
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Figure 4. 
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Figure 5. 
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Figure 6. 

 


