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ABSTRACT 1 

Ocean warming and anthropogenic activities such as fishing, shipping and marine renewable developments, 2 

are affecting marine top predators. Research has focussed on the impacts of single stressors on single 3 

species, yet understanding cumulative effects of multiple stressors on communities is vital for effective 4 

conservation management. We studied a marine bird community (45 species; 11 families) utilising the Forth 5 

and Tay region of the North Sea for breeding, overwintering or migration between 1980 and 2011. Local sea 6 

surface temperatures (SST) increased significantly over this period, with concomitant changes in marine 7 

communities. Simultaneously, the region has been subject to fishing pressure and shipping disturbance and is 8 

a priority area for renewable energy developments. We used colony-based and at-sea data to quantitatively 9 

assess relationships between SST and counts, productivity and survival of 25 species for which sufficient 10 

data were available for analysis. For the remaining species, we applied a qualitative approach using 11 

published population trends, published climate relationships and foraging sensitivity. In total, 53% of species 12 

showed negative relationships with SST. Trends in counts and demography were combined with climate 13 

vulnerability to give an index of population concern to future climate warming, and 44% of species were 14 

classified as high or very high concern, notably cormorants, grebes, skuas, shearwaters, terns and auks, as 15 

well as species breeding in the region. Qualitative assessments of vulnerability to fisheries, pollutants, 16 

disturbance (including introduced predators), marine renewables and climate found that 93% of species were 17 

vulnerable to ≥2 threats, and 58% to ≥4. Our results indicate that the majority of birds in this region of the 18 

North Sea face an uncertain future, potentially threatening the resilience of this important marine bird 19 

community.  20 

 21 
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INTRODUCTION 1 

Global climate change is altering the physiology, phenology, abundance and distribution of 2 

species, resulting in dramatic changes in ecosystem structure (McCarty 2001, Walther et al. 2002, 3 

Thackeray et al. 2010). Warming of the oceans is evident throughout the globe (Levitus et al. 2000, 4 

Gille 2002) with a higher pace of climate change in the ocean than on land (Burrows et al. 2011, 5 

Poloczanska et al. 2013). Increased sea temperatures have already had significant impacts on 6 

marine ecosystems (Harley et al. 2006, Parry 2007, Alheit 2009), modifying water stratification and 7 

nutrient availability (Sathyendranath et al. 2001, Hays et al. 2005), with associated effects on the 8 

distribution, abundance and population dynamics of phytoplankton, zooplankton and mid-trophic 9 

level fish (Beaugrand et al. 2002, Edwards et al. 2002, Hays et al. 2005, Perry et al. 2005, 10 

Behrenfeld et al. 2006, Brander 2007, van Deurs et al. 2009, Ottersen et al. 2013). Marine top 11 

predators are vulnerable to bottom up effects of climate change operating through lower trophic 12 

levels (Frederiksen et al. 2006, Stige et al. 2010, Schwarz et al. 2013, Springer & van Vliet 2014). 13 

Globally, there is extensive evidence that marine bird species are experiencing predominantly 14 

negative impacts of climate change operating indirectly on prey species (Votier et al. 2005, Lee et 15 

al. 2007, Monticelli et al. 2007, Grémillet & Boulinier 2009, Sydeman & Bograd 2009, Lehikoinen 16 

et al. 2013, Paiva et al. 2013). Furthermore, climate projections indicate that sea temperatures will 17 

continue to increase globally throughout the 21
st
 century (Parry 2007). 18 

Marine systems are also subject to a wide variety of other anthropogenic pressures acting 19 

simultaneously with climate warming, most notably fisheries, introduced predators and pollution 20 

(Halpern et al. 2007). Such anthropogenic pressures may intensify in the future, due to increased 21 

exploitation associated with human population growth (Sanderson et al. 2002). Furthermore, a large 22 

expansion of marine renewable developments is underway, potentially placing additional pressure 23 

on marine ecosystems, particularly in coastal areas. The cumulative effects of multiple stressors, 24 

and in particular how they interact, are generally poorly understood (Sala et al. 2000, Moller 2013). 25 

A recent review of experimental manipulations of multiple stressors in marine environments 26 

concluded that overall interactions tended to be synergistic, suggesting this may be common in the 27 

wild (Crain et al. 2008). For marine top predators, there is some evidence that interactions between 28 

climate and other threats may be additive (Frederiksen et al. 2004, Votier et al. 2005, Ainley & 29 

Blight 2009). However, most studies have tended to consider the impacts of single stressors on 30 

single species at certain times of the year, and hence may be unrepresentative of the suite of 31 

pressures that top predator communities are experiencing over the annual cycle. Since many marine 32 

bird populations are of conservation concern (Croxall et al. 2012), community wide approaches that 33 

consider responses to multiple threats, including climate change, are critical in order to provide a 34 

comprehensive evaluation of vulnerability and to provide a baseline from which to assess future 35 

changes and inform management practices such as marine spatial planning (Grandgeorge et al. 36 

2008). 37 

Here, we evaluate vulnerability of a marine bird community in the Forth and Tay coastal 38 

region of the western North Sea, UK to climate and other anthropogenic threats, using data on 39 

counts and demographic rates (productivity and adult survival) from 1980 and 2011. This 40 

internationally important bird community comprises breeding, wintering and migrating birds from 41 

12 different families (Anatidae, Gaviidae, Procellariidae, Hydrobatidae, Sulidae, Phalacrocoracidae, 42 

Podicepedidae, Scolopacidae, Stercorariidae, Laridae, Sternidae and Alcidae). Sea temperatures in 43 
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the North Sea have increased significantly since the 1970s (Edwards et al. 2006), particularly 1 

following  a major regime shift in the late 1980s (Beaugrand 2004). Associated with this warming 2 

there have been profound and sustained changes in distribution and abundance of plankton and fish 3 

(Edwards et al. 2002, Perry et al. 2005, Lindley et al. 2010, Frederiksen et al. 2013). Several long-4 

term datasets on marine bird abundance and demography have been collected over this period, and 5 

previous studies have shown that some species are sensitive to indirect effects of climate change 6 

(Frederiksen et al. 2007, Frederiksen et al. 2008, Burthe et al. 2012, Luczak et al. 2012). The North 7 

Sea is currently under intense pressure from multiple anthropogenic threats. It is one of the most 8 

heavily fished areas of the world, traditionally supporting a range of fish and shellfish fisheries 9 

(Worm et al. 2009). Furthermore, a large expansion of marine renewable developments is proposed 10 

for the region (Marine Scotland 2011). Therefore, there is an urgent need to quantify the 11 

vulnerability of this marine bird community to these multiple anthropogenic threats. Two studies 12 

have undertaken qualitative assessments of vulnerability of a subset of this bird community to 13 

specific threats. Furness and Tasker (2000) used species foraging strategies to classify those that 14 

were potentially vulnerable to climate induced changes in sandeel prey availability. More recently, 15 

Furness et al. (2013) evaluated the vulnerability of species to collision and displacement associated 16 

with the development of marine renewables in the region. Here, we consider a wider community of 17 

species and larger suite of anthropogenic threats, and undertake quantitative assessments of climate 18 

impacts. This study is the first, to our knowledge, to assess the vulnerability of a marine bird 19 

community to indirect effects of climate change and other anthropogenic pressures including 20 

fisheries, disturbance, development of offshore wind farms and pollution. We aimed to determine 21 

which species and families are most vulnerable to climate change and multiple threats in this region, 22 

and provide an overall assessment of the vulnerability of the marine bird community to future 23 

climate warming. 24 

 25 

METHODS  26 

STUDY SPECIES AND DATA COVERAGE 27 

We focused on the Forth and Tay region, East Scotland (Figure 1). This region is important for a 28 

wide range of marine bird species throughout the year, supporting nationally and internationally 29 

important populations of summer visitors, migrants, breeding and overwintering species (Söhle et 30 

al. 2007, JNCC 2013). We extracted data for the 45 marine bird species from 11 families protected 31 

by the European Birds Directive 79/409/EEC because they are listed in Annex 1 or because they are 32 

regularly occurring migratory species, and for which data were available for the western North Sea 33 

(Lack 1986, Mitchell et al. 2004, Forrester et al. 2007, Worm et al. 2009) (see Table S1 in 34 

supplementary information for details). Data were obtained from 4 sources: the European Seabirds 35 

at Sea database (ESAS); the Seabird Monitoring Programme (SMP); the Wetlands Bird Survey 36 

(WeBS); and the Isle of May Long-term Study (IMLOTS). We focused analyses on the period 37 

between 1980 and 2011 as prior to this many data sets were too sparse.  38 

ESAS data 39 

The ESAS database is a collaborative scheme managed by the Joint Nature Conservation 40 

Committee (JNCC; http://jncc.defra.gov.uk/page-4469) and contains data on the distribution and 41 

http://jncc.defra.gov.uk/page-4469
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abundance of seabirds in European waters recorded during ship and aerial surveys. Data were 1 

extracted for an area of the western North Sea between 55° - 58°N and 4°W - 0°E (Figure 1), in 2 

order to provide a balance between areas that lie within the foraging range of birds at major 3 

breeding sites in the Forth and Tay region and sampling resolution, since data were very sparse for 4 

many species. The total area surveyed was 24159 km
2
 (range per season per year: 0-1791km

2
). Data 5 

were collected throughout the year so we considered two seasons in our analysis: summer (April to 6 

September) and winter (October to March). The winter season for a particular year consisted of the 7 

last three months of the preceding year and first three months of the year in question (e.g. winter 8 

1997 included October-December 1996). We analysed counts of birds from aerial and boat based 9 

transects, and we included snapshot counts for flying birds, but excluded incidental sightings, 10 

presence/absence data and records not identified to species (see Tasker et al. 1984 for detailed 11 

methods). For each species, analysis was undertaken on the summed counts in each season in each 12 

year, offset by the total area surveyed. ESAS data have limited power for detecting trends in 13 

abundance (Maclean et al. 2013). Therefore, we took the following steps to ensure robust analyses.  14 

Data per season per species were only analysed if ten or more years of non-zero counts were 15 

available. Counts for some species were low and/or contained large single peaks which could have 16 

strong leverage in analyses. We therefore excluded data if average counts for a species in a season 17 

were <20 birds/100km
2
 or if the time series showed single peaks 5 times greater in size than the 18 

average count of the remaining data points. Time series for further analysis were available for 7 19 

species: razorbill (Alca torda) in summer; herring gull (Larus argentatus) and great black-backed 20 

gull (Larus marinus) in winter; and northern fulmar (Fulmarus glacialis), northern gannet (Morus 21 

bassanus), black-legged kittiwake (Rissa tridactyla) and guillemot (Uria aalge) in both seasons. 22 

 23 

SMP Data 24 

The SMP is a joint scheme managed by JNCC (http://jncc.defra.gov.uk/page-4460). The online 25 

database contains complete breeding colony censuses or counts of subsets of colonies (plots). 26 

Annual estimates of productivity  were also available for some colonies (average number of young 27 

fledged per Apparently Occupied Nest; see Walsh (1995) for full method details). We included data 28 

for all major breeding colonies in the Forth and Tay where data were available for ten or more 29 

years, to ensure that sufficient data were available for analyses (Figure 1). In addition, data for the 30 

St Fergus gas terminal (120 km north of the northern boundary of our core study area) were 31 

included because this was one of the best time series of Arctic tern (Sterna paradisaea) and 32 

common tern (Sterna hirundo) productivity. We also included two major breeding colonies with 33 

good quality data (Farne Islands and Fowlsheugh; Figure 1) that were in close proximity to the 34 

study area (c40 and c50km to the south and north respectively) and whose birds were likely to be 35 

subject to the same local climatic conditions. In the analysis, productivity data were treated as 36 

binomial counts, relative to the number of possible chicks per nest based on maximum brood size 37 

(Cramp 1977, 1983). 38 

 39 

WeBS Data 40 

http://jncc.defra.gov.uk/page-4460
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The Wetland Bird Survey is a joint scheme coordinated by the British Trust for Ornithology, 1 

the Wildfowl and Wetlands Trust, the Royal Society for the Protection of Birds and JNCC 2 

(http://www.bto.org/volunteer-surveys/webs/data). Volunteers undertake monthly land-based counts 3 

of birds. Counts are classed as being “good” or “poor” quality, depending on whether the count is 4 

regarded as a reliable estimate of the numbers of birds present at a site. We analysed data from four 5 

sites (the Forth Estuary, Eden Estuary, Tay Estuary and St Andrews Bay; Figure 1). Data for each 6 

species for all sites were examined to establish when the peak count occurred. If there was a clear 7 

tendency for peaks to occur in a particular month then years were excluded if data for that month 8 

were missing from the dataset or confidence in the count was poor. We analysed the maximum 9 

monthly count per site occurring in winter and/or summer. We included sites where data were 10 

available for ten or more years, to ensure that sufficient data were available for analyses. We 11 

excluded sites where counts were of poor quality, where more than one month out of six was 12 

missing, or time series where average counts were <10 birds. Data were available for further 13 

analysis from 13 species: 5 in summer, 7 in winter and 1 in both seasons. 14 

 15 

IMLOTS data 16 

IMLOTS is the long-term study of seabird populations breeding on the Isle of May, south-17 

east Scotland carried out by the Centre for Ecology & Hydrology (CEH) 18 

(http://www.ceh.ac.uk/sci_programmes/isleofmaylong-termstudy.html). Annual adult survival 19 

estimates were calculated for five species between 1986 and 2009 (see Frederiksen et al. 2004, 20 

Harris et al. 2005 and Frederiksen et al. 2008 for details): black-legged kittiwake; razorbill; 21 

guillemot; Atlantic puffin (Fratercula artica) and European shag (Phalacrocorax aristotelis).  M-22 

arrays of recaptures for each cohort of ringed birds were used to calculate Jolly-Seber survival 23 

estimates per year and species between 1986 and 2009 (see Lebreton et al. 1992 for details). 24 

 25 

Environmental Data  26 

Monthly average SST data were obtained from NOAA Pathfinder version 5.0 (Kilpatrick et 27 

al. 2001) for the same area as the ESAS data (55° - 58°N, 4°W - 0°E). We analysed annual mean 28 

values across this area for the following seasons: winter (December, January, February); spring 29 

(March, April, May); summer (June, July, August) and autumn (September, October, November). 30 

SST values were generally not highly correlated between seasons except for winter vs spring and 31 

summer vs autumn (correlation coefficients: winter vs spring= 0.80; spring vs summer= 0.51; 32 

spring vs autumn= 0.50; summer vs autumn= 0.80; summer vs winter=0.39; autumn vs 33 

winter=0.60). Previous research has found correlations between SST lagged by one year and seabird 34 

productivity indicative of indirect effects of climate (Frederiksen et al. 2007, Burthe et al. 2012). 35 

We therefore considered SST lagged by up to two years in our analysis.  36 

 37 

STATISTICAL ANALYSIS  38 

Relationships with climate 39 

http://www.bto.org/volunteer-surveys/webs/data
http://www.ceh.ac.uk/sci_programmes/isleofmaylong-termstudy.html
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We examined whether each data series was correlated with climate by regressing each time 1 

series against current and lagged SST. Fifteen measures of SST were considered: spring, summer, 2 

autumn, winter and annual (January to December) mean SST values for the current year and for 3 

each of the previous two years. The same model structures were used as for the temporal trends 4 

(GLMMs fitted in glmmPQL incorporating an AR(1) correlation structure). As time series were 5 

generally limited in length, we only fitted one climate term at a time to avoid overparameterisation 6 

of models. Tables of model results for relationships with climate and trends are provided in the 7 

supplementary information (Tables S2-S7). 8 

Temporal trends 9 

We analysed trends in SST and in count and demography (productivity and survival) data 10 

separately for each data source and, where appropriate, season for each species. For each 11 

combination the relationship with year was analyzed using a generalized linear mixed model 12 

(GLMM). Count data were modeled with a Poisson distribution and productivity and survival data 13 

with a binomial distribution. GLMMs were run using the glmmPQL function in the MASS package 14 

in program R (Venables et al. 2002) because this automatically adjusts for overdispersion, if 15 

present, and because it enabled us to include an AR(1) correlation structure in all models in order to 16 

account for temporal autocorrelation. Site was included as a random effect when analyzing WeBS 17 

count data for species with data from multiple estuaries/bays, and colony was included as a random 18 

effect when analyzing SMP count and productivity data for species with data from multiple 19 

colonies. Hence, models provide an estimate of overall trends rather than site-specific estimates. For 20 

other data, a redundant random effect with a single category was included. This redundant random 21 

effect had a variance of zero but including it in the model allowed us to fit the models as GLMMs 22 

rather than GLMs, and so allowed us to include AR(1) correlation structure. For the ESAS data, the 23 

logarithm of total area surveyed was included as an offset in all models. Visual examination of bird 24 

time series suggested that some may have exhibited non-linear trends.  For these, we confirmed that 25 

a model fitted with year as a quadratic term was not better than a model fitted with year as a linear 26 

term. Detrending of the data was not undertaken in this analysis because we were primarily 27 

interested in constructing an index that represents the risk to a species within a changed climate and 28 

the index of risk includes both the relationship with climate and trend in time as separate 29 

components. Constructing a meaningful index using a detrending approach would be difficult 30 

because robust projections for how de-trended climate variables will change in future are not readily 31 

available. 32 

 33 

ASSESSING VULNERABILITY TO CLIMATE AND OTHER IMPACTS 34 

Quantitative assessment of vulnerability 35 

An index of vulnerability to climate was constructed based on the statistical analysis of 36 

relationships with climate and trends in counts and/or demographic rates. In total, 25 species had 37 

sufficient data for quantitative analysis.  38 

For each species, we synthesised the relationships with climate to assign climate vulnerability in 39 
two steps.  First, for each particular combination of data source and season, we assessed whether 40 
relationships with climate were consistently in one direction (positive, no relationships or negative). 41 
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Our criteria for consistency where models were significant (positive or negatively related to 1 
climate) were that at least two models were significant and that 75% of significant models had 2 

relationships in the same direction. Relationships that could not be classed as either consistently 3 
positive or consistently negative (<2 models were significant) were considered to show no 4 
relationship with climate. This approach used all fifteen climate variables in determining whether 5 
there was evidence for a relationship with climate, rather than attempting to interpret each of the 6 

fifteen relationships individually, so no explicit adjustment for multiple testing was required. 7 

 8 

In a second step, we synthesised these data source/season level results into an overall index of 9 

climate vulnerability for the species, as follows: 10 

1. Positive response to climate change: counts or demographic rates showing positive 11 

relationships with climate (counts or demographic rates increase with warmer SST) 12 

2. No response to climate change: counts or demographic rates showing no 13 

relationships with climate  14 

3. Negative response to climate change: counts or demographic rates showing 15 

negative relationships with climate (counts or demographic rates decrease with 16 

warmer SST)  17 

 18 

For 9 species, there was only 1 data source/season combination available and hence for these 19 

species climate vulnerability was based on this single assessment. Multiple data source/season 20 

combinations were available for the other 16 species. For two of these, there was no evidence of 21 

relationships with climate. In the remaining 14, some data sources showed significant relationships 22 

with climate so we assigned vulnerability to climate based on the direction of these relationships, 23 

because we cannot exclude the possibility that climate may be accounting for variation in the data 24 

for non-relationships. Crucially, however, this approach was balanced with both positive and 25 

negative relationship favoured over no response. There were 9 species where one data source 26 

showed negative relationships with climate and 3 species where one data source showed positive 27 

relationships with climate that overrode data sources for the species showing no relationships with 28 

climate. There were 2 species where different data sources showed opposing relationships with 29 

climate (common guillemot and razorbill) and these species were therefore qualitatively assessed 30 

for climate vulnerability (see next section). Thus, quantitative assessment was undertaken on a total 31 

of 23 species. 32 

We calculated an index of population concern to future climate warming incorporating two sources 33 

of information: the vulnerability to climate index described above (positive, no or negative 34 

response) and count/demographic trends (increasing, stable or decreasing). In synthesizing trends, 35 

we took a similar approach to climate vulnerability; thus, if multiple data were available and 36 

showed evidence of significant trends in some data sources and no trends in others, trends were 37 

assigned based on the direction of significant trends. The index of population concern ranged from a 38 

score of 0 (very low concern: counts or demographic rates increasing and positive response to 39 

climate) to 4 (very high concern: counts or demographic rates decreasing and negative response to 40 

climate; Table 1). 41 

 42 
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Qualitative assessment of vulnerability 1 

A qualitative assessment of vulnerability to climate was undertaken for the remaining 22 species. 2 

This assessment was carried out by first reviewing published relationships with climate in the 3 

literature. These were only available for Manx shearwater (Puffinus puffinus), great skua 4 

(Stercorarius skua), common guillemot and razorbill. Vulnerability for the 19 remaining species 5 

was based on the foraging ecology sensitivity index in Furness and Tasker (2000). This index is 6 

based on sum of scores (0-4 per category for 6 categories with 4 being the highest in terms of 7 

vulnerability to climate induced changes in sandeel prey availability; hence minimum score 0 and 8 

maximum of 24) for body size, costs of foraging, foraging range, ability to dive, amount of spare 9 

time and ability to switch diet (see Furness and Tasker 2000 and supplementary information for full 10 

details). 11 

Vulnerability to climate was assigned as follows: 12 

1. Positive response or low foraging sensitivity to climate change: counts or 13 
demographic rates showing positive relationships with climate variables or 14 

low foraging sensitivity score (<10)  15 

2. No response or moderate foraging sensitivity to climate change: counts or 16 

demographic rates showing no relationships with climate variables or 17 

medium foraging sensitivity score (10-14)  18 

3. Negative response or high foraging sensitivity  to climate change: counts 19 
or demographic rates showing negative relationships to climate variables or 20 

high foraging sensitivity score (>14) 21 

Published population trends (increasing; stable; decreasing; unknown) were combined with the 22 

climate vulnerability index to assign an index of population concern to future climate based on the 23 

same criteria as for the quantitative assessment (Table 1). In order to be as relevant as possible to 24 

the study area, published trend information for Scotland (Perkins et al. 2005, Newson et al. 2008, 25 

Dillon et al. 2009, Daunt & Mitchell 2013, JNCC 2013) was used where available (9 species: red-26 

throated diver Gavia stellata, Slavonian grebe Podiceps auritus, Leach’s storm-petrel 27 

Oceanodroma leucorhoa, Arctic skua Stercorarius parasiticus; great skua, common gull Larus 28 

canus, Roseate tern Sterna dougallii; common guillemot and razorbill). Data at this scale were not 29 

available for Mediterranean gull (Ichthyaetus melanocephalus) and population trend data for the 30 

UK were used for this species (JNCC 2013). Published population trends were not available for the 31 

remaining 12 species. For 11 of these species, we used conservation status (Eaton et al. 2009) with 32 

“green” conservation status assumed to be equivalent to increasing populations, “amber” to 33 

populations showing no trend, and “red” to declining populations. No information was available for 34 

surf scoter (Melanitta perspicillata) and this species’ index of population concern was scored 35 

according to vulnerability to climate. 36 

 37 

Non-climate threats 38 

We also assessed the vulnerability of species to anthropogenic threats other than climate during the 39 

time of year they are present in the Forth and Tay region. Threats from wind farm developments 40 

were based on scores presented in Furness et al. (2013). Collision risk was assessed from flight 41 
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height and agility, the % of time flying and tendency for night flight. Disturbance and displacement 1 

was scored based on reaction distances, and flexibility of habitat use. We modified the Furness et al. 2 

(2013) scores to make them comparable to our scoring system for climate vulnerability. Species 3 

with collision scores <150 were assigned a collision risk score of 1 (low vulnerability), 150-299 as 4 

2 (moderate vulnerability) and >299 as 3 (high vulnerability).  Displacement or disturbance scores 5 

of 0-6 were coded as 1, 7-12 as 2 and >12 as 3. For 7 species not included in Furness et al. (2013), 6 

we assigned scores based on those for related species (see Table S9 in supplementary information). 7 

We also assessed vulnerability to reduction in fisheries discards, fisheries bycatch, 8 

competition with fisheries, oil pollution, contaminants other than oil, plastics, introduced predators 9 

(considered to be brown rats (Rattus norvegicus), American mink (Neovison vison), domestic cats 10 

(Felis catus) and white-tailed eagles (Haliaeetus albicilla) for this study area) and disturbance 11 

associated with boats and/or human presence in breeding colonies. Assessment of vulnerability was 12 

based on the scoring system in Frederiksen (2010) where vulnerability was scored from 0 (no 13 

threat) to 3 (severe threat). Scores were adjusted to have the same scale as our other vulnerability 14 

assessments: a score of 0 was coded 1 (low vulnerability); 1 as 2 (moderate vulnerability) and ≥2 as 15 

3 (high vulnerability). In addition scores for 17 species were modified to take account of local 16 

conditions in the Forth and Tay region. Forrester et al. (2007) and our own experience of the species 17 

and study area were used to assign vulnerability scores for 20 species not included in Frederiksen 18 

(2010). See supplementary information (Table S10) for full details of these scores. 19 

 20 

Overall vulnerability to multiple threats  21 

To obtain an overall vulnerability index to multiple threats, we first consolidated the single non-22 

climate threats into four main threats: fisheries (bycatch, discards or competition), pollutants (oil 23 

pollution, contaminants and plastics), disturbance (introduced predators, human disturbance in 24 

breeding colonies) and wind farms (collision risk, displacement and boat disturbance). For each 25 

species, we adopted the highest vulnerability score per individual threat as the score for the 26 

representative main threat. We calculated two indices of vulnerability to multiple threats. The first 27 

indicated the severity of combined threats by summing the scores of vulnerability indices from each 28 

main threat (climate and four non-climate threats). The second index summed the number of main 29 

threats a species was vulnerable to: species were considered vulnerable to climate if scored as 3 and 30 

vulnerable to other threats if scored as moderate or above (≥2). This was justified because the 31 

middle category of vulnerability to climate represents no relationships between bird data and 32 

climate in the quantitative analysis, whereas for other threats the middle category infers some 33 

negative impact or risk. 34 

We calculated an overall index of population concern to multiple threats based on vulnerability to 35 

multiple threats (not vulnerable: vulnerable to <2 threats; vulnerable: ≥2 main threats) and the status 36 

of population trends using the following index: 37 

0. Very low concern: population or demographic rates increasing and not vulnerable to 38 

multiple threats 39 

1.  Low concern: population or demographic rates showing no trend and not 40 

vulnerable to multiple threats 41 
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2. Moderate concern: population or demographic rates decreasing but not vulnerable 1 
to multiple threats; population or demographic rates increasing but vulnerable to 2 

multiple threats 3 

3. High concern: population or demographic rates showing no trend and vulnerable to 4 

multiple threats 5 

4. Very high concern: population or demographic rates decreasing and vulnerable to 6 

multiple threats 7 

For 11 species where population trends were not available we based our assessments on the current 8 

conservation status (Eaton et al. 2009). Thus we assumed that species with “green” status were the 9 

equivalent of increasing populations and “amber” the equivalent of no trends in the designations 10 

above. One species (surf scoter) with no population trend or conservation status was assumed to 11 

show no trend.  12 

 13 

RESULTS 14 

CLIMATE TRENDS 15 

Between 1980 and 2011, SST in the Forth and Tay region increased significantly (mean annual rate 16 

0.05°C per year) with the effect apparent in each season of the year (Table 2). This equates to a 17 

predicted increase in annual SST in absolute terms of 1.57°C between 1980 and 2010 (1980: 9.04°C 18 

±0.13°C S.E.; 2010: 10.61°C ±0.12°C). 19 

 20 

VULNERABILITY TO CLIMATE AND OTHER IMPACTS 21 

Quantitative assessment of vulnerability 22 

In total, 25 species had sufficient data to assess relationships with climate and trends in counts 23 

and/or demography (productivity or survival). Of these, common guillemot and razorbill showed 24 

inconsistent relationships with climate and were therefore assessed qualitatively.  25 

Overall, of the 23 remaining species, 13 (57%) showed negative relationships between SST and 26 

count or demography data, five species (22%) showed positive relationships and 5 species (22%) 27 

showed no relationships.  28 

Of the species with count data, 10 showed negative relationships with climate, 7 no relationships, 5 29 

positive relationships and 1 inconsistent relationships with climate (European shag; Tables 3 and 30 

S2). None of the demographic data showed positive relationships with climate. Of the 10 species 31 

with productivity data, 5 showed negative and 5 no relationships with climate (Tables 3 and S3). Of 32 

the 5 species with survival data, 3 showed negative relationships with climate and two showed no 33 

relationship with climate (Tables 3 and S4).  34 

Seven of the 23 species showed significant declines in counts, 12 no trend and 4 significant 35 

increases in counts (Table 3 and S5). Two out of 10 species showed significant decreases in 36 

productivity and 8 showed no trend (Table 3 and Table S6). Two out of 5 species showed 37 
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significant declines in survival and 3 showed no trend (Table 3 and Table S7). Five species were of 1 

very high population concern to future climate change because they had a negative response to 2 

climate and declining population counts or demography: great crested grebe; northern fulmar; 3 

European shag; greater scaup and black-legged kittiwake. A further 7 species were considered to 4 

have high population concern because they showed a negative response to climate but no trends in 5 

population counts or demography: black scoter (Melanitta americana); red-breasted merganser 6 

(Mergus serrator); herring gull; common tern; Arctic tern; little tern (Sternula albifrons) and 7 

Atlantic puffin. Six species were considered of moderate population concern, 3 of low concern and 8 

2 of very low concern (Table 3). 9 

Qualitative assessment of vulnerability 10 

In the qualitative assessment, 11 species had a climate vulnerability index of 3 (4 species with 11 

negative responses to climate and 7 with high foraging sensitivity to climate), 10 species an index 12 

of 2 (all with moderate foraging sensitivity to climate) and 1 an index of 1 (low foraging sensitivity 13 

to climate; Table 4).  14 

Population trend data were available for 10 species, of which 7 declined and 3 increased (Table 4). 15 

Based on trends or conservation status combined with climate vulnerability, 5 species were of very 16 

high population concern to future climate change (Slavonian grebe; Arctic skua; Roseate tern; 17 

common guillemot and razorbill), 3 of high concern (Manx shearwater; black-necked grebe 18 

(Podiceps nigricollis) and little gull (Hydrocoloeus minutus)), 13 of moderate concern, 1 of low 19 

concern and none of very low concern (Table 4).  20 

Non-climate threats 21 

Species were considered to have moderate to high vulnerability to the following non-climate 22 

threats: changes to discard policy (15 species), bycatch (18), fisheries competition (17), oil pollution 23 

(33), contaminants (8), plastics (5), introduced predators (17), disturbance (18), collision risk from 24 

wind farms (27) and displacement from wind farms (21; Table 5). 25 

Of the four main threats that were defined by integrating the above single threats (see methods), 35 26 

species (78%) were considered to have moderate to high vulnerability to fisheries, 34 (76%) to 27 

pollutants, 25 (56%) to disturbance and 39 (87%) to wind farms (Table 6). 28 

 29 

Overall vulnerability to climate and multiple threats 30 

A total of 24 species (53%) were considered to have a negative relationship with or high foraging 31 

sensitivity to climate (Table 6).  Furthermore, 42 (93%) species were considered vulnerable to >1 32 

main anthropogenic threat with 8 species considered vulnerable to 5 threats; 18 species to 4 threats; 33 

11 to 3 threats, 5 to 2 threats,  2 to 1 threat and 1 to 0 threats (Table 6). Thirteen (29%) species were 34 

considered of very high population concern to multiple threats, exhibiting declines in counts or 35 

demographic rates in conjunction with vulnerability to multiple threats. A further 21 species (47%) 36 

were of high population concern.  37 

All of the 24 species in the highest climate vulnerability category were considered to have moderate 38 

to high vulnerability to at least 2 other anthropogenic threats. Twelve of these species breed in the 39 
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Forth and Tay region (8 of which also overwinter there), with a further 5 species overwintering and 1 

7 species being migratory or summer visitors to the area (Table 6). Threats were applicable to 2 

species present in the region in both the summer and winter (breeding species: 94% vulnerable to 3 

fisheries, 67% to pollutants, 89% to disturbance, 94% to wind farms, 67% to climate; overwintering 4 

species: 79% to fisheries, 90% to pollutants, 66% to disturbance, 93% to wind farms, 45% to 5 

climate). 6 

A breakdown of vulnerability to climate and multiple threats by family and main use of the region 7 

is provided in Table 7. Cormorants, grebes, skuas, terns and auks had markedly high percentages of 8 

species vulnerable to climate and high or very high population concern to future climate warming 9 

(≥50% of species for both; Table 7). All families had high vulnerability to multiple threats with 10 

ducks, cormorants, grebes, terns and auks of particularly high population concern to multiple threats 11 

(≥75% of species; Table 7). Birds breeding in the region were especially vulnerable to climate, with 12 

67% (18 species) in the highest vulnerability category. Overall vulnerability and population concern 13 

to multiple threats was high across all use groups with 100% of breeding species and 97% of 14 

overwintering species considered vulnerable to multiple threats. 15 

16 
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 1 

DISCUSSION 2 

The Forth and Tay region of the North Sea supports a large and diverse community of marine birds 3 

throughout the year that are of national and international importance (Söhle et al. 2007, JNCC 4 

2013). Sea Surface Temperature has increased rapidly in the region since 1980, comparable to rates 5 

observed in the North Atlantic and Pacific (Parry 2007).  Our quantitative assessment demonstrated 6 

negative correlations between SST and abundance, adult survival and/or productivity of 57% of 7 

marine bird species. Combining quantitative and qualitative assessments of climate vulnerability 8 

with population and demographic trends, we found that 44% of the 45 study species were of high or 9 

very high population concern to rising sea temperatures in the future. Breeding, overwintering and 10 

migrating species were all affected, with the largest proportion of high or very high population 11 

concern found in the former. Crucially, all species with negative responses to climate change were 12 

also vulnerable to at least two other anthropogenic threats operating in the region, with 76% of the 13 

45 species of high or very high population concern to multiple threats, potentially impacting the 14 

resilience of this marine bird community. 15 

 16 

Vulnerability to climate 17 

Globally, seabirds have declined faster than terrestrial bird groups with comparable numbers of 18 

species (Croxall et al. 2012), with the majority of trends consistent with climate change 19 

(Poloczanska et al. 2013). In accordance with this global picture, we found that only 13% of the 20 

marine bird community in the Forth and Tay region was of low or very low population concern to 21 

future warming. The effects of climate on lower trophic levels results in complex spatial and 22 

temporal variation in prey availability, making it challenging to establish links between top predator 23 

abundance or demography and environmental drivers (Le Bohec et al. 2008, Bond et al. 2011, 24 

Lahoz-Monfort et al. 2013). It is therefore of considerable concern that negative associations 25 

between climate and abundance and demographic rates were so widespread across the community. 26 

Synchronous responses to bottom-up processes occur where species are dependent on a common 27 

prey base or exhibit similar life-history strategies, and have been demonstrated in seabird species in 28 

this region (Lahoz-Monfort et al. 2011, Lahoz-Monfort et al. 2013). We found that cormorants, 29 

grebes, skuas, shearwaters, terns, auks and some individual species in other families (e.g. greater 30 

scaup and black-legged kittiwake) were particularly vulnerable to increased SST. Many of these 31 

species are heavily reliant on lesser sandeels (Ammodytes marinus) which are sensitive to changes 32 

in SST (Arnott & Ruxton 2002, van Deurs et al. 2009)  and have restricted capacity to shift 33 

distribution (Wright et al. 2000, Heath et al. 2012).  In contrast, divers, sea ducks, gannet, gulls and 34 

storm petrels were less vulnerable.  This may have arisen because of insufficient resolution in the 35 

data or lack of data on demographic rates that are more sensitive to changes in climate. However, 36 

several of these groups, in particular sea ducks, gannets and gulls, have more generalist diets which 37 

may buffer them from indirect climate impacts. Gulls and gannets exploit fisheries discards, which 38 

have provided an alternative source of food to naturally available prey, although this will alter in the 39 

coming years with changes in EU policy on discards (Bicknell et al. 2013) . Increased abundance of 40 

swimming crabs (subfamily Polybiinae) have been associated with climate change and fisheries 41 

management (Lindley & Kirby 2010). Crabs are an important dietary component of sea ducks 42 
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(Ouellet et al. 2013), and have been linked with population increases of lesser black-backed gull 1 

(Luczak et al. 2012, Schwemmer et al. 2013).  2 

We found that productivity was more sensitive to climate change than count data, in line with other 3 

studies (Frederiksen et al. 2007, Cook et al. 2014). This is of particular concern given the 4 

international conservation importance of breeding colonies in the region, with many designated as 5 

Special Protection Areas. We also found that adult survival rate was sensitive to climate change in 3 6 

(European shag, black-legged kittiwake and Atlantic puffin) of the 5 breeding species for which 7 

data were available. This is despite the fact that the latter two species have broad overwinter ranges 8 

across the North Sea and North Atlantic and hence will be encountering non-local climate at the 9 

time when most mortality takes place (Harris et al. 2010, Bogdanova et al. 2011). Factors that 10 

impact on adult survival rates are of particular significance since the latter are the key determinant 11 

of population size in K-selected species such as marine birds (Gaillard et al. 1989). However, our 12 

study highlights that survival data are generally lacking. Collection of mark recapture data is 13 

difficult and time-consuming, requiring specialised skills for catching and ringing birds at 14 

accessible breeding sites, and such data are therefore only available for a limited subset of species. 15 

Furthermore, survival analysis from dead recoveries of ringed birds is challenging in marine birds 16 

because of poor recovery rates (Robinson 2010). However, there is a need to fill this knowledge 17 

gap, especially for the sixteen species wintering in the region and hence likely to be experiencing 18 

the main period of mortality. 19 

 20 

In addition to the indirect effects of climate operating via food webs, marine bird species may also 21 

be sensitive to direct impacts of climate. Direct climate effects may be particularly important for 22 

species wintering in the region, when increased mortality can occur during prolonged periods of 23 

poor weather (Frederiksen et al. 2008, Harris & Elkins 2013). Temperature extremes, heavy rainfall 24 

or high winds may also affect productivity during the breeding season (Mallory et al. 2009, Oswald 25 

& Arnold 2012). These effects may become increasingly important since most climate models 26 

predict that future warming will be associated with increasing climate variability and hence 27 

frequency of extreme weather events (Solomon 2007, Rahmstorf & Coumou 2011). Furthermore, 28 

predicted sea-level rise may lead to loss of suitable foraging habitat for tidally feeding species or 29 

breeding habitat for ground-nesting species such as common eider and terns (van de Pol et al. 30 

2010). Complementary approaches to our study have used climate envelope models based on air 31 

temperature data from a baseline period to assess the climatic suitability of terrestrial grid squares in 32 

the UK in 2070-99 (Huntley et al. 2007). Based on these models, which integrate direct and indirect 33 

effects of climate, it is predicted that by the end of the century the Forth and Tay region will 34 

become climatically unsuitable, or at the southern edge of the breeding range, for 10 of the 18 35 

breeding species we considered (Huntley et al. 2007). These include 8 (northern fulmar, European 36 

shag, black-legged kittiwake, Atlantic puffin, common tern, Arctic tern, common guillemot and 37 

razorbill) of the 11 breeding species identified in our analyses as being of high or very high 38 

population concern to future warming. It is therefore possible that direct climate impacts may 39 

adversely affect species not currently considered vulnerable to climate as well as exacerbate 40 

impacts on species already under threat. 41 

 42 

Vulnerability to multiple impacts  43 
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Climate change comprised part of a suite of anthropogenic threats to this bird community, with 93% 1 

of species vulnerable to multiple anthropogenic threats and 73% considered of high or very high 2 

population concern to multiple threats in the future. The threats pertinent to the North Sea are also 3 

threatening seabird populations globally, in particular invasive species, pollution, commercial 4 

fisheries and human disturbance (Croxall et al. 2012). In contrast to marine birds in many other 5 

areas, mammalian predation has not been widely recorded in the Forth and Tay region. However, 6 

reintroduction of white-tailed sea-eagles has recently occurred in the region, potentially having a 7 

negative impact via predation on breeding seabirds, as observed in Norway (Hipfner et al. 2012). 8 

Furthermore, introduced plants can have significant impacts on breeding habitat available for 9 

seabirds. Expansion of tree mallow (Lavatera arborea) has substantially reduced suitable nesting 10 

habitat for Atlantic puffins at several colonies in the region. Moreover, this expansion was in part 11 

due to increases in germination opportunity due to higher temperatures (van der Wal et al. 2008), 12 

and climate warming may therefore favour further increases. In recent decades, levels of plastic 13 

pollution have increased in marine environments and such pollution impairs digestive function and 14 

causes reproductive failure (Azzarello & Vanvleet 1987, Avery-Gomm et al. 2012). Furthermore, 15 

contaminants such as brominated flame retardants and perfluorinated compounds have increased in 16 

tissues of predators (Dietz et al. 2008, Dietz et al. 2013), with negative consequences for survival 17 

rates and productivity (Votier et al. 2005, Letcher et al. 2010, Votier et al. 2011, Miljeteig et al. 18 

2012). Large scale marine renewable developments are proposed for this region as part of a broader 19 

strategy to meet green energy targets, with the potential for negative impacts from collision and 20 

displacement (Furness et al. 2013). Although future policy on fisheries for prey of  marine birds 21 

such as lesser sandeel is hard to predict, upcoming changes in EU policy are expected to reduce 22 

fishery discards, which may have a negative impact on scavenging species such as gulls and 23 

northern gannet (Bicknell et al. 2013). In contrast, policy changes on seabird bycatch are predicted 24 

to reduce mortality. The relative importance of these drivers is therefore predicted to change in 25 

future, but the overall threat is likely to remain high. 26 

The high vulnerability of the Forth and Tay region marine bird community to multiple threats 27 

means that there is an urgent need to evaluate their cumulative impacts in conjunction with climate 28 

change. While qualitative approaches such as those undertaken here are undoubtedly useful, they 29 

cannot identify whether multiple threats are additive, synergistic or antagonistic. This requires 30 

robust, quantitative analyses of the interaction between multiple impacts on marine bird 31 

communities. However, this is a huge challenge because potential drivers are difficult to quantify at 32 

the appropriate scale and will often co-vary. The few studies that have undertaken quantitative 33 

analyses of multiple impacts in wild populations have focused on effects on single species. These 34 

studies have shown that interactions between climate and other factors such as fisheries or pollution 35 

may be additive or synergistic (Frederiksen et al. 2004, Votier et al. 2005, Ainley & Blight 2009, 36 

McKinney et al. 2013). Fisheries may directly compete with marine birds or be beneficial by 37 

removing competitors, depending on what species they are harvesting (review in Lewison et al. 38 

2012) but interactions with climate are likely to be complex and hard to predict. Impacts of marine 39 

renewable developments on bird breeding colonies may change if species adjust foraging ranges 40 

due to climate warming, potentially altering overlap. Despite the lack of a strong predictive 41 

framework, there are opportunities for quantitative investigation of multiple impacts on marine bird 42 

communities. Controlled experiments are an appealing option for establishing causality, but are 43 

logistically challenging in marine environments; however, opportunities such as new marine 44 

renewable developments or changes in discard policy, would enable marine bird responses to be 45 
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partitioned unequivocally among drivers, especially in species groups where demographic 1 

sensitivity to climate has been demonstrated and which are particularly amenable to study, such as 2 

European shag, black-legged kittiwake and auks. Mechanistic studies of diet and foraging 3 

energetics would greatly enhance understanding of the impacts of multiple drivers mediated via 4 

changes at lower trophic levels (Thaxter et al. 2013), since such studies have proved powerful in 5 

elucidating responses of top predators to changing abundance in prey associated with climate 6 

change and other drivers such as pollution (Provencher et al. 2012, McKinney et al. 2013, Anderson 7 

et al. 2014) . Comparisons of multi-species colonies across broad spatial scales, across a gradient of 8 

severity of anthropogenic threats, would be another fruitful avenue of research. 9 

 10 

Conclusions 11 

To our knowledge, this study is the first comprehensive assessment of vulnerability to climate 12 

change and a suite of anthropogenic threats in a community of marine birds and builds substantially 13 

on previous evaluations of species in this assemblage to single stressors such as climate (Sandvik et 14 

al. 2005, Frederiksen et al. 2007), fisheries (Furness & Tasker 2000) and marine renewables 15 

(Furness et al. 2013). A previous assessment of changes in the size of breeding populations of the 16 

UK marine bird community between 1969 and 2002 found that most populations had increased; 17 

however, terns and black-legged kittiwakes were notable exceptions, and extensive breeding 18 

failures were apparent in several species at the very end of the study period (Grandgeorge et al. 19 

2008). Our study extended this time series by almost a decade in the Forth and Tay region, and 20 

found that, in addition to terns and black-legged kittiwakes, many other species are now declining 21 

and showing evidence of negative associations with climate. These results therefore support the 22 

concerns raised by Grandgeorge et al (2008) and indicate that climate change is now having a 23 

substantial impact on this marine bird community.  24 

Our study highlights the value of long-term demographic studies of marine birds in elucidating 25 

anthropogenic threats to species communities and emphasizes the need for continuation and 26 

expansion of such studies. However, even in the Forth and Tay region, where spatially and 27 

temporally comprehensive data on abundance and demography are available, almost half of the 28 

species present had insufficient data to enable associations with climate to be assessed 29 

quantitatively.  30 

Development of forecasting models to predict the interaction between climate and other drivers on 31 

marine bird communities is an important research priority. Progress using this approach is currently 32 

hampered by the lack of predicted regional SST data between now and 2070. However, based on 33 

our retrospective assessment of impacts of climate and other factors we suggest that the majority of 34 

marine birds in the Forth and Tay region of the North Sea face an uncertain future because of 35 

simultaneous and likely increasing threats from climate warming and a suite of other anthropogenic 36 

stressors. In particular, reductions in discard policy and expansion of marine renewables may 37 

impact this bird community further over the coming decades. In conjunction with climate change, 38 

such factors may threaten community resilience in the near future. 39 

 40 
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 27 

Figure 1: Upper panel: study area indicating the locations of the Forth and Tay estuaries (shaded box) and SMP sites 28 
outside the main Forth/Tay region that were included in analysis.  The area of the North Sea for which ESAS and SST 29 
data were analysed was between 55° - 58°N and 4°W - 0°E. Lower panel: larger scale map of the shaded box in the 30 
upper panel, indicating SMP breeding colonies and WeBS estuary sites.  31 
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 1 

Table 1: Index of population concern to future climate warming, calculated according to vulnerability to climate and 2 
whether populations or demography showed evidence of increasing, showing no trend or decreasing. The shading 3 
indicates the level of the index of population concern, ranging from white (very low concern) to dark grey (very high 4 
concern). 5 
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 1 
Table 2: Trends in SST: annual (January to December); during winter (December, January and February); spring 2 
(March, April and May); summer (June, July and August) and autumn (September, October and November) in the Forth 3 
and Tay region between 1980 and 2011 based on linear regressions of SST against year with temporal autocorrelation 4 
accounted for. 5 

 6 

Season 

SST 

Estimate 

(°C per 

year) 

S.E. 

(°C per 

year) 

t statistic p value 

Annual 0.051 0.010 5.029 0.000 

Winter 0.050 0.010 4.858 0.000 

Spring 0.056 0.015 3.779 0.001 

Summer 0.048 0.013 3.629 0.001 

Autumn 0.055 0.012 4.752 0.000 
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 8 
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Table 3: Quantitative assessment of vulnerability to climate based on relationships with climate and trends in counts 1 
and/or demographic rates. We present significant trends in counts and demographic rates and whether relationships with 2 
climate are consistent. Finally, we provide an overall index of vulnerability to climate ranging from 1 (positive) to 3 3 
(negative) and an index of population concern to future climate based on vulnerability to climate and population trends 4 
ranging from 0 (very low) to 4 (very high; see Table S8 in supp. info for a fuller version of this table).  5 

Species No 

datasets 

analysed 

Direction of significant trends  Climate regressions consistently in one 

direction? (no. models) 

Climate 

vulnerability 

Index of 

population 

concern to 

future climate 

Great crested grebe  

Podiceps cristatus 

1 Decline yes (13 negative) 3 4 

Northern fulmar  

Fulmarus glacialis 

4 Decline (productivity), no trend 

(counts)  

Yes (productivity: 9 negative; ESAS winter 

6 negative); No (SMP counts) 

3 4 

Northern gannet       

Morus bassanus 

2 Increase (ESAS summer) Yes (ESAS summer 8 positive) 1 0 

Great cormorant 

Phalacrocorax carbo 

2 Decline (SMP & WeBS) Yes (SMP: 1 negative; WeBS 12 positive) 1 2 

European shag 

Phalacrocorax aristotelis 

3 Decline (counts ), no trend 

(productivity or survival) 

Yes (survival: 4 negative) No (counts: 5 

negative & 5 positive) 

3 4 

Greater scaup          

Aythya marila 

1 Decline  Yes (12 negative) 3 4 

Common eider  

 Somateria mollissima 

2 No trend yes (SMP- 2 pos) 1 1 

Long-tailed duck  

Clangula hyemalis 

1 No trend Yes (3 positive) 1 1 

Black scoter          

Melanitta nigra 

1 No trend Yes (7 negative) 3 3 

Velvet scoter       

Melanitta fusca 

1 No trend No significant relationships 2 2 

Common goldeneye 

Bucephala clangula 

1 No trend No significant relationships 2 2 

Red-breasted merganser 

Mergus serrator 

2 No trend  Yes (winter: 2 negative) 3 3 

Goosander              

Mergus merganser 

1 No trend No significant relationships   2 2 

Black-headed gull    

Chroicocephalus ridibundus 

1 Increasing (SMP) Yes (3 positive) 1 0 

Lesser black-backed gull 

Larus fuscus 

2 Increase (counts), no trend 

(productivity) 

No significant relationships 2 2 

Herring gull              

Larus argentatus 

3 No trend (counts or productivity) Yes (ESAS winter 6 negative) 3 3 

Great black-backed gull 

Larus marinus 

3 Increase (SMP), no trend (WeBS; 

ESAS) 

Yes ( ESAS 8 negative) 3 2 

Black-legged kittiwake 

Rissa tridactyla 

5 Decline (SMP counts, survival & 

productivity) 

Yes (productivity: 7 negative; survival: 7 

negative; ESAS counts 75% negative) No 

(SMP) 

3 4 

Sandwich tern         

 Sterna sandvicensis 

2 Decline (SMP), no trend (WeBS) No significant relationships 2 2 

Common tern          

 Sterna hirundo 

3 No trend (counts or productivity) Yes (productivity: 3 negative) 3 3 

Arctic tern               

 Sterna paradisaea 

3 No trend (counts or productivity) Yes (SMP 2 negative; productivity 5 

negative) 

3 3 

Little tern                 

Sternula albifrons 

1 No trend Yes (3 negative) 3 3 

Atlantic puffin Fratercula 

arctica 

4 no trend (SMP, productivity or 

survival) 

Yes (productivity: 5 negative), no 

relationship (counts; survival) 

3 3  

 6 

 7 

 8 
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Table 4: Qualitative assessment of vulnerability to climate for species where robust data were not available for 1 
quantitative assessment or for species that showed inconsistent quantitative trends. Climate vulnerability was based on 2 
published relationships with climate or foraging sensitivity and ranges from 1 (positive response or low foraging 3 
sensitivity to climate change) to 3 (negative response or high foraging sensitivity to climate). Climate vulnerability was 4 
combined with population trends or, where unavailable, conservation status to provide an index of population concern 5 
to future climate ranging from 0 (very low) to 4 (very high).  6 

Species Scottish or UK* population 

trend (or conservation status) 

Relationships with climate Foraging 

sensitivity 

index 

Climate 

Vulnerability 

Index of 

population 

concern to 

future 

climate 

Red-throated diver   Gavia stellata Increasing (Dillon et al. 2009) Unknown 12 2 2 

Black-throated diver Gavia arctica Unknown (amber) Unknown 12 2 2 

Surf scoter         Melanitta perspicillata Unknown Unknown 13 2 2 

Great northern diver Gavia immer Unknown (amber) Unknown 11 2 2 

Red-necked grebe Podiceps grisegena Unknown (amber) Unknown 14 2 2 

Slavonian grebe Podiceps auritus Declining (Perkins et al. 2005) Unknown 15 3 4 

Black-necked grebe Podiceps nigricollis Unknown (amber) Unknown 15 3 3 

Sooty shearwater Puffinus griseus Unknown (amber) Unknown 4 1 1 

Manx shearwater Puffinus puffinus Unknown (amber) Negative  (Riou et al. 2011, 

Bicknell et al. 2013) 

7 3 3 

European storm-petrel Hydrobates pelagicus Unknown (amber) Unknown 10 2 2 

Leach's storm-petrel Oceanodroma leucorhoa Declining (Newson et al (2008)  Unknown 10 2 2 

Pomarine skua Stercorarius pomarinus Unknown (green) Unknown 15 3 2 

Arctic skua  Stercorarius parasiticus Declining Unknown 15 3 4 

Long-tailed skua Stercorarius longicaudus Unknown (green) Unknown 15 3 2 

Great skua  Stercorarius skua Increasing Negative (Oswald et al. 2008) 13 3 2 

Mediterranean gull Ichthyaetus melanocephalus Increasing* Unknown 14 2 2 

Little gull  Hydrocoloeus minutes Unknown (amber) Unknown 16 3 3 

Common gull  Larus canus Declining Unknown 14 2 2 

Roseate tern  Sterna dougallii Declining Unknown 22 3 4 

Little auk Alle alle Unknown (green) Unknown 13 2 2 

Common guillemot   Uria aalge Declining Negative (Votier et al. 2005, Lahoz-

Monfort et al. 2011) 

9 3 4 

Razorbill   Alca torda Declining Negative (Lahoz-Monfort et al. 

2011) 

12 3 4 
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 1 

 2 

Table 5: Vulnerability of species to non-climate threats. Vulnerability to each threat is ranked as 1 (low), 2 (moderate) 3 
or 3 (high). Only threats applicable when a species is present in the study area are considered.  4 
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Red-throated diver  1 2 1 3 1 1 1 2 2 3 

Black-throated diver  1 1 1 3 1 1 1 2 2 3 

Great northern diver  1 1 1 3 1 1 1 2 2 3 

Great crested grebe  1 2 1 3 1 1 1 1 2 2 

Red-necked grebe  1 2 1 3 1 1 1 1 2 2 

Slavonian grebe  1 2 1 3 1 1 1 1 2 2 

Black-necked grebe  1 2 1 3 1 1 1 1 2 2 

Northern fulmar  3 2 1 2 2 3 3 2 2 1 

Sooty shearwater  2 2 1 2 1 3 1 1 1 1 

Manx shearwater  2 2 1 2 1 3 1 1 1 1 

European storm-petrel  1 1 1 2 1 2 1 1 1 1 

Leach's storm-petrel  1 1 1 2 1 2 1 1 1 1 

Northern gannet  3 2 2 2 2 1 1 1 3 1 

Great cormorant  1 2 3 2 1 1 3 2 1 2 

European shag  1 2 1 2 1 1 3 2 1 2 

Greater scaup  1 1 2 3 1 1 1 1 2 3 

Common eider  1 2 3 2 1 1 3 2 1 2 

Long-tailed duck  1 1 2 3 1 1 1 2 1 2 

Black scoter  1 1 2 3 1 1 1 2 1 3 

Surf scoter  1 1 2 3 1 1 1 2 1 3 

Velvet scoter 1 1 2 3 1 1 1 2 1 3 

Common goldeneye  1 1 1 3 1 1 1 2 1 3 

Red-breasted merganser 1 1 2 2 1 1 1 1 1 3 

Goosander  1 1 3 1 1 1 1 1 1 3 

Pomarine skua 3 1 2 1 1 1 1 1 3 1 

Arctic skua 1 1 2 1 1 1 2 1 3 1 

Long-tailed skua 1 1 2 1 1 1 1 1 3 1 

Great skua  3 2 2 1 2 1 1 1 2 1 

Mediterranean gull 1 1 1 2 1 1 1 1 3 1 

Little gull 1 1 1 2 1 1 1 1 2 1 

Black-headed gull 1 1 1 2 2 1 1 1 3 1 

Common gull  1 1 1 2 2 1 1 1 3 1 

Lesser black-backed gull 3 2 1 2 2 1 2 1 3 1 

Herring gull  3 2 1 2 2 1 2 1 3 1 

Great black-backed gull 3 2 1 2 2 1 2 1 3 1 

Black-legged kittiwake  2 1 3 2 1 1 2 1 3 1 

Sandwich tern  2 1 1 1 1 1 3 2 2 1 

Roseate tern  2 1 1 1 1 1 3 3 2 1 

Common tern 2 1 1 1 1 1 3 3 2 1 

Arctic tern  2 1 1 1 1 1 3 3 2 1 

Little tern  2 1 1 1 1 1 3 3 2 2 

Common guillemot 1 2 2 2 1 1 3 1 1 2 

Razorbill  1 2 1 2 1 1 3 1 1 2 

Little auk  1 1 1 1 1 1 1 1 1 1 

Atlantic puffin 1 1 2 1 1 1 3 2 1 1 
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Table 6: Overall summary of vulnerability to multiple anthropogenic threats. The main use of the study area is denoted 3 
as B (breeding), OW (over-wintering), SV (summer visitor) or PM (passage migrant). We present the highest 4 
vulnerability score per main threat (fisheries, pollutants, disturbance, windfarms and climate). Summed vulnerability is 5 
the summed score for the 5 categories (including climate). We indicate the total number of threats the species is 6 
vulnerable to (climate scored as 3 or other threats scored as ≥2; table ordered by this column). The index of population 7 
concern to climate and multiple threats incorporated climate vulnerabilityor number of threats species is vulnerable to 8 
and population status respectively. 9 

Species 

Main use 
of study 

area  fi
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 Summed 
vulnerability 

score 
No. Threats 

vulnerable to  
pop trend or 

status 

Index of 
population 
concern to 

climate 

Index of 
population 
concern to 

multiple 
threats 

Northern fulmar B, OW 3 3 3 2 3 14 5 Decline 4 4 

European shag  B, OW 2 2 3 2 3 12 5 Decline 4 4 

Black scoter OW 2 3 2 3 3 13 5 No trend 3 3 

Herring gull B, OW 3 2 2 3 3 13 5 No trend 3 3 

Great black-backed gull B, OW 3 2 2 3 3 13 5 Increase 2 2 

Black-legged kittiwake  B, OW 3 2 2 3 3 13 5 Decline 4 4 

Common guillemot  B, OW 2 2 3 2 3 12 5 Decline 4 4 

Razorbill  B, OW 2 2 3 2 3 12 5 Decline 4 4 

Red-throated diver  OW 2 3 2 3 2 12 4 Increase 2 2 

Great crested grebe  OW 2 3 1 2 3 11 4 Decline 4 4 

Slavonian grebe  OW 2 3 1 2 3 11 4 Decline 4 4 

Black-necked grebe  PM 2 3 1 2 3 11 4 amber 3 3 

Great cormorant  B, OW 3 2 3 2 1 11 4 Decline 2 4 

Greater scaup  OW 2 3 1 3 3 12 4 Decline 4 4 

Common eider  B, OW 3 2 3 2 1 11 4 No trend 1 3 

Long-tailed duck OW 2 3 2 2 1 10 4 No trend 1 3 

Surf scoter  OW 2 3 2 3 2 12 4 No trend 2 3 

Velvet scoter  OW 2 3 2 3 2 12 4 No trend 2 3 

Red-breasted merganser  OW 2 2 1 3 3 11 4 No trend 3 3 

Arctic skua PM 2 1 2 3 3 11 4 Decline 4 4 

Great skua  PM 3 2 1 2 3 11 4 Increase 2 2 

Lesser black-backed gull  B, OW 3 2 2 3 2 12 4 No trend 2 3 

Roseate tern B 2 1 3 2 3 11 4 Decline 4 4 

Common tern  B 2 1 3 2 3 11 4 No trend 3 3 

Arctic tern  B 2 1 3 2 3 11 4 No trend 3 3 

Little tern  B 2 1 3 2 3 11 4 No trend 3 3 

Black-throated diver   OW 1 3 2 3 2 11 3 amber 2 3 

Great northern diver  OW 1 3 2 3 2 11 3 amber 2 3 

Red-necked grebe  OW 2 3 1 2 2 10 3 No trend 2 3 

Manx shearwater  SV 2 3 1 1 3 10 3 No trend 3 3 

Northern gannet  B, OW 3 2 1 3 1 10 3 Increase 0 2 

Common goldeneye  OW 1 3 2 3 2 11 3 No trend 2 3 

Pomarine skua  PM 3 1 1 3 3 11 3 green 2 2 

Long-tailed skua  PM 2 1 1 3 3 10 3 green 2 2 

Little gull  PM 1 2 1 2 3 9 3 amber 3 3 

Sandwich tern  B 2 1 3 2 2 10 3 Decline 2 4 

Atlantic puffin  B, OW 2 1 3 1 3 10 3 No trend 3 3 

Sooty shearwater  PM 2 3 1 1 1 8 2 amber 1 3 

Goosander  OW 3 1 1 3 2 9 2 No trend 2 3 

Mediterranean gull SV 1 2 1 3 2 9 2 Increase 2 2 

Black-headed gull  B, OW 1 2 1 3 1 8 2 Increase 0 2 

Common gull OW 1 2 1 3 2 9 2 Decline 2 4 

European storm-petrel SV 1 2 1 1 2 7 1 amber 2 1 

Leach's storm-petrel SV 1 2 1 1 2 7 1 Decline 2 2 

Little auk  OW 1 1 1 1 2 6 0 green 2 0 
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Table 7: Vulnerability of birds grouped by family and main use the Forth and Tay area to climate and multiple threats. 4 
The five right hand columns indicate the % of species in each family/main use that: are in the highest climate 5 
vulnerability category; have high or very high population concern to future climate warming; are vulnerable to multiple 6 
threats; have high or very high population concern to multiple threats; or are vulnerable to climate and other threats.  7 

 8 

Grouping 
category Family/main use No species 

% species 
with high 

vulnerability 
to climate 

% species with 
high or very 

high 
population 
concern to 

future climate 

% species 
vulnerable 

to ≥2 
threats 

% species with 
high or very 

high 
population 
concern to 

multiple 
threats 

% species 
vulnerable to 
climate and at 
least 1 other 

threat 

 Anatidae 9 33 33 100 100 33 

Family 

Gaviidae 3 0 0 100 67 0 

Procellaridae 3 67 67 100 100 67 

Hydrobatidae 2 0 0 0 0 0 

Sulidae 1 0 0 100 0 0 

Phalacrocoracidae 2 50 50 100 100 50 

Podicepedidae 4 75 75 100 100 75 

Stercorariidae 4 100 50 100 25 100 

Laridae 8 50 38 100 63 50 

Sternidae 5 80 80 100 100 80 

Alcidae 4 75 75 75 75 75 

Use of 
study 
area 

Breeding 5 80 80 100 100 80 

Breeding & Overwintering 13 62 54 100 77 62 

Overwintering 16 31 31 94 88 31 

Migrant or summer visitor 11 64 36 73 45 63 
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