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13 Abstract

14  The Minna area of western Nigeria lies within a Pan-Afriorogenic belt that

15 extends along the margin of the West African Craton, froged southwards
16 through Nigeria, Benin and Ghana, and into the Borborema ProvirRmzf. This
17 Dbeltis characterised by voluminous post-collisional granitbns that are well
18 exposed around the city of Minna. In this paper we present riemsniation about

19 their age and petrogenesis.

20 The Pan-African plutons around Minna can be divided into two maimpgr a group
21 of largely peraluminous biotite-muscovite granites that showingugvels of

22 deformation in late Pan-African shear zones; and a younger gfaafatively

23 undeformed, predominantly metaluminous hornblende granitoids. Pegmatites,
24  including both barren and rare-metal types, occur at thginsaof some of the

25 plutons.

26 New U-Pb zircon dating presented here, in combination with puldlidat, indicates
27 an early phase of magmatism at c. 790-760 Ma in the Mirgza @his magmatism
28 could be related either to continental rifting, or to subduaimund the margins of

29 an existing continent. The peraluminous biotite-muscovite g=mmiere intruded at
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€. 650-600 Ma during regional shearing in the orogenic belt, adtkeleto have
formed largely by crustal melting. Subsequent emplacemengi@uminous
granitoids at c. 590 Ma indicates the onset of post-orogenic edtaénghis area,

with a contribution from mantle-derived magmas. The raredmpetamatites represent
the youngest intrusions in this area and thus are likely to loaveedl in a separate
magmatic episode, post-dating granite intrusion.
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1. Introduction

A network of Pan-African orogenic belts, formed during the Neepoabic to
Cambrian amalgamation of Gondwana, extends across the Aéocéinent and into
the Brasiliano orogen of South Ameri@lack and Liégeois, 1993; Castaing et al.,
1994; de Wit et al., 2008; Jacobs and Thomas, 2004; Stern, 1994¢. fdits are
typically composed of Archaean and Proterozoic rocks that werarked by
Neoproterozoic to Cambrian orogenesis, together with a variaipemion of
juvenile material. Many of the belts are characteriseexbgnsive post-collisional
granitoid plutons (Black and Liégeois, 1993; Kister and Harms, 1988%e plutons
are typically potassic and their parental magmas are likdbe derived from mixed
mantle and crustal sources (Black and Liégeois, 1993; Bonin; Ri8tfer and
Harms, 1998; Liégeois et al., 1998). They thus represent mwdgiitions to the upper

crust during amalgamation of Gondwana.

Alkaline igneous plutons, including those in post-collisional sedtiage increasingly
of interest as potential sources of ‘critical metals’ usealrange of advanced
technologies. These critical metals include the Rare Edetinents (REE), niobium
and tantalum, which are commonly enriched in alkaline maghiesincrease in
demand for these metals makes a reappraisal of the camrolagmatism and the

potential for mineralisation worthwhile.

In West Africa, the Pan-African Dahomeyide orogenic behlasates the Archaean to
Mesoproterozoic West African and Congo cratons, and is exposadinea known
as the Benin-Nigeria Shield (Ajibade and Wright, 1989). Noatitls, this belt

continues into the Hoggar Massif of Algeria; southwards, poidttlantic opening, it
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was connected to the Borborema Province of north-east Brattilai4d et al., 2008;
Caby, 1989; Castaing et al., 1994; Dada, 2008; de Wit &04l8; Neves, 2003).

In Nigeria, the Dahomeyide orogenic belt has been dividedceagtern and western
terranes separated by a major north-south lineament tha¢basdrognised from
remote sensing, but not studied in detail (Ajibade et al., 1883anaba and Ajakaiye,
1987; Ferré et al., 1996; Fitches et al., 1985; Woakes &08lI7) (Figure 1). The
basement of the western terrane is dominated by Archaigamatitic gneisses, with
Proterozoic schist belts composed of low-metamorphic graddyhigformed,
metasedimentary and metavolcanic rocks (Ajibade €1@8.7; Arthaud et al., 2008;
Bruguier et al., 1994; Dada, 2008; Fitches et al., 1985). dstem terrane is
characterised by high-grade (high-temperature amphibolitatwlite-facies),
migmatitic metamorphic rocks that have Palaeoproterozoic prsdiitt were
migmatised during the Neoproterozoic (Ajibade et al., 198%gksdral., 1996; Ferré
et al., 2002). Proterozoic schist belts are not recognisthe iastern terrane. Both
terranes are cut by a number of NNE-SSW-trending ductile sbeas that are tens
to hundreds of kilometres in length, and can be correlatedswittar shear zones in

the Borborema Province in Brazil (Caby, 1989; Ferré et al., 2002)

Neoproterozoic magmatism at c. 780-770 Ma has been recordeldamo-
sedimentary sequences of the Borborema Province. This hagterereted as
related either to active subduction around continental mangjirte rifting (Arthaud
et al., 2008; Fetter et al., 2003). Magmatism of this agebleen recorded by
relatively imprecise Rb-Sr dating in western NigeRadhes et al., 1985).

The Nigerian basement is intruded by many Pan-African sypest-collisional
plutons, which are more voluminous in the eastern terrane thawett, and which
are known as the Older Granites. In eastern Nigeriastutes of Older Granite
plutonism have been recognised; an earlier (c. 640—-600 Ma$yigzaluminous
biotite-muscovite granites, and a later (c. 600-580 Ma) stittars-alkaline
hornblende-biotite granitoids (Ferré et al., 1998; Ferré €2@02). Emplacement of
the later group was typically controlled by regional NE-SW sheaes (Ferré et al.,
1995). The Older Granites of the western terrane weredssed to be I-type
granitoids by Fitches et al. (1985) but have not previously beernvadddinto suites.
Hornblende-biotite granites from the western terrane have lag¢ed dt c. 630-580

Ma, similar to those in eastern Nigeria (Key et2012; Tubosun et al., 1984).
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Within the eastern terrane, a suite of Mesozoic alkghlutons emplaced in an intra-
plate setting are known as the Younger Granites (Bowden, 1978pzbie plutons

have not been recognised in the western terrane.

Similar groups of Neoproterozoic granites have been recogmiskd Borborema
Province, where granitoid intrusions, including some S-type gsantere emplaced
prior to or during the early stages of collision at c. 630—610 Mes. Was followed by
emplacement of late-tectonic plutons, typically intruded intppnehear zones, at
590-570 Ma (Arthaud et al., 2008; Bueno et al., 2009; Fettdr, &2003; Neves et al.,
2008). Contemporaneous granitoid plutons are also found in the Paamielts to
the west and north of Nigeria. Westwards, in Ghana, TogbBanin, the overall
period of granitoid magmatism lasted from c. 660-550 Ma (Kalsbeal., 2012) and
alkaline plutons were emplaced at c. 590 Ma (Nude et al., 2069e north, in the
Hoggar Massif of Algeria, alkaline post-collisional magisra continued until ¢. 530
Ma (Caby, 2003)

The post-collisional granites in Nigeria are associatekl rgite metal (tin-tantalum)
granitic pegmatites, some of which have been artisamafigd (Adetunji and Ocan,
2010; Garba, 2003; Kinnaird, 1984; Kuster, 1990; Matheis and Cagimeife, 1983;
Melcher et al., 2013; Okunlola, 2005; Woakes et al., 1987). Thamatal pegmatites
occur in a distinct belt that extends SW-NE from Ife to dod,appears to cut across
the boundary between the eastern and western Nigerian tem#theagh the
individual pegmatite intrusions are oriented north-south (KinnaB84; Matheis and
Caen-Vachette, 1983; Woakes et al., 1987). Individual pegmeaditgsn length from
10 m to over 2 km, and can be up to 200 m wide (Adetunji and, Q640).
Pegmatites of this type are typically associated wetlaljpminous or S-type granites
(Cerny et al., 2012) and in western Nigeria the pegnsadite most commonly found
close to the margins of peraluminous granite plutons. Howevéangdatlicates that
the pegmatites were emplaced at 560-450 Ma (Matheis and Gabe{te, 1983;
Melcher et al., 2013), rather younger than the few previous ftateestern Nigeria
granites (Tubosun et al., 1984). The origin of these pegmatiteas uncertain,
although the peraluminous plutons with which they are assddiatee not previously
been targeted for dating. Similar pegmatites occur iBtiteorema Province, where

they are extensively mined for tantalum (Beurlen eRal08). As well as the tantalum
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potential, gold deposits are known in the Nigerian schist,dmltsheir formation

may pre-date the Pan-African orogeny (Dada, 2008).

Recent British Geological Survey (BGS) — Nigerian Geolddgicavey Agency
(NGSA) geochemical mapping in the western Nigeria terreg €t al., 2012;
Lapworth et al., 2012) has highlighted areas of enrichment in sotival metals,
such as the Rare Earth Elements (REE), niobium and tant@taomd the Older
Granite intrusions. This paper presents a more detailed stuldgse granitoids to
investigate their age relationships, petrogenesis and potemtaltical metal

enrichment.

2. Geology of the study area

The area chosen for this study extends north-west from Abujtedbeal capital of
Nigeria, and is centred on the city of Minna (Figure 2)sTarea lies within the
western Nigeria terrane, and is a lush and well-véggfaart of Nigeria, made up of
low rolling hills with rockier whalebacks forming on the Oldea@ites (Figure 3a).
The basement comprises Archaean migmatitic gneissesneitis of Proterozoic
schist and metavolcanic rocks (Ferré et al., 1996). The atititcrgneisses in the
study area are highly deformed, with the melanosome dominateidtiig and more
than one phase of pegmatitic, quartzofeldspathic leucosomendtagolcanic and
metasedimentary rocks have been metamorphosed at gret¢bhsemphibolite

facies.

The basement rocks are transected by a number of broadly northesbiNE-SSW
shear zones, the widest of which is defined by the outcropylohites along the
Zungeru River to the north-west of Minna (Figure 2). Thésagithin this several-
km wide Zungeru shear zone are intensely deformed, witloagststeeply dipping,
mylonitic foliation and a near-horizontal lineation (Fitchealet1985). They have a
range of protoliths, including amphibolite and quartzofeldspathksrdbe Older
Granites are also intensely deformed in this shear zoneréFafp). A second major
shear zone can be traced over a distance of around 100 knh&dowin of Kaduna
SSW through Sarkin Pawa. It is marked by a zone at leastaddundred metres

wide in which the Older Granites and the country rocks aeasely foliated.
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The Older Granites form between 30 and 40% of the outcropratiea western
Nigeria terrane (Fitches et al., 1985), and crop out extdpsivehe Minna area.
They range from batholiths up to tens of km across to mucHhesrbablies (Figure 2).
Previous work has indicated that syn-tectonic plutons are tiypatangate parallel to
the main regional NNE trend, whereas late-tectonic bodiesdeme rounded in
shape (Ferré et al., 1998). There has been little or no prelétaited study of the

plutons around Minna.

The Older Granites in the Minna area show a wide range gbasitions, from

diorite through monzonite and granodiorite to voluminous granite angyandte.
They are typically coarse-grained, and many examples cdatga (1 cm or more)
white or pink tabular feldspars. Xenoliths of country rock are comat pluton
margins. Later, cross-cutting sheets of aplitic and pegmgtdnite are also common.
Three granite samples from the plutons north of Minna have preyibesh dated

(by LA-ICPMS for U-Pb on zircons) at c. 606—-616 Ma. All threegkes were taken
close to the major Zungeru and Sarkin Pawa shear zones (Key2€12). A U-Pb
age of 635 Ma has also been reported for a syn-tectoni¢aicainom Sarkin Pawa
(Dada, 2008).

Some of the plutons are elongate in a NNE-SSW trend, ddmtlee major shear
zones, and appear to have been emplaced during movement on tlaoz®shs.
These plutons show a gradation in deformation state. Somehmagmatic fabric
defined by elongate tabular feldspars, but have not been-aftactadid state
deformation. This magmatic fabric can grade into a moddedgtemation fabric in
which biotite plates and ribbons of quartz are aligned and xesolvhere seen, are
foliation-parallel. The most deformed granitoids have a pemdabric in which a
gneissose banding has begun to develop, feldspars have beenedkénd elongated,
and all minerals define the tectonic foliation. Excellexamples of all these fabrics
can be seen in the Tegina Pluton north-west of Minna, wiasiwlithin the Zungeru
shear zone (Figure 2, 3b). This pluton consists of foliatetitdigranite and

granodiorite with some late pegmatite sheets.

Other plutons are not elongated parallel to the regional aeddheir margins cross-
cut the main fabric in their country rocks, although an intenkerdation fabric is
still developed where the granites are cut by localised goe@s. A particular

example of this is the major Minna Batholith centred orcttyeof Minna. It
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comprises coarse-grained biotite-muscovite granite thatgsljastructureless or has
a weak magmatic foliation, although numerous discrete, metecametre-scale
shear zones (typically with a NNE-SSW foliation) are predemtlaves of biotite-rich

country rock are common at the margins of the Minna Batholith.

Numerous smaller plutons of biotite-muscovite granite and granteare found in
the area around Sarkin Pawa north-east of Minna. Thesemraonly quite
complex, with outcrops showing several magmatic phases frontediorough
granodiorite to granite. In some areas these different phagesimarp but lobate
contacts indicating magma mingling, whereas in others theydradational contacts
suggesting localised magma mixing. Late veins and sheetgofatite, aplite and
leucogranite are abundant (Figure 3c). The granites and gratexiame locally

strongly foliated, particularly in the main Sarkin Pawa slaeae.

The Abuja Batholith forms a large mass that is not elongzdeallel to regional shear
zones. This batholith largely comprises pink, coarse-giaeml&ali feldspar-rich
hornblende-biotite granite with many enclaves and larger bodresief mafic
monzonitic to dioritic composition (Figure 3d). At some lodgdit the enclaves are
rounded and have clear reaction rims with the granite but derse of chilling,
indicating largely coeval magmatism. Biotite-muscovitgkgranites occur at the
margins of the batholith; these have not been studied in dritihay represent
partially melted country rock as suggested for similar plutoesstern Nigeria (Ferré
et al., 1998).

Mineralised pegmatites are associated with the Oldani@ plutons in Nigeria, and
existing Rb-Sr dates suggest that the pegmatites in célgeia were emplaced at c.
555 Ma (Matheis and Caen-Vachette, 1983). These pegmatitestieats, typically
up to 1-2 m wide, cutting both basement rocks and the RaraA granitoid plutons.
In some areas, much larger pegmatitic bodies up to 200 enhaik been recognised
(Adetunji and Ocan, 2003). The pegmatite suite can be diundecbarren’ and ‘rare
metal’ suites (Garba, 2003). The rare metal pegmatites cserquartz, K-feldspar,
plagioclase, muscovite, biotite, and tourmaline with varymguants of beryl,
lepidolite, spodumene, garnet, apatite and accessory mimeriaiding columbite —
tantalite, tapiolite, wodginite, microlite, ilmenite and d¢esge (Melcher et al., 2013;
Wright, 1970). Crystals can vary up to 5 cm in size. Tdeessory minerals are

worked for tantalum by artisanal miners. The barren pegsatamprise quartz, K-
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feldspar, plagioclase, muscovite and biotite, but lack thessory minerals that
concentrate rare metals. Both barren and rare metal peggraae found in the Minna

area, typically close to the biotite-muscovite granite plutons

3. Petrography of the granitoids

The Older Granites in the study area share a number ofqugtal features; they are
typically coarse-grained, and primary magmatic crystgbshare rare; textures range
from granoblastic and equigranular, to strongly foliated wittned mafic minerals
and quartz ribbons. However, each of the named batholiths stuthe area (Figure

2) is characterised by slightly different mineralogy and pedrl

The Minna Batholith is largely composed of coarse-grainemblgnanites, generally
with c. 10% mafic minerals. Large (up to 1 cm), subhedraéplaf heavily sericitised
microcline and plagioclase, zoned in some samples, ame @ehatrix of
recrystallized pools of quartz with smaller feldspasstais. The main mafic minerals
are biotite and muscovite, with primary epidote or zoisite amdej in a few samples.
Cross-cutting aplites and pegmatites have similar minerddaogyary in grain size.
Where these granitoids are sheared, a foliation is definatigned flakes of biotite
and muscovite, and ribbons of recrystallized quartz (Figure_dager epidote

crystals are undeformed, and wrapped by the foliation.

The Tegina Pluton shows significant variation in deformatiatesit is formed of
coarse-grained biotite granite, granodiorite and diorite, #0#30% mafic minerals.
Large subhedral feldspar (microcline and/or plagioclase) phates very ragged,
recrystallized rims, and quartz is also recrystallimegranoblastic textures, forming
distinct elongate ribbons in more sheared samples. Biotite mdhemafic mineral,
with hornblende and garnet also being present in the more maffiodjorite (Figure
4b). Biotite flakes are aligned and define the foliation irasb@ samples. One sample
contains euhedral, zoned allanite crystals up to 2 mm aassssiated with clusters

of biotite.

Plutons around Sarkin Pawa are largely made up of leucogvétiitaumerous shear
zones. Large plates of microcline (2-10 mm across) arenoonn a matrix of
recrystallized quartz with alkali feldspar and plagiselaMafic minerals are generally

less than 15% of the rock; biotite is the main mafineral and muscovite is also
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present in most samples. Hornblende, garnet, titanite, and allcmrcur in some
samples. Samples from shear zones have a foliation defingdrimyate micas and
pools of recrystallized quartz, typically wrapping around roundedsplait
microcline. Late leucogranite and pegmatitic granite skreetsommon in this area.
A leucogranite sheet cross-cutting foliated granitoids cloSatkin Pawa village
contains hornblende and euhedral, zoned allanites up to 0.5 mra @de&mqse 4c).
Rare-metal pegmatites occur close to the pluton margins aankth Pawa, cutting
both the granites and the country rocks; some have graniteiileralogy and
contain large tourmaline crystals, whereas other exammesoarposed almost
entirely of quartz and lithium mica. Tantalite is a notatmleessory mineral in these

pegmatites.

The Abuja Batholith is dominated by biotite-amphibole granitdidsnblende is the
predominant amphibole, but more sodic compositions are also preskispars in
these rocks, most typically microcline, can form large aefggup to 2 cm) and these
commonly have very irregular, recrystallized rims. Marafic monzonitic to
monzodioritic compositions, with up to 40% mafic minerals, weuwnd particularly
at a locality in the north of the batholith. Some sampla® fthis locality include
remnant orthopyroxene, which shows two stages of hydration andiatefastly to
cummingtonite and then to hornblende (Figure 4d). The orthopyroxene-bearing
compositions correspond to the hypersthene-quartz monzodiorites€atstbed as
charnockites) of eastern Nigeria (Ferré et al., 19983e8sory minerals found

throughout the Abuja Batholith include titanite, apatite, zirawh @paque oxides.

4. Analytical methods

4.1 Whole-rock geochemistry

The samples comprised 2—3 kg of carefully selected représentack chips.
Preparation and analysis of the samples was carried ddrbg Analytical
Laboratories Ltd, Vancouver. 1 kg of material was crushearbef 250 g split was
taken for analysis. Samples were analysed for 11 majoe®kg ICP-ES and 34
trace elements by ICP-MS, following a lithium borate fusiod dilute acid digestion
of a 0.2 g sample to give total abundances. Due to theshtemnmetallogenesis, the

samples were also analysed for 14 metallic elementSPyMS following a hot aqua
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regia digestion of 0.5 g samples. Duplicate analyses wénewt 2% of each other
for major elements and key trace elements. Data for blaaks lbelow detection
limits; data for international standard SO-18 were consistghtaccepted values.
Data are presented in Table 1; data for elements thatowesistently below
detection limit have not been included, and these include nfahg metallic

elements analysed following the aqua regia digestion.

4.2 U-Pb Geochronology

Zircon crystals from four samples were dated by Laser iolabductively Coupled
Plasma Mass Spectrometry (LA-ICP-MS) using a New WaaseRrch 193ss Nd-
YAG laser ablation system coupled to a Nu Instruments Attagiesicollector ICP-
MS. The full analytical method is described in Thomagd.€2813). Zircons were
analysed in an epoxy mount after heavy mineral separatidnyare imaged with
cathodoluminescence to characterise growth zones. Lasepalgatameters include
a 25um spot size, 2.5 j/chrfluence, 30 second ablation time, 15 second washout
time, and 60 second background measurement prior to each al28emn A standard
sample bracketing routing was used to normalise Pb/U and Riii@busing the
zircon reference material 91500. Secondary zircon referentegiabs (GJ-1 and
Plesovice) were analysed during the session to check ag@and@recision, both of
which are <3% @. The full analytical results are provided in the online
supplementary files. All final crystallisation ages @®b?*®U ages, and include two
uncertainties written asx/y, whereby x is the®uncertainty after propagation of
measurement and session-based uncertainties, and y tstiital2incertainty after
propagation of systematic uncertainties. The latter shouldyalb&areferred to for

age comparison and compilation.

5. Geochemistry of the granitoids
Forty-five whole-rock samples from the Minna, Abuja, Tegina @arkin Pawa

intrusions were analysed for major, trace and rare eartreatsr(Table 1). The
majority of samples are granigensu stricto with SiO, >70 wt% (Figure 5a) with
rarer monzonite, granodiorite and syenite. Three samples frarnimie Abuja
Batholith have Si@<60 wt% and plot in the monzonite field on a total alkdicai
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diagram. In general the Abuja Batholith samples appeatltmvfa more alkaline
evolution trend than samples from the other intrusions, with higited alkalis (NaO
+ K;0) at lower SiQ contents. Samples from the Abuja Batholith also fall withie
high-K field on a KO vs SiQ plot (Figure 5b); samples from the Minna Batholith
largely fall in the medium-K field, and samples from otpkitons spread across the
boundary between high and medium-K fields. MgO is generally loRnt&o in
almost all samples) but total FeO +Bgis more variable. Samples from the Abuja
Batholith, and some from the Sarkin Pawa plutons, are typitetaluminous;
samples from the Minna Batholith, the Tegina Pluton, and mdkedbarkin Pawa
plutons, are typically peraluminous (Figure 6). Figure 6 shoatdlie samples from
the Abuja Batholith overlap with the fields for the lai@mns-alkaline granitoid suite
in eastern Nigeria (Ferré et al., 1998). However, thepses from the other western
Nigeria plutons extend to significantly more peraluminous compasiti
Geochemical data for the peraluminous plutons of easterni&laer not available

for comparison.

The different intrusive complexes are clearly distinguistreavell-established granite
discrimination diagrams (Figure 7). On the Y vs Nb plot (EBeat al., 1984), all
samples from the Minna Batholith and Tegina plutons, as welloss Sarkin Pawa
samples, plot within the field of volcanic arc and syn-calfial granites. Samples
from the Abuja Batholith and some Sarkin Pawa plutons extenthi@td/ithin-Plate
Granite field. Similarly, on the Ga/Al vs Zr discrimatiplot (Whalen et al., 1987),
the Minna and Tegina samples fall largely within the I ai®l M-type field, whereas
most of the Abuja Batholith samples lie within the A-tydd. Samples from Sarkin
Pawa extend across both fields. The samples from the Abuja Batiiplcally
overlap with the trans-alkaline granites and quartz-monzoniteasbérn Nigeria
(Ferré et al., 1998). Post-collisional granitoids are geryekathwn to extend across
more than one field in these diagrams (Pearce, 199@tiag the involvement of
several different sources in their formation, including miahghantle and crustal

sources.

On the plot of SiQvs Fe* (Frost et al., 2001), samples from the Abuja Bathtdit
entirely within the A-type or ferroan granite field, arzdrgles from the other plutons

fall entirely within the post-collisional granite fieldithough there is considerable
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overlap (Figure 8). Samples from the Minna Batholith an#i&awa plutons
extend across the boundary between the ferroan and magndsisyirigicating
contributions from more than one source component.

Post-collisional granitoids throughout the Pan-African orogenis bed typically
characterised by similar geochemical features, includilagively high contents of
the large-ion lithophile elements (LILE), negative Nb-$aand Ti anomalies, and
relative enrichment in the light REE (LREE) (Goodenough £2810; Kuster and
Harms, 1998). Spider diagrams for representative granite saifnpin the western
Nigeria plutons show many of these features (Figure 9YhAalgranites have minor
relative enrichment in the LILE such as Rb, Ba and Kgtne# depletions in Ta, Nb
and Ti; and enrichment of the LREE over the heavy REEHE)RThe most
fractionated granitoids are typically more strongly enridheitie LREE over HREE
and have negative Sr and Eu anomalies; a notable example isf sample

NG/11/12, a late leucogranite sheet from the Sarkin Pawa area

Granite, granodiorite and monzonite samples from the Abuja Battyittally show
the least fractionated patterns and have higher contents @i\Br, Hf and the
HREE relative to samples from the other areas. Howensrnotable that the more
silica-rich granitic rocks from the Abuja Batholith actudiigve lower contents of
many incompatible elements (including Nb, Ta, Zr, Hf , andMREE and HREE)
than the more mafic monzonitic rocks (Figure 9b). This sugtfestshe granitic and
monzonitic compositions cannot be related by simple fractionalatiigation, which
would enhance incompatible element contents in the most evolgdasaand that
they are likely to represent mixing of two magmatic compondihis results of a
simple mixing calculation, using the spreadsheet of Ersoy ahvai¢i€2009), are
presented in Figure 10a. The most mafic (monzonitic) componémé @fbuja
Batholith is represented by sample NG/11/45, and local crmstigrial is represented
by sample NG/11/16, a bulk sample of western Nigeria Asima@gmatitic gneiss. It
is evident that mixing with local crustal material hasgb&ential to explain many of
the observed geochemical patterns in the Abuja Batholith.eMenyit is important to
note that NG/11/16 is a single sample and does not fully reprbsevdriation of
compositions in the local crust.



386 In general, the geochemical patterns of the Abuja Batheélsimilar to those of the
387 trans-alkaline plutons from Eastern Nigeria (Ferré etL8B8) and from other Pan-
388 African suites such as the Maevarano suite of MadagéScadenough et al., 2010)
389 (Figure 10b). However, samples of peraluminous granite from thadvBatholith
390 are generally characterised by lower contents of most inddstgpalements than
391 samples from the Abuja Batholith. These geochemical patigarisGularly low

392 contents of Hf, Zr, Ta and Nb, cannot be explained by simpléng of the local

393 Archaean gneisses. Petrography shows that the Minna Batbeniitples are

394 characterised by large plates of feldspar in a felsicixpatuch textures are unlikely
395 to represent magmatic compositions, and thus it is difficudetive source

396 compositions from the whole-rock geochemistry. However, thayo@inous nature
397 of these granitoids indicates a likely derivation from sedhtary sources, potentially
398 those represented by the Proterozoic schist belts.

399

400 Total REE contents (TREE) vary up to 915 ppm (in fractionktiecogranite sheets
401 from Sarkin Pawa) and are dominated by the LREE, with tjiigest TREE contents
402 found in allanite-bearing samples. It is notable that TREE ntshow a weak

403 negative correlation with SgQwith some of the most evolved granitic rocks showing
404 the lowest total REE contents.

405

406 Late pegmatites are found across the Minna area and hanedmognised in spatial
407 association with the Minna, Tegina and Sarkin Pawa plutons cotting the granite
408 plutons and intruded around their margins. Of these, true rat@-pegmatites have
409 only been found by this study in association with the Sarkin Pavwangl. All these
410 late pegmatites have variable trace element patterregdtgpically strongly

411 fractionated. They are enriched in Rb, K, U, Nb andeTative to the granitoids, but
412 typically show notable depletions in Ba, the REE, Hf and Kyuie 9). All have

413 negative Ti anomalies, but Eu and Sr are more variabkep&gmatites are also
414 characterised by notably higher Ta/Nb and Hf/Zr ratios thamgranites; this is

415 characteristic of highly evolved magmas of this type (Lind&88). The rare metal
416 pegmatites from the Sarkin Pawa area also have eleBate@s, Sn and W contents
417 (Table 1) and in this respect they are generally typictl@t.CT (Li-Cs-Ta) family
418 of pegmatites (Cerny and Ercit, 2005; Cerny et al., 2012)lé8imhole-rock

419 geochemical patterns for rare metal pegmatites and theigtaostes are known from
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other areas of post-collisional magmatism, such as tfae buntains of China (Zhu
et al., 2006), but there are very few published whole-rockiganical data for

pegmatites from the Pan-African orogenic belts.

6. Geochronology of the granitoids

Four samples of the plutonic rocks were collected for U-Pinglaly LA-ICPMS
(Table 2). Sample NG/11/12 was collected from an allanitefigeleucogranite sheet
cross-cutting foliated granitoids in the Sarkin Pawa amdy@presents the youngest
magmatism in that area. Sample NG/11/25 is a stronglytédligranodiorite from the
outer part of the Minna Batholith, and NG/11/35 is a garnetifebamige-muscovite
granite also from the Minna Batholith. Sample NG/11/49 iatbigranite from the
Abuja Batholith.

6.1 Zircon Description and Interpretation

NG/11/12

Zircon in this sample comprises largely prismatic graiitk il@ngth/width ratios of 1
to 4, showing complex oscillatory zoning, typically with darkerar zones and
brighter outer zones under cathodoluminescence (CL) (Figure 11a).fomaiies in
the zoning are observed in some grains (less than a thind aftal population).
Altered zoning in the form of convolutions of the oscillatory zasedso seen in
some grains. Metamorphic rims are not apparent, but some ofitdiezones are thin
with embayments into the inner zones. The population looks consistentoauld be
expected to give one, or at most two main ages.

NG/11/25

This sample contains prismatic zircon grains with lengthwidtios of 1 to 2 and
complex oscillatory zoning, typically with one or two unconfornsifier grain
(Figure 11b). Some grains (less than a third of the popujdieore fuzzy or
convoluted inner zones. The inner zones typically appear darker under
cathodoluminescence, and the outer zones appear brighter. Eartiaym
metamorphic rims are not apparent. Two or more magmatic lgqoeviods may be
recorded by this zircon population.

NG/11/35

Zircon grains in this sample are prismatic with length/wviditios of 1 to 3 (Figure

11c). They show complex oscillatory zoning, typically with @aruter zones under



452 CL. Most grains exhibit unconformities between outer and inner zteasy grains
453 (c. two-thirds of the population) exhibit alteration of the inn@mes, generally in the
454  form of convolution of zoning and/or a granular texture. Many outer Zumes

455 embayment, but no thin metamorphic rims are apparent. The goputaprobably
456 comprised of at least two growth phases; alteration ahtier zones may be younger
457 than zircon crystallisation, or part of the youngest growthgahas

458 NG/11/49

459 This sample contains prismatic zircon grains with lengthlwidtios of 2 to 4 (Figure
460 11d). Complex oscillatory zoning is ubiquitous. Darker outer zones ahwigider
461 inner zones are most common, but brighter outer zones also exishfbimaities

462 across zoning are present in some grains (less than a aqidhepopulation). Some
463 convolution of zoning occurs on the outer zone of some grains, big tiscally
464 associated with inclusions within the zircons. No metamonmie are apparent.
465 Crystallisation probably occurred during one main magmatic epibodéjscordant

466 inner zones suggest the possibility of inherited zircon cores

467 6.2 Results

468 NGJ/11/12

469 62 analyses were made from 54 grains, 8 of these wereeepae to high common
470 Pb component (>600 cps#f). The data cluster around 590 Ma (Figure 12a). One
471 concordant grain at ~1008 M&PbF°Pb age) indicates some inheritance; this
472 analysis was from a core of a grain. The data spread toslagddy older ages along
473 Concordia. These may represent a slightly older inheriteghgoent, or mixing with
474  distinctly older zones (e.g. ~1000 Ma); the latter is not suppbstede CL imagery.
475 The data also spread towards discordant analyses with*0llef°Pb ages, these
476 probably result from small amounts of common lead and/or mixingimhtrited

477 components. For the age calculation, discordant (>10%) analgsesxcluded, as
478 were distinctly older concordant analyses. The youngest anpgrs&ns to an outer
479 zone of a grain that has an embayment to the inner zone atialso excluded from
480 the age calculation. The remaining 41 analyses give a \eeighearf®Pb/%U age
481 of 590 £ 3/13 Ma (MSWD = 1.8).

482 NG/11/25

483 50 analyses were made from 46 zircon grains, and these dusied 780-760 Ma
484  (Figure 12b). One concordant grain at 830 K&PpF3*U age), indicates inheritance
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of a slightly older component. Three discordant (>10%) analysdikaly affected

by common lead, and/or mixing with an inherited component. Thefrést
population spreads along concordia slightly, and exhibits some mirerseev
discordance. The CL imagery resolved discordant zoning thaatedithe likelihood
of crystallisation during more than one phase. The data arengplinner and outer
zones, although this includes some subijectivity since somesgtainot have obvious
boundaries between zones. Excluding one analysis with a highedeforeverse
discordance, 19 outer zone analyses give a weighted {B8A*®U age of 764 +
6/18 Ma (MSWD = 1.7). The remaining 26 inner zone analyse$apvier age with a
weighted meafA®™Pb/*U age of 774 + 7/19 Ma (MSWD = 3.9) but spread to much
older ages. The age given by the outer zones is interpretedrasenting final
crystallisation of the unit.

NG/11/35

46 analyses were made from 38 zircon grains, and 4 of theysereyected due to high
common Pb (>600 cps BB). One inherited grain is distinctly older then the main
populations at ~2100 Ma. The rest of the data spread from ~&20 twla (Figure
12c), and include a range of analyses that extend to Ble&*°Pb ages, probably
related to minor common Pb content. After exclusion of discorddi®p) data, the
analyses fall into two broad populations. The data have begedliinto inner and
outer zones based on the CL imagery. Nine of the ten aomers form a population
which gives a weighted meai®Pb?3%U age of 793 + 12/21 Ma (MSWD = 2.9).
Twelve of the thirteen outer zones form a population which givesighted mean
209pp33Y age of 653 + 12/19 Ma (MSWD = 6.3). These two populations both &av
high MSWD, which indicates that they do not represent single pamsaprobably
because the analyses represent a small amount of mixingelmedifierent age zones.
The youngest phase of crystallisation of this unit is inteepred be ca. 653 Ma, and
an earlier crystallisation is recorded at ca. 793 Ma.

NG/11/49

Forty analyses were made from 30 zircon grains, and & thrdg one corresponds
to a distinctly older inherited grain, dated at ca. 1180 #¥M®1§°°Pb). The rest of the
analyses cluster around an age of ~590 Ma (Figure 1

2d). Several analyses spread to slightly ofd®b/°Pb ages, probably related to a
minor common lead content. Three analyses are slightly didarthe main

population in terms A’ Pb7%Pb age; one of these is slightly normally discordant
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and dated at 639 M&fPb%U age), and two are reversely discordant and dated at
620 Ma (°°Pb/*®U age). These older analyses indicate the possibility ddfatlgl

older inherited component, but do not particularly relate to sepiatarnal zones that
are apparent from the CL imagery. The remaining 30 anadiefa®e a single
population with a weighted me&fPb”**U age of 588 + 3/13 Ma (MSWD = 1.07).

This is interpreted as dating crystallisation of this unit.

7. Discussion

Field, petrological and geochemical data for Pan-Africami¢pids in the Minna area
clearly indicate that the granitoid plutons can be divided imtoliroad groupings.
The Minna Batholith, the Tegina Pluton and plutons around Sarkia Pamprise
biotite-muscovite granites, locally containing garnet and epiddieh typically have
peraluminous compositions. They show evidence of having been empitcad
active tectonic regime characterised by major NNE-S8®éiszones. The second
grouping comprises the metaluminous hornblende granitoids of the Aathjalih
and late intrusive sheets in the Sarkin Pawa area. Tiiegsions are more alkaline,
and contain a greater mafic magmatic component than therdaotite granites,
varying from syenodiorites to leucogranites. In general tlag lhigher contents of
Nb, Zr and Hf than the biotite granites, but this study has foorevidence for
significant critical metal enrichments. A third group of usiions, the late pegmatites,

is found throughout much of the area and discussed separatelthéronajor plutons.

The age data from this study, together with published agesyé«al. (2012),
indicate that the Older Granite magmatism in the Minna spanned a considerable
amount of time. The Minna Batholith clearly contains evidencaticgarly phase of
magmatism at c. 790-760 Ma. Because one sample (NG/11/28shage
population of zircons of this age, this is highly unlikely to espnt an inheritance
age, and is considered to date crystallisation of the Timit.sample was taken from
an outcrop apparently within the Minna Batholith, but may represingj@ screen of
older crust that has been incorporated within the batholitmdiwassimilated. Ages
of ¢c. 790-740 Ma have previously been obtained by relativgdydaise Rb-Sr dating
of Nigerian Older Granites from the area north of Minna (Fidteal., 1985), and
magmatic ages of 800—770 Ma are found in the Borborema Prd#intaud et al.,
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2008). The tectonic setting of the Brazilian magmatisdelsated, and may be related
to continental rifting, or to subduction at an active continentalin (Arthaud et al.,
2008; de Araujo et al., 2012; Fetter et al., 2003). IVidemt that Nigeria was affected
by a contemporaneous magmatic event. However, only the sirigtk slample can be
clearly attributed to this event in Nigeria. Identificatand study of individual
intrusions formed at this time would be needed in order to fgteht tectonic

setting.

The sites of earlier Neoproterozoic magmatism were subseygeaptbited by later
peraluminous magmas at c. 650 Ma, as demonstrated by the tywo@mgdations in
sample NG/11/35. These earlier, biotite-muscovite peraluminainstgs are likely to
have had a significant source component of sedimentary makéwviakver, a lack of
published isotopic data means that the source of this sedimemdsgrial remains in
doubt; one potential source lies in the schist belts of the mestgeria terrane. The
magmas are thought to have formed by crustal melting asswewth high-
temperature metamorphism and crustal thickening followingéiaé of the main

Pan-African collision (Ferré et al., 2002).

Biotite granites continued to be emplaced in the regiondmiw. 635 and 600 Ma
(Dada, 2008; Key et al., 2012), and in many areas theseaffeoted by intense

ductile shearing, acquiring strong syn- to post-magmatictiahs.

Subsequently, metaluminous hornblende granitoids were emplacesbata,
forming the Abuja Batholith as well as later leucograsfteets in the Sarkin Pawa
area (samples NG/11/12 and NG/11/49). Relatively mafic motzoni
monzodioritic lithologies are present as enclaves and largesemavithin the Abuja
Batholith. In contrast with the earlier peraluminous granttesmetaluminous
granitoids, monzonites and monzodiorites have alkaline affinitnesshow many
geochemical features akin to A-type granitoids. Howevepitbgence of negative
Nb-Ta anomalies is not typical of A-type granitoids, but canttoibated either to
melting of a lithospheric mantle source that has been enrimhedrlier subduction,

or to contamination by continental crust.

Recent geochemical and isotopic studies of coeval metaluminousdrataiiotite
granitoids in eastern Nigeria show that initiglgranges from -5 to -16, and initial
87Srf°sr ranges from 0.70617 to 0.71015 (Dada et al., 1995; Ferré ¥9@8). These
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data have been interpreted to indicate that the source gfahitoid magmas was
largely in the continental crust, with limited contributioarfr the mantle (Dada et al.,
1995). The more mafic components of the suite in eastern Nigexihighly potassic
quartz monzonites such as those in the Bauchi pluton (although theevaidable
dates place these at c. 640 Ma (Dada and Respaut, 1989; Oya@@ip, Isotopic
data for these monzonites show a trend towards more mantlslikeositions with
initial [Tngfrom -4 to - 8 (Dada et al., 1995). Strongly alkalinB20 Ma intrusions
sourced from mantle-derived magmas have also been reedgnithe Dahomeyide
belt in Ghana (Nude et al., 2009). Geochemical evidence irnglastlrn (Ferré et al.,
1998) and western Nigeria (this study) indicates that thelunetzous granitoids
were not formed by direct fractional crystallisation of in@re mafic monzonitic and
monzodioritic magmatic component. Instead, the composition ofr#mitgids can be
largely explained by mixing between melts of the localhean meta-igneous crust,
and a more mafic mantle-derived magma. Overall, the geaichl data for the
metaluminous plutons of western Nigeria fit with the hypothesiposed for similar
plutons in eastern Nigeria, namely a fractionated mantieettmagma that has
mixed with magmas derived by melting of igneous matemigthé continental crust
(Dada et al., 1995; Ferré et al., 1998).

The final magmatic event in the area was the intrusionroéband rare-metal
pegmatites, which have been dated at 560-450 Ma (Mathe{SamrdVachette,
1983; Melcher et al., 2013). Late pegmatites are spatiafipciated with most of the
Older Granite plutons, but the dating indicates that theyqaistthe Older Granites,
and are not directly genetically related to them, asrallyi suggested by Matheis
(1987). This is difficult to reconcile with the geochemiealdence presented here,
which shows that the pegmatites formed from very highly edoiwagmas. These
pegmatites have affinities with the LCT pegmatite fgnwhich is typically
considered to comprise the most highly fractionated pars-tyfpe or peraluminous
granitic suites formed during crustal thickening (Cerny etél12). However, in
western Nigeria the dating presented here indicatesith&@Ider Granites evolved
with time away from a sedimentary source towards anaseckcontribution from a

mantle or lower crustal source. The origin of the pegmatiigsremains uncertain.

The Borborema Province in Brazil also contains rare-metahpétes emplaced at

515-509 Ma (Baumgartner et al., 2006); as with the Niggegmatites, these have
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been artisanally mined for Nb and Ta. The Borborema Propiegmatites are also
associated with granites, and as in Nigeria, the petgaatppear to be distinctly
younger than the granites. This ‘pegmatite conundrum’ has beegnised in post-
collisional settings elsewhere in the world (e.g. the Atauntains (Zhu et al.,
2006)). Rare-metal pegmatites are typically consideredysiallise from highly
fractionated magmas, representing the latest intrusiore Biaggranitic province
(Cerny et al., 2012). However, in many areas, they app@astedate the associated
granitoid plutons by a significant period of time, and potenti@iresent a separate
intrusive event. Pegmatites such as those in westerni&layeran important part of
the global tantalum resource, yet their genesis remainsypowaerstood, and further

work is needed to understand the source of these unusual magmas.

8. Conclusions

Pan-African-Brasiliano orogenic belts extending around the YWfesain Craton
contain abundant post-collisional granitoids, which are recogrhisedghout West
Africa and Brazil. The Minna area of western Nigeria ptegigood exposures of all

elements of this magmatic province.

The earliest magmatism, at 790—760 Ma, is recorded by zircos @ndezones of
intensely deformed granodiorite within the Minna Batholith. Magsm of this age is
known in the Borborema Province of Brazil, and has also beegnised by Rb-Sr
dating in Nigeria. It may be related to Neoproterozoic subolueiound the margins
of the West African Craton, but more work is needed to fthigracterise this

magmatic episode.

Large volumes of peraluminous biotite granite were produced damnirsgal
thickening at 600—-650 Ma in western Nigeria. Emplacementesfet plutons was
focused along large-scale crustal shear zones and manypbitives are intensely
foliated. These granites typically have peraluminous cheniatits and were largely

derived by melting of local crust.

Later, post-tectonic metaluminous magmas (hornblende dioritadjorites and
granites) were emplaced in an extensional post-collisi@ttihg at c. 590 Ma. The
association of mafic (dioritic) and felsic magmas, emgdlamontemporaneously, and
the more alkaline, LILE-enriched nature of those magmas;ates both mantle-

derived and crustally-derived magmatic components. Thus/| its-collisional
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melting in this orogenic belt was focused in the thickene@uggpmiddle crust, with

the mantle-derived component increasing over time.

The last magmatic event in western Nigeria was the exaplant of LCT-type
pegmatites, some of which are enriched in rare metatsasitantalum. On the basis
of current evidence, these pegmatites were emplacedad€450 Ma, and
significantly post-date the peraluminous granitoid plutons. Theseaiégs thus
cannot be highly evolved melts derived from a fertile, S-tppesntal granite as is
normally considered for LCT pegmatites. The origin of suchmaatal pegmatites

thus presents an unsolved conundrum.
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Figures

Figure 1: Simplified map of the geology of Nigeria, afferré et al. (1996) and Key
et al. (2012). Box indicates the area shown in Figure 2.

Figure 2: Simplified map of the geology of the Minna asdter Key et al. (2012).

Figure 3: a) Granite whaleback hill in the Tegina Plutounsitiating the typical
scenery of the field area; b) Foliated granitoid demonsgyairong solid-state
deformation, Tegina Pluton; ¢) Coarse-grained porphyritic graintiai by late
granite pegmatite, Sarkin Pawa area; d) Outcrop showing imgnghixing and
localised shearing of dioritic and granitic magmas in thaja Batholith.

Figure 4: Photomicrographs of thin sections from Nigerian QBianites, viewed in
plane polarised light. a) Sheared granitoid from the Minna B#thulith a foliation
defined by aligned biotites (Bt) and recrystallised quariz) (@bons, and highly
altered feldspar (Fsp); b) Granodiorite from the Tegina Platomtaining biotite (Bt),
hornblende (Hbl) and garnet (Grt); c) Late stage hornblende {itiilje (Bt) granite
sheet from the Sarkin Pawa area with large, high-rgledfowish allanite (Aln)
crystals (Aln); d) Monzonite from the Abuja Batholith containiftgrad
orthopyroxene (Opx) typically rimmed by hornblende (Hbl).

Figure 5: a) Plot of total alkalis versus silica for aldlysed samples from Nigerian
Older Granites, divided by pluton. Fields from Gillespie atydeS (1999). Dashed
line represents boundary between alkalic rocks above and ditedk#s below
(Miyashiro, 1974); b): Plot of O vs SiQ for all samples, with fields from Le Maitre
(2002).

Figure 6: Shand Index plot for all analysed samples. A/Niofar (ALOs/(NaeO +
K>0)); A/ICNK = molar (AbOs/(CaO + NaO + K,0)). Fields for trans-alkaline
plutons from Eastern Nigeria (Ferré et al., 1998) given forpegison.



688 Figure 7: Granite discrimination diagrams for all analysedjpdas. a) Nb vs Y plot
689 after Pearce et al. (1984); b) Zr vs Ga/Al plot after Whatdt al. (1987). Fields for
690 trans-alkaline plutons from Eastern Nigeria (Ferré etl@B8) given for comparison.

691 Figure 8: Plot of Si@vs Fe(P(FeG*+MgO) for all analysed samples, with fields
692 for A-type and post-collisional granitoids from Frost et al. (2001)

693 Figure 9: Primitive mantle-normalised trace element glmtselected samples from
694 the different plutons within the study area. Normalising factam McDonough and
695 Sun (1995).

696 Figure 10a): Primitive mantle-normalised trace elermpots for samples from the
697 Abuja Batholith, with grey lines showing the calculated contjmrs achieved by
698 mixing Abuja Batholith monzonite (NG/11/48) with local Archaeaust; b)

699 Primitive mantle-normalised trace element plots for repregive samples from the
700 Minna Batholith and Abuja Batholith (this study), the Rahama @ afiEastern
701 Nigeria (Ferré et al., 1998), and the comparable Maevaute of Madagascar
702 (Goodenough et al., 2010). Normalising factors from McDonough and1S06)

703 Figure 11: Cathodoluminescence images for representatoanzirystals from the
704  four geochronology samples

705 Figure 12: Zircon concordia plots for the four dated sampld$G#)1/12; b)
706 NG/11/25; c) NG/11/35; d) NG/11/49. Analyses in black are thosefasade
707 calculations; those in grey were rejected due to discordanoéxed age.

708 Tables
709 Table 1: Whole-rock geochemical data for all analysed samples

710 Table 2 (online supplementary data): U-Pb data for the foeddatmples.

711 Discordance = (1-((206Pb/238U)/(207Pb/206Pb)))*100. Concentrations in ppm ar
712 based on normalisation to 91500, based on 14.8ppm Pb, 30ppm Th and 81.2ppm U.
713 2%pp,2%p,297pp, 2%%ph, 232Th and®®*U in counts per secon®Pb is after

714  subtraction of*Hg based on measurement®Hg. Osci = oscillatory zoning.

715 Analyses in black are those used for age calculations.

716
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Sample

NG/11/1

NG/11/2

NG/11/3

NG/11/4

NG/11/5

NG/11/6

NG/11/7

NG/11/8

NG/11/9

NG/11/10
NG/11/11
NG/11/12
NG/11/13
NG/11/14
NG/11/15
NG/11/16
NG/11/17
NG/11/18
NG/11/19
NG/11/20
NG/11/21
NG/11/22
NG/11/23
NG/11/24
NG/11/25
NG/11/26
NG/11/27
NG/11/28
NG/11/29
NG/11/30
NG/11/31
NG/11/32
NG/11/33
NG/11/34
NG/11/35
NG/11/36
NG/11/37
NG/11/38
NG/11/39
NG/11/40
NG/11/41
NG/11/42
NG/11/43
NG/11/44
NG/11/45
NG/11/46
NG/11/47
NG/11/48

Rock type

Granite
Aplite
Granite
Diorite
Pegmatite
Pegmatite
Granite
Pegmatite
Granite
Pegmatite
Granite
Granite
Granite
Pegmatite
Granite
Gneiss
Granite
Granite
Granite
Gneiss
Granite
Granodiorite
Granite
Granite
Granodiorite
Granite
Granite
Amphibolite
Mylonite
Granite
Diorite
Pegmatite
Granodiorite
Granite
Granite
Granite
Amphibolite
Granite
Aplite
Pegmatite
Granite
Granite
Leucogranite
Pegmatite
Diorite
Granodiorite
Diorite
Diorite

Intrusion

Sarkin Pawa area
Sarkin Pawa area
Sarkin Pawa area
Sarkin Pawa area
Sarkin Pawa area
Sarkin Pawa area
Sarkin Pawa area
Sarkin Pawa area
Sarkin Pawa area
Sarkin Pawa area
Sarkin Pawa area
Sarkin Pawa area
Sarkin Pawa area
Sarkin Pawa area
Sarkin Pawa area
Country rock
Sarkin Pawa area
Sarkin Pawa area
Sarkin Pawa area
Country rock
Minna Batholith
Minna Batholith
Minna Batholith
Minna Batholith
Minna Batholith
Minna Batholith
Minna Batholith
Country rock
Country rock
Tegina Granite
Tegina Granite
Tegina Granite
Tegina Granite
Minna Batholith
Minna Batholith
Minna Batholith
Country rock
Minna Batholith
Minna Batholith
Minna Batholith
Minna Batholith
Minna Batholith
Abuja batholith
Abuja batholith
Abuja batholith
Abuja batholith
Abuja batholith
Abuja batholith

sio,
%

75.89
73.68
73.65
66.02
75.44
74
73.91
75.73
72.87
72.5
72.1
70.84
70.02
73.94
66.99
71.12
73.87
74.74
75.74
53.92
73.48
68.94
71.36
73.33
61.36
74.93
64.99
48.4
72.39
72.73
64.66
76.55
67.78
73.83
74.78
74.44
52.21
73.95
75.04
75.84
72.29
71.41
75.76
80.49
58.51
70.01
56.34
56.03

Al,0,

%

12.55
15.01
14.81

16.2
14.56
14.45
14.35
16.08
14.02
16.38
14.07
13.42
15.13
14.74
15.12
14.47
13.94
13.28
14.69
19.23
15.12

15.7

15.2
14.49
16.59
14.09
16.46
17.76
14.26
14.59
14.79
13.27
15.13
14.48

14.1
13.24
13.36
14.69
14.61
13.96
13.72
14.79
13.34
10.06
16.18
15.05
17.05
16.72

Fe,0;

%

2.21
1.15
1.44
4.24
0.97
0.94
0.95
1.25
2.22
1.09
2.6
3.8
2.29
0.76
3.86
3.09
1.82
1.47
0.73
7.02
1.2
3.13
1.82
2.05
59
1.01
4.15
8.37
2.89
1.43
7.76
0.46
4.49
1.65
1.22
2.98
11.97

0.54
0.65
2.87
2.57
0.98
0.96
9.78
2.73
10.14
10.42

MgO
%

0.07
0.03

0.2
1.56
0.09
0.09
0.11
0.05
0.26
0.03
0.11
0.14
0.68
0.04
1.65
0.82
0.09
0.33
0.17
3.04
0.25
0.87
0.42
0.44
2.68
0.25
1.52
6.06
0.58
0.33
1.73
0.07
0.76
0.28
0.28
0.51
3.89
0.15
0.06
0.07
0.76
0.57
0.03

0.1
1.13
0.72
1.53
1.28

Cao
%

0.83
0.34
1.38
4.3
0.9
1.16
0.99
0.01
1.15
0.29
1.26
1.66
2.22
0.44
3.21
2.01
0.74
1.35
1.42
4.95
1.63
2.76
2.09
1.73
4.7
141
2.99
10.71
2.51
1.21
4.16
0.95
1.93
1.92
1.65
1.83
8.75
1.38
0.66
0.36
2.14
2.58
0.67
0.94
3.95
2.53
4.97
4.76
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Table 2
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Sample Spot comments rejected? M4pyy 206ppy  207pp 208pp 2327 235y | Th/U Pbppm Thppm
NG/11/12 5 bright osci outer 166 162989 9796 14209 301627 13206 | 0.28 41 112
NG/11/12 6 bright osci intermediate -24 85065 5085 11173 227028 6799 0.41 22 85
NG/11/12 8 bright osci inner 165 200089 12295 38663 776381 17442 | 0.55 51 289
NG/11/12 9 bright osci inner 386 319230 19682 73800 1417362 26876 | 0.65 81 528
NG/11/12 10 bright osci outer -20 111381 6741 11846 241742 9199 0.33 28 90
NG/11/12 14 bright osci outer -2 128770 7952 17791 370356 10698 | 0.43 33 138
NG/11/12 15 bright osci intermediate 338 291642 18034 58509 1220460 26115 | 0.58 74 455
NG/11/12 16 bright osci inner 90 1006347 62136 128542 2796366 88112 | 0.39 255 1042
NG/11/12 17 bright osci outer 67 110691 6734 11970 258384 9641 0.33 28 96
NG/11/12 18 bright osci inner 37 178711 11040 35566 773294 15615 | 0.61 45 288
NG/11/12 19 bright osci outer 218 79649 4894 9498 212405 6915 0.38 20 79
NG/11/12 23 bright planar zoning inner 139 156886 9672 34178 794414 14209 | 0.69 40 296
NG/11/12 25 bright osci outer 278 122377 7483 18482 421820 11099 0.47 31 157
NG/11/12 27 bright osci outer 46 201146 12490 20141 482547 18877 0.32 51 180
NG/11/12 29 bright angular osci inner 406 97048 6007 7010 167188 8807 0.23 25 62
NG/11/12 30 bright osci intermediate 70 220584 13368 32847 812736 19915 | 0.50 56 303
NG/11/12 31 bright osci outer 182 132055 8150 13501 325795 12065 | 0.33 33 121
NG/11/12 32 bright altered zoning inner -53 117954 7302 284 3599 10930 | 0.00 30 1
NG/11/12 34 bright osci outer 256 104008 6469 14407 383797 9908 0.48 26 143
NG/11/12 35 dark faint zoning 385 608530 37561 122705 3188862 58715 | 0.67 154 1189
NG/11/12 36 planar zoning inner 96 273323 17234 16695 380055 26310 0.18 69 142
NG/11/12 41 bright osci outer 257 78334 4815 11339 308608 7861 0.49 20 115
NG/11/12 43 bright osci inner 82 240236 14901 36581 925265 23959 | 0.48 61 345
NG/11/12 46 bright osci outer 47 84446 5281 10569 274508 8756 0.39 21 102
NG/11/12 47 bright osci intermediate 98 145033 8943 29344 819044 15004 | 0.68 37 305
NG/11/12 48 bright osci intermediate 239 115498 7108 25460 667685 11681 | 0.71 29 249
NG/11/12 49 bright osci inner 112 110140 6894 21561 595275 11239 0.66 28 222
NG/11/12 50 bright osci outer 280 106377 6787 12917 342315 11004 0.38 27 128
NG/11/12 51 bright osci intermediate -29 212178 13264 31027 802188 21423 0.46 54 299
NG/11/12 52 bright osci inner 22 325221 19720 70709 1555266 26744 0.72 82 580
NG/11/12 53 bright osci outer 10 136826 8348 15504 346556 11379 | 0.38 35 129
NG/11/12 54 bright osci outer 85 211384 12976 37203 837781 17599 | 0.59 54 312
NG/11/12 55 bright osci inner 84 360931 21789 76981 1686699 29683 | 0.70 91 629
NG/11/12 56 bright osci outer -51 145690 8901 14342 311247 12091 | 0.32 37 116
NG/11/12 57 bright osci intermediate 115 155024 9523 33710 739883 12828 | 0.71 39 276
NG/11/12 58 bright osci intermediate -176 177951 10766 39905 900580 15120 | 0.74 45 336
NG/11/12 72 bright osci inner 56 245661 14495 49429 993577 19994 | 0.58 62 365
NG/11/12 74 dark osci inner 33 545624 33352 84395 1648605 43478 | 0.44 137 606
NG/11/12 76 dark osci inner 193 1064569 63846 172033 3203850 83450 | 0.45 267 1178
NG/11/12 78 bright osci outer 149 168583 10292 22921 423868 13572 | 0.36 42 156
NG/11/12 79 bright osci outer -118 178138 10707 3223 58272 14936 | 0.05 45 21
NG/11/12 44 bright osci outer/ embayment younger grain 172 97005 5953 1713 46561 10253 | 0.06 25 17
NG/11/12 1 bright osci outer possible older inheritance 217 133961 8264 17786 345139 10557 | 0.40 34 129
NG/11/12 4 dark inner possible older inheritance 258 2048359 127538 170718 3163079 148388| 0.26 519 1179
NG/11/12 21 bright osci inner possible older inheritance 77 144555 10809 44952 587601 7430 0.98 37 219
NG/11/12 22 dark osci outer possible older inheritance 244 834532 52748 18693 393468 69269 | 0.07 211 147
NG/11/12 75 dark osci inner possible older inheritance 277 653023 39652 46152 855818 51537 | 0.19 164 315
NG/11/12 80 bright osci outer possible older inheritance =72 167621 10508 10662 184021 13000 | 0.17 42 68
NG/11/12 2 dark inner high discordance 134 3278566 205647 267773 5298838 272200 0.24 831 1975
NG/11/12 7 bright osci inner high discordance 129 198757 13009 42099 783095 16502 0.59 50 292
NG/11/12 24 dark inner high discordance 435 1582359 100797 180579 4031378 140630| 0.35 401 1503
NG/11/12 33 bright osci intermediate high discordance 348 172676 12434 40490 911183 16595 | 0.68 44 340
NG/11/12 42 dark osci inner high discordance 231 3412982 214529 324764 8746103 351367 | 0.31 865 3260
NG/11/12 71 bright osci inner high discordance 258 122257 7806 23980 430830 10038 | 0.50 31 158
NG/11/25 2 inner included within inner zone age calc -123 438305 29250 82831 1612383 26258 0.45 59 266
NG/11/25 5 inner included within inner zone age calc 81 456884 30234 114312 1827496 30318 0.44 61 302
NG/11/25 6 inner included within inner zone age calc 141 186406 12365 45229 738044 11868 0.43 25 122
NG/11/25 8 inner included within inner zone age calc -130 121889 7855 12535 191793 7597 0.18 16 32
NG/11/25 9 mixed included within inner zone age calc 66 229468 14862 36049 534447 14433 0.27 31 88
NG/11/25 10 inner included within inner zone age calc 20 185878 12010 36254 532509 11811 0.34 25 88
NG/11/25 12 inner included within inner zone age calc 96 177187 11623 24180 354295 11188 | 0.23 24 59
NG/11/25 13 inner included within inner zone age calc 22 209359 14067 36960 543712 13670 0.29 28 90
NG/11/25 15 inner included within inner zone age calc -4 314198 20919 63047 986459 19429 | 0.37 42 163
NG/11/25 16 inner included within inner zone age calc -18 256619 17144 39809 602898 16620 | 0.26 34 100
NG/11/25 17 inner included within inner zone age calc 14 158591 10522 35802 525029 10030 | 0.38 21 87
NG/11/25 18 inner included within inner zone age calc 94 257634 17035 48333 683556 15592 0.31 35 113
NG/11/25 19 inner included within inner zone age calc 15 255168 16639 43601 603112 16263 0.26 34 100
NG/11/25 20 inner included within inner zone age calc 115 363671 24168 93459 1335925 23498 0.42 49 221
NG/11/25 22 mixed included within inner zone age calc 139 145168 9752 20920 318924 9508 0.24 20 53
NG/11/25 23 inner included within inner zone age calc -152 268977 17763 49008 748090 17871 | 0.30 36 124
NG/11/25 25 inner included within inner zone age calc 198 429610 28928 105309 1657404 27028 | 0.43 58 274
NG/11/25 26 inner included within inner zone age calc 70 231497 15409 57808 956993 15061 | 0.45 31 158
NG/11/25 27 inner included within inner zone age calc -132 286047 18798 57032 928721 18983 | 0.36 38 153
NG/11/25 28 mixed included within inner zone age calc 54 85394 5639 12278 218023 5351 0.29 11 36
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