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Abstract 21 

Understanding and predicting the effects of land-use change to short rotation forestry (SRF) 22 

on soil C is an important requirement for fully assessing the C mitigation potential of SRF as 23 

a bioenergy crop. There is little current knowledge of SRF in the UK and in particular a lack 24 

of consistent measured datasets on the direct impacts of land use change on soil C stocks.   25 

The ECOSSE model was developed to simulate soil C dynamics and greenhouse gas (GHG) 26 

emissions in mineral and organic soils. The ECOSSE model has already been applied 27 

spatially to simulate land-use change impacts on soil C and GHG emissions.  However, it has 28 

not been extensively evaluated under SRF. 29 

Eleven sites comprising 29 transitions in Britain, representing land-use change from non-30 

woodland land uses to SRF, were selected to evaluate the performance of ECOSSE in 31 

predicting soil C and soil C change in SRF plantations. 32 

The modelled C under SRF showed a strong correlation with the soil C measurements at both 33 

0-30 cm (R = 0.93) and 0-100 cm soil depth (R = 0.82). As for the SRF plots, the soil C at the 34 

reference sites have been accurately simulated by the model. The extremely high correlation 35 

for the reference fields (R ≥ 0.99) shows a good performance of the model spin-up. The 36 

statistical analysis of the model performance to simulate soil C and soil C changes after land-37 

use change to SRF highlighted the absence of significant error between modelled and 38 

measured values as well as the absence of significant bias in the model.  39 

Overall, this evaluation reinforces previous studies on the ability of ECOSSE to simulate soil 40 

C and emphasize its accuracy to simulate soil C under SRF plantations.  41 

 42 
 43 
 44 
 45 
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Introduction 46 

At the ecosystem scale the average total carbon (C) stock (including soil) of temperate forest 47 

biomes is approximately 280 tC ha
-1

 which is equivalent to 1030 tCO
2
 ha

-1
.  (Saugier et al., 48 

2001; Grace, 2005). In order to quantify the Great Britain (GB) woodfuel resource McKay et 49 

al. (2003) carried out a thorough assessment of the standing biomass in GB forests. Based on 50 

the results presented by McKay et al. (2003), Morison et al. (2012) reported an average figure 51 

for UK woodland C stock in trees of approximately 209 tCO2 ha
-1

  52 

Average soil C for woodland in the UK varies greatly with soil type, but a GB average value 53 

is approximately 859 tCO2 ha
-1

 (down to 1 m soil depth; Morison et al., 2012). Morison et al. 54 

(2012) also reported that the C in the litter adds an additional 60 tCO2 ha
-1

, and that to this 55 

should be added the deadwood or coarse woody debris component, estimated at 3 tCO2 ha
-1

 56 

(Gilbert, 2007). Therefore, Morison et al. (2012) suggest that the average UK woodland C 57 

stock is 1131 tCO2 ha
-1

, about 10% more than the reported temperate biome value. This 58 

figure may be surprising, as much of the woodland area in the UK is relatively young, but it 59 

is largely because of the large soil C stock in peatland areas (Morison et al., 2012). Morison 60 

et al. (2012) therefore concluded that the average soil C for GB is 778 tCO2 ha
-1

, and the 61 

average woodland C stock is then estimated at 1051 tCO2 ha
-1

, excluding the deep peat C 62 

stock and areas. 63 

Forest soils usually contain more C than equivalent soils under cropland, due to repeated 64 

mechanical disturbance during cropping, fallow periods, reduced plant inputs under cropland 65 

compared to trees and the removal of a large fraction of C sequestered by crop production in 66 

grain (e.g. Mann, 1986; Grigal and Berguson, 1998). Forest soils also usually contain more C 67 

than soils under grassland (Guo and Gifford 2002). Furthermore, forest C sinks play an 68 

important role in the Kyoto Protocol, both under article 3.3 for afforestation/reforestation/ 69 
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deforestation (ARD) activities, and article 3.4 for forest management activities (Smith et al., 70 

2005). Therefore, increasing forest areas could help sequester C in the soil and providing 71 

accurate estimates of changes in forest soil C are of critical importance. 72 

There has been long-standing interest in biomass fuel in the UK since the 1970s oil crisis. 73 

Willow grown as short rotation coppice (SRC) is the most common woody perennial crop 74 

(Hardcastle 2006), but other species such as poplar and sycamore have also been 75 

investigated. The concept of short rotation forestry (SRF) is distinct from SRC. The 76 

underlying principle is to grow a plantation at close spacing (up to 5000 plants/ha) and then 77 

fell it when the trees reach a size that is easily harvested and handled (Mitchell et al., 1999). 78 

Short rotation forestry is considered as encompassing woody crops grown for between 8 and 79 

20 years, i.e. much shorter than traditional forestry practice, but longer than SRC. The aim of 80 

SRF is to harvest the crop at an appropriate age and to remove only the stem wood. Leaving 81 

the plant residues on site may have a positive impact from the aspect of reduced nutrient 82 

removal as the wood contains less than 10% of the nutrients of the above-ground biomass of 83 

the trees (Hardcastle, 2006). 84 

Following afforestation, changes occur in the quality and quantity of C inputs (Romanyá et 85 

al., 2000; Paul et al., 2002). The capacity of afforestation to increase soil C is highly variable, 86 

and is dependent on edaphic (e.g. soil type), climatic (e.g. precipitation) and biotic (e.g. 87 

species choice) factors, as well as land-use history (Paul et al., 2002; Laganière et al., 2010). 88 

The balance between C inputs, in the form of litter and root exudates and/or fine root 89 

turnover, and losses through decomposition determines whether the ecosystem is a sink or a 90 

source of C. Evaluating the C dynamics of this type of system requires data on the size of the 91 

C pool, the magnitude of the C input and output fluxes, as well as information about the 92 

mechanisms involved in controlling flux dynamics. To promote the C sink status of tree 93 
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plantations, it is therefore imperative to determine the mechanisms involved in controlling 94 

soil C dynamics and more specifically in the storage of C in the soil after afforestation 95 

(Laganière et al., 2010). Despite the considerable soil C sequestration potential that 96 

afforestation offers, many studies have reported contradictory findings (Mc Kay, 2011). The 97 

magnitude and direction of the change in soil C after afforestation is strictly dependent to the 98 

previous land use (arable/grassland), the soil type (mineral/organo-mineral) and land 99 

preparation technique. Hence, afforestation could result in either a decrease (Ross et al., 100 

1999; Farley et al., 2004) or an increase in soil C (Del Galdo et al., 2003), or had a negligible 101 

effect (Davis et al., 2007; Smal & Olszewska, 2008). Nevertheless, a trend appears to 102 

emerge: afforestation frequently shows an initial loss in soil C during the first few years, 103 

followed by a gradual return of C to levels comparable to those in the control soil, and then 104 

increasing to generate net C gains in some cases (Paul et al., 2002; Davis et al., 2007).  105 

Short rotation plantations do not usually replace undisturbed plant communities, but most 106 

often are established on previously cultivated land, either those presently under arable crops 107 

or under grass cover. In many cases, this is characterized as ‘marginal crop land’. Such land 108 

is likely to have lost 30% or more of the original soil C through cultivation and associated 109 

erosion (Grigal and Berguson, 1997). The effect of land-use to short-rotation biomass 110 

plantations on soil C has become relevant because of links to atmospheric CO2 enrichment, 111 

climate change, and related environmental issues. However, there is little current knowledge 112 

of SRF in the UK and the lack of consistent data sets on afforested SRF systems (Rowe et al., 113 

2009), which in turn is mainly due to inconsistent experimental designs, sampling methods 114 

and/or soil analysis techniques, results in high uncertainty on the effect of land-use change to 115 

SRF on soil C. 116 

Soil C sequestration is often estimated using numerical soil/ecosystem models. There are 117 

many types of soil C decomposition models including: (1) single pool first order 118 
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decomposition rate models, (2) food-web models using nitrogen (N) and C interchanges 119 

between soil organisms, (3) cohort models describing decomposition as a continuum and (4) 120 

process based multi-compartment models such as RothC (Coleman & Jenkinson, 1999). 121 

These models have varying levels of complexity and their utility will depend on the data sets 122 

available for their parameterization (Dondini et al., 2010). 123 

Several models have been developed in an attempt to quantify C from a vast range of mineral 124 

soils. Process-based models have been developed from an understanding of how soil C is 125 

affected by soil properties, land management and weather fluctuations. Incorporation of these 126 

detailed processes and levels of understanding means these process-based models are 127 

important, and often successful at predicting not just soil C but also greenhouse gas (GHG) 128 

emissions at site level (Bell et al., 2012). However, model testing is often limited by a lack of 129 

field data to which the simulations can be compared (Desjardins et al. 2010). 130 

The requirement to simulate the C and N cycles using minimal input data on both mineral and 131 

organic soils led to the development of the ECOSSE model (Smith et al. 2010a, b). ECOSSE 132 

is a process-based model designed to simulate soil C and N dynamics and GHG emissions 133 

from mineral and organic soils using only data that are commonly available at a regional 134 

scale (Bell et al., 2012). The ECOSSE model has already been validated and applied spatially 135 

to simulate land-use change impacts on soil C and GHG emissions over different soil types, 136 

to simulate soil C change under energy crops and to simulate soil N and nitrous oxide (N2O) 137 

emissions in cropland sites in Europe (Bell et al., 2012; Smith et al., 2010b). However, it has 138 

not previously been evaluated against a range of soils with varying organic content under 139 

SRF plantations across GB. 140 

This paper presents a field evaluation of ECOSSE and its suitability for estimating soil C 141 

from British SRF soils after land-use change from conventional non-woody systems 142 
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(grassland with the exception of one field site which was arable). If measured and modelled 143 

values are in agreement, the user can have more confidence that the model will correctly 144 

simulate the processes. Evaluation of process-based models is often made difficult due to lack 145 

of data from suitable study sites. The provision of data from eleven paired field sites in 146 

Britain means that the mechanistic processes of ECOSSE can be evaluated thoroughly in this 147 

study. 148 

 149 

 150 

 151 

 152 

 153 

 154 

 155 

 156 

 157 

 158 

 159 

 160 

 161 

 162 
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Materials and Methods 163 

 164 

ECOSSE model 165 

The ECOSSE model includes five pools of SOM, each decomposing with a specific rate 166 

constant. Decomposition is sensitive to temperature, soil moisture and vegetation cover, and 167 

so soil texture, pH, bulk density and clay content of the soil along with monthly climate and 168 

land-use data are the inputs to the model (Coleman and Jenkinson, 1996, Smith et al., 1997). 169 

The ECOSSE model simulates C and N cycle for four categories of vegetation: arable, 170 

grassland, forestry and semi-natural.  Short rotation forestry is commonly considered as 171 

encompassing woody crops, therefore it is included in the forestry category of the model. 172 

The soil input of the vegetation (SI) is estimated by a modification of the Miami model 173 

(Lieth, 1972), which is a simple conceptual model that links the climatic net primary 174 

production of biomass (NPP) to annual mean temperature (T) and total precipitation (P) 175 

(Grieser et al., 2006).  Separate estimates are obtained for NPP as a function of temperature 176 

(NPPT) and precipitation (NPPP) according to empirical relationships, and the Miami 177 

estimate of NPP is found as the minimum of these two estimates.  In the present study NPP is 178 

rescaled for each land cover type; for forest the rescaling factor is 7/8 of the Miami NPP 179 

estimate (Del Grosso et al., 2008) and the SI is then estimated as a fixed proportion of the 180 

NPP according to the land cover (value for forest is 0.15; Schulze et al., 2010).  The linear 181 

rescaling of the non-linear Miami functions is reasonable given the near-linear behaviour of 182 

the Miami functions in the temperature and precipitation range of the UK. 183 

For a full description of the ECOSSE model refer to Smith et al. (2010a). 184 

The specific ECOSSE input requirements for large scale simulations are: 185 
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Climate/atmospheric data: 186 

• 30 year average monthly rainfall, potential evapotranspiration (PET) and temperature, 187 

• Monthly rainfall, temperature and potential evapotranspiration. 188 

Soil data: 189 

• Initial soil C content,  190 

• Soil sand, silt and clay content,  191 

• Soil bulk density,  192 

• Soil pH. 193 

Land-use data: 194 

• Land-use for each simulation year. 195 

 196 

The initialization of the model is based on the assumption that the soil column is at a stable 197 

equilibrium under the initial land use at the start of the simulation. The model uses estimated 198 

yearly plant inputs and measured initial soil C to estimate a soil turnover rate which would 199 

maintain this equilibrium. Estimated plant inputs were calculated from a combination of the 200 

net primary production (NPP) model MIAMI (Lieth, 1972; Lieth 1973) and land management 201 

practices of the initial land use. The decomposition rate modifier, required to modify the 202 

overall turnover rate, was estimated by numerically solving the analytical solution of the 203 

decomposition equations (Bradbury et al., 1993). The solution was found using an iterative 204 

method, using long term climate data, updating the decomposition rate modifier until the 205 

system converges to a stable equilibrium and the change in soil carbon was zero. This method 206 

produces relative carbon pool sizes of the decomposable plant material (DPM), resistant plant 207 
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material (RPM), microbial biomass (BIO) and humified organic matter (HUM), which  along 208 

with immobile soil C, is summed up to the measured soil C (Wong et al., 2013).  209 

 210 

Data 211 

In 2011/2012, eleven sites were sampled in Britain using a paired site comparison approach 212 

(Keith et al., 2013). The sites and the relative measurements contribute to the ELUM 213 

(Ecosystem Land Use Modelling & Soil Carbon GHG Flux Trial) project, which was 214 

commissioned and funded by the Energy Technologies Institute (ETI). Each site consisted of 215 

one reference field (arable or grassland, depending on the previous land-use of the SRF 216 

fields) and one or more adjacent SRF fields, for a total of 29 transitions to SRF (Table 1). The 217 

tree species included in the present study are: Alder (Alnus incana and A glutinosa), Ash 218 

(Fraxinus excelsior), Downy birch (Betula pubescens), Hybrid larch (Larix x eurolepis), 219 

Poplar (Populus spp.), Scots pine (Pinus Sylvestris), Shining gum (Eucalyptus nitens), Cider 220 

gum (Eucalyptus gunni), Silver birch (Betula pendula), Sitka spruce (Picea sitchensis), and 221 

Sycamore (Acer pseudoplatanus). A full description of the sites can be found in Keith et al. 222 

(2013). The change in soil C was assumed to be the difference in the forested and non-223 

forested pair.   224 

Measurements of soil C, soil bulk density and soil pH, as well as information on the land-use 225 

history, were collated for each field. A full description of the field sampling approach is 226 

described in Keith et al. (2013). Briefly, for each field, fifteen soil cores to 30 cm depth were 227 

taken using a split tube soil sampler with an inner diameter of 4.8 cm. A further, three deep 228 

cores to 1 m were taken using a window sampler system with an inner diameter of 4.4 cm. 229 

Samples were analysed for %C using a LECO Truespec CN analyser. 230 
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Air temperature and precipitation data at each location were extracted from the E-OBS 231 

gridded dataset from the EU-FP6 project ENSEMBLES, provided by the ECA&D project 232 

(Haylock et al., 2008). This dataset is known as E-OBS and is publicly available 233 

(http://eca.knmi.nl/). For each location, monthly air temperature and precipitation for each 234 

simulated year was collated and a long-term average was also calculated (Table 2). Monthly 235 

potential evapotranspiration (PET) was estimated using the Thornthwaite method 236 

(Thornthwaite, 1948), which has been used in other modelling studies when direct 237 

observational data has not been available (e.g. Smith et al., 2005; Yokozawa et al. 2010; Bell 238 

et al., 2012).  239 

Soil texture data for the sites (Table 3) were extracted from the “Falloon” soil database (1 km 240 

resolution) which is a collated soils dataset for England and Wales, Scotland and Northern 241 

Ireland described in Bradley et al. (2005), and termed “Falloon” as it was first used to run 242 

RothC in support of the Land-Use Change and Forestry (LULUCF) inventory (Falloon et al., 243 

2006).  244 

 245 

Model evaluation 246 

At each site, each transition from conventional crop (arable or grassland) to SRF was 247 

modelled and the simulated soil C was compared to the measured soil C. Based on the site 248 

information provided, the measured soil C at each reference arable/grassland site was used as 249 

the starting C input to the model, assuming that the soil at the reference site had been in 250 

equilibrium before the transition to SRF. All model parameters have been maintained 251 

unvaried; therefore, the presented results are a test of the ability of the model to simulate soil 252 

C under SRF as well as change in soil C from grassland/arable.  253 
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The model was evaluated using input data of measured soil C at the start of the simulation, 254 

bulk density, and soil texture from the “Falloon” soil database. The simulations were done for 255 

0-30 cm and 0-100 cm soil depth. 256 

A quantitative statistical analysis was undertaken to determine the coincidence and 257 

association between measured and modelled values, following methods described in Smith et 258 

al. (1997) and Smith and Smith (2007). The statistical significance of the difference between 259 

model outputs and experimental observations can be quantified if the standard error of the 260 

measured values is known (Hastings et al. 2010). The standard errors (data not shown) and 261 

95% confidence intervals around the mean measurements were calculated for all field sites. 262 

The degree of association between modelled and measured values was determined using the 263 

correlation coefficient (R). Values for R range from -1 to +1. Values close to -1 indicate a 264 

negative correlation between simulations and measurements, values of 0 indicate no 265 

correlation and values close to +1 indicate a positive correlation (Smith et al., 1996). The 266 

significance of the association between simulations and measurements was assigned using a 267 

Student’s t-test as outlined in Smith and Smith (2007). 268 

The average size of the error was calculated as the root mean squared deviation (RMS) (Smith 269 

et al., 2002). This is the average total difference between measured and modelled values and 270 

is expressed in the same units as the analysed data. The lower the value of RMS, the more 271 

accurate was the simulation.  272 

The bias was expressed as a percentage using the relative error, E. The significance of the 273 

bias was determined by comparing to the value of E that would be obtained at the 95% 274 

confidence interval of the replicated values (E95). If the relative error E< E95, the model bias 275 

cannot be reduced using these data. 276 
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Analysis of coincidence was undertaken to establish how different the measured and 277 

modelled values were. The degree of coincidence between the modelled and measured values 278 

was determined using the lack of fit statistic (LOFIT) and its significance was assessed using 279 

an F-test (Whitmore, 1991) indicating whether the difference in the paired values of the two 280 

data sets is significant. All statistical results were considered to be statistically significant at 281 

P<0.05. 282 

283 
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Results 284 

The model simulations of soil C showed a good fit against the measured soil C, for both 285 

reference (Figure 1) and SRF fields (Figure 2), at 0-30 cm soil depth.  286 

All the reference sites have been simulated for a time-period of ≥ 30 years without any land-287 

use change and using the field measurements as inputs to the model. Based on the site 288 

histories, we assumed that all the reference sites were in equilibrium at the time of sampling. 289 

The R value (1) of the reference sites at 0-30 cm soil depth showed a significant (P < 0.05) 290 

association between modelled and measured values, as well as no significant model bias (E< 291 

E95). 292 

Figure 2 shows the correlation between modelled and measured soil C at the SRF fields, at 0-293 

30 cm soil depth. Overall, the modelled soil C is highly correlated with the measured C 294 

(Table 4). The R value (0.93) showed a significant (P < 0.05) association between modelled 295 

and measured values.  296 

The ECOSSE model simulates SRF as a single woodland vegetation type, but at all sites, 297 

with the exception of Site 11, more than one SRF species was sampled. Therefore, for each 298 

site, a single model simulation has been correlated to more than one measurement. To avoid 299 

the lack of consistency between the number of model simulations and site measurements, the 300 

results of each SRF species sampled at the same site have been averaged and the results of 301 

the 0-30 cm soil depth presented in Figure 3. 302 

At most of the sites, the modelled soil C at 0-30 cm soil depth was within the 95% confidence 303 

interval of the measured soil C (error bars in Figure 3). At Site 1 and Site 4, the model 304 

estimated a higher soil C content compared to the measured values (112.1 t C ha
-1

 vs. 95.8 t C 305 

ha
-1

, 52.5 t C ha
-1

 vs. 43.1 t C ha
-1

, respectively), while for Site 10 the model simulated a 306 

lower accumulation of C compared to the site measurements taken four years after 307 
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conversion from pasture (82.2 t C ha
-1

 vs. 89.5 t C ha
-1

). However, modelled soil C under 308 

SRF showed a good fit against soil measurements, with an overall correlation value of R = 309 

0.93 (Table 4). 310 

The calculated statistical analysis of the model performance indicated that there is no 311 

significant model bias (E< E95) to simulate SRF and averaged SRF data. Similarly, the 312 

LOFIT values showed that the model error was within (i.e. not significantly larger than) the 313 

measurement error (F < F (critical at 5%)). 314 

The model simulations of the soil C at 0-100 cm soil depth again showed a good correlation 315 

with the measured soil C, for both reference (R = 0.99, Figure 4) and SRF fields (R = 0.82, 316 

Figure 5). Although the correlation between modelled and measured soil C at the SRF sites 317 

was lower for the whole 100 cm soil profile compared to the 0-30 cm soil depth (Table 4), the 318 

statistics of the soil C at the 0-100 cm soil depth reflected the good model performance found 319 

for the top soil layer, with a high correlation between modelled and measured values and no 320 

significant bias (Table 4). 321 

The results of each SRF species sampled at the same site have been averaged and the results 322 

are presented in Figure 6; the modelled and measured soil C at 0-100 cm soil depth followed 323 

the same correlation among sites as for the 0-30 cm soil depth. The only exceptions are Site 324 

5, Site 6, Site 9 and Site 11. The model underestimates the soil C at Site 5 and 9 by about 15-325 

20% of the measured values; whereas for Sites 6 and 11 the model overestimates the soil C at 326 

0-100 soil depth by about 50% and 30%, compared to the measured values. 327 

The change in soil C (ΔC) has been calculated as the difference between the soil C at the SRF 328 

and the soil C at the reference site and the results are presented in Figures 7 and 8. These 329 

results are important as they directly show the effect of the land-use transition itself. At 0-30 330 

cm soil depth, the ΔC was within the 95% confidence intervals of the measured values 331 
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(Figure 7). Site 1 was the only site where the ΔC was not accurately simulated by the model. 332 

At Site 1, the land-use change from arable has led to a decrease in soil C (16.3 t C ha
-1

) after 333 

8 years of land-use conversion to SRF; whereas, the results of the model simulations at Site 1 334 

showed a small increase in soil C (0.6 t C ha
-1

) after the transition.  335 

Overall, at 0-100 cm, the ΔC simulated by the model followed the same direction of soil C 336 

change as the simulated values (Fig. 8). The ΔC simulated by the model is within the 95% 337 

confidence intervals of the measured values at four sites (Site 3, Site 7, Site 8 and Site 9; 338 

Figure 8). The seven sites where the model did not match the measurements have all been 339 

established recently (2004-2008).  340 

Despite a lower correlation between modelled and measured soil C changes compared to the 341 

soil C, the simulated changes in soil C are well associated with the measured values, with a 342 

correlation factor of 0.66 and 0.72, at 0-30 cm and 0-100 cm soil depth respectively. 343 

Furthermore, the statistical analysis on the ΔC showed no model bias (E< E95) and a good 344 

coincidence (F < F (critical at 5%)) between modelled and measured changes in soil C after 345 

transition to SRF (Table 4). 346 

347 
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Discussion 348 

The results of the present work revealed a strong correlation between modelled and measured 349 

soil C and soil C changes to SRF plantations, at two soil depths (Table 4). Smith et al. 350 

(2010a) presented an evaluation of the ECOSSE model to simulate soil C at national-scale, 351 

using data from the National Soil Inventory of Scotland. This data set provided measurements 352 

of soil C and soil C change for the range of soils, climates and land-use types found across 353 

Scotland. The results of the present work are in agreement with the publication of Smith et al. 354 

(2010a), which reported a high degree of association of the ECOSSE modelled values with 355 

the measurements in both total C and change in C content in the soil. 356 

As for the SRF plots, the soil C at the reference sites have been accurately simulated by the 357 

model. The extremely high correlation for the reference fields shows a good performance of 358 

the model spin-up. The spin-up is used by the model to reach a state of equilibrium under the 359 

specified inputs. However, it is important to stress that it does not confirm that the reference 360 

sites are in an equilibrium condition. Together, these results confirm the good performance of 361 

the initialization method and the efficiency of the ECOSSE model in simulating soil C under 362 

SRF. 363 

Previous studies on ECOSSE have used large spatial datasets (Smith et al., 2010a,b) to 364 

evaluate the model accuracy to simulate soil C. The present work is the first study to utilise 365 

measured soil C at eleven different paired-sites in GB, to accurately test the ECOSSE model 366 

performance in simulating soil C and soil C changes to SRF plantation. The statistical 367 

analysis on results at both soil depths (0-30cm and 0-100cm soil depths) revealed no 368 

significant error between modelled and measured soil C and soil C changes, as well as no 369 

model bias, which suggests that the model cannot be further improved with the available data.  370 
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This is a promising result, given that this work is an independent evaluation of ECOSSE and 371 

therefore, the model had not been further improved or parameterized to produce the outputs 372 

presented in this paper.  373 

Despite the good overall results, the analysis of the correlation between modelled and 374 

measured soil C at specific sites showed that the model under/overestimated the measured 375 

soil C at some of the SRF sites (Fig.3 and Fig.6). Since the change in soil C was determined 376 

as the difference between the soil C at the SRF sites and the paired reference sites, such error 377 

was also propagated in the soil C changes values (Fig. 7 and 8). This low correlation between 378 

measured and modelled soil C is particularly manifested when comparing the soil C values of 379 

the whole soil profile (0-100cm soil depth). One reason of the higher model inaccuracy at 0-380 

100cm compared to the 0-30 cm soil depth is the difference between the soil sampling 381 

procedures. In fact, only three soil replicates were taken at one meter depth, which generated 382 

a higher measurement uncertainty compared to data presented for the 0-30 cm soil depth (n= 383 

15). 384 

The young age of SRF plantations is also a factor that affected the simulation of the soil C. 385 

The majority of transitions were less than 24 yrs old and four of the eleven sites  were less 386 

than 9 yrs old (e.g. Site 1, 4, 10 and 11). The decrease in the model accuracy to simulate the 387 

soil C at some sites could therefore be caused by the imprecision of the processes described 388 

in the model to capture the fast decrease in soil C that occurs during the first years of 389 

cultivation. Similar issues to capture the decrease in soil C after afforestation were reported 390 

for the parent model, RothC, by Romanyá et al. (2000). Romanyá et al. (2000) concluded that 391 

the soil organic C that has become physically protected before land-use change loses its 392 

protection from decomposition when the soil is converted to a new vegetation cover.  393 
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This process is not sufficiently described in the ECOSSE model, and could explain the loss in 394 

soil C after land-use change measured at some experimental sites. It is important to notice 395 

that at each sampled site, different SRF species have been sampled and this could have also 396 

led to differences in soil C accumulation/depletion compared to the model simulations, which 397 

in turn led to differences in soil C changes values.  At Site 5, for example, the soil was 398 

sampled on a Sitka spruce site together with two birch sites. The Sitka spruce site 399 

accumulated an extremely high amount of soil C in 11 years, especially at the 30-100 cm soil 400 

depth (122 t C ha
-1

), but such high C content in deep soil layers was not captured by the 401 

model. Previous studies on the effect of conversion from pasture to forest on soil C have 402 

shown contrasting results on the direction and rate of change in soil C after land-use change 403 

(Guo and Gifford, 2002; Poeplau et al., 2011; Poeaplau and Don, 2013). A meta analysis on 404 

the influence of land use change on soil C concluded that when established pastures switch to 405 

forest, soil C stocks decline under pine plantation, but are unaffected by broadleaf plantations 406 

and that the time since conversion occurred influences the soil C stocks (Guo and Gifford, 407 

2002). A recent review of 95 studies on the dynamics of soil C after land use change in 408 

temperate zone (Poeplau et al., 2011) reported that the cultivation of grassland or forest 409 

caused rapid soil C losses and the accumulation of soil C was a slow and continuous process 410 

after establishment of grassland and afforestation of cropland. Finally, Poeaplau and Don 411 

(2013) used a paired side approach on selected sites across Europe to measure changes in soil 412 

C after different land use change types. In particular, they found a significant accumulation of 413 

soil C after conversion of cropland to forest and no significant effect on the soil C converting 414 

grassland to forest. 415 

Another common source of error when studying soil C, and particularly soil C changes after 416 

transition to a new vegetation system, is the selection of paired sites. Inexact pairing is a 417 

frequent source of discrepancy, which is mainly due to the lack of information on the land-418 
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use history of fields (Goidts et al., 2009). In our study, 29 transitions have been simulated 419 

based on extended information on the selected sites.  The only improper pair was found at 420 

Site 6. At this site the reference field was an arable crop, which was converted to pasture in 421 

1994. The pasture site was sampled as a reference site, but was planted at the same time as 422 

the SRFs (1994-1996), therefore it is not a good reference for this site. In fact, the 423 

measurements showed a lower soil C under the SRFs compared to the reference site, while 424 

the model predicted around the same C content at the two paired sites.  425 

In the present study, a range of SRF species has been modelled, including Eucalyptus (Site 1 426 

and 4). However, the results of the modelled soil C did not agree with the measured values at 427 

either Eucalyptus sites or at either soil depth.  In addition, at site 1, the establishment of 428 

Eucalyptus species involved the use of strip plastic mulch mats for weed suppression, which 429 

may have led to a reduction in volume of leaf litter material being incorporated into the 430 

humic soil horizon.  There is very little research from Europe and GB on Eucalyptus litter 431 

and soil chemistry effects (Hardcastle, 2006). It has however been reported that the various 432 

species of Eucalyptus have widely different canopy density and potential growth rate (Pryor, 433 

1976), which affect the soil C behaviour under this SRF species. The ECOSSE model has 434 

previously been parameterized for forest as a land use category (Smith et al, 2010a), but no 435 

parameterization have been made for exotic species such as Eucalyptus. It is therefore likely 436 

that the model does not describe the soil C behaviour under Eucalyptus as well as under the 437 

other SRF species reported in the present work. Further model developments are therefore 438 

needed to include this vegetation type in the model parameters. 439 

This paper reinforces previous studies on the ability of ECOSSE to simulate soil C and N and 440 

test its accuracy to simulate changes in soil C after land-use change to SRF. The use of this 441 

process-based model is an improvement on empirical models, with simulations of aggregate 442 

monthly data producing high degrees of association with measured data. With further 443 
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modification to capture the decrease in soil C which often occurs in the early stage of a new 444 

transition and with better parameterisation for Eucalyptus and coniferous species, ECOSSE 445 

would be expected to be a very useful tool for quantitatively predicting the impacts of future 446 

land-use on soil C, GHG emissions and climate change.447 
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Figure legends 636 

 637 

Figure 1: Correlation between measured and modelled soil C at the reference sites at 0-30 638 

cm soil depth. Error bars represent 95% confidence interval of measured values. Dotted line 639 

represents 1:1 correlation between measured and modelled values. 640 

Figure 2: Comparison between modelled and measured soil C at the SRF sites at 0-30 cm 641 

soil depth. Error bars represent 95% confidence interval of measured values. Dotted line 642 

represents 1:1 correlation between measured and modelled values. SRF species are 643 

represented by different colours.  644 

Figure 3: Modelled and measured soil C at the study sites (0-30 cm soil depth). Results are 645 

averaged soil C values for the SRF fields at each site. Error bars represent 95% confidence 646 

interval of measured values. 647 

Figure 4: Comparison between measured and modelled soil C at the reference sites at 0-100 648 

cm soil depth. Error bars represent 95% confidence interval of measured values. Dotted line 649 

represents 1:1 correlation between measured and modelled values.  650 

Figure 5: Comparison between modelled and measured soil C (0-100 cm soil depth) at the 651 

SRF sites. Error bars represent 95% confidence interval of measured values. Dotted line 652 

represents 1:1 correlation between measured and modelled values. SRF species are 653 

represented by different colours. 654 

Figure 6: Modelled and measured soil C at the study sites (0-100 cm soil depth). Results are 655 

averaged soil C values for the SRF fields at each site. Error bars represent 95% confidence 656 

interval of measured values. 657 

Figure 7: Measured and modelled change in soil C at 0-30 cm soil depth. Results are 658 

averaged change in soil C values between the SRF fields at each site. Error bars represent 659 

95% confidence interval of measured values. 660 
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Figure 8: Measured and modelled change in soil C at 0-100 cm soil depth. Results are 661 

averaged change in soil C values between the SRF fields at each site. Error bars represent 662 

95% confidence interval of measured values. 663 
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Tables  

 

Table 1 

Site no. 
Transition unit  

(previous land use in bold) 

Duration of the SRF stands 

since transition to year of 

sampling 

(years) 

Latitude , Longitude 

1 

  

Arable  

55.2, -1.5 Eucalyptus Gunnii 8 

Eucalyptus Nitens 8 

2 

  

Pasture   

Hybrid Larch 23 52.0, -3.6 

Sycamore 23  

3 

  

Rough Pasture   

54.3, -0.5 

Alder 56 

Scots pine 58 

Silver birch 56 

Beech 56 

4 

  

Rough Pasture   

Eucalyptus Gunnii 6 53.34, -1.0 

Eucalyptus Nitens 6  

5 

  

Rough Pasture  

57.6, -3.2 
Downy Birch 13 

Silver Birch 13 

Sitka spruce 12 

6 

  

Pasture  

57.7, -3.3 
Poplar 17 

Alder  15 

Ash 15 

7 

  

Rough Pasture   

54.0, -2.4 
Alder 55 

Scots pine 55 

Sitka spruce 20 

8 

  

Pasture  

56.9, -2.6 
Sycamore 23 

Scots pine 23 

Hybrid Larch 23 

9 

  

Pasture   

55.8, -3.6 
Alder 21 

Poplar 21 

Sitka spruce 21 

10 

  

Pasture  

54.7, -2.8 
Ash 4 

Sycamore 4 

Alder 4 

11 
Rough Pasture  

56.1, 3.6 
Scots pine 4 

Table 1: Details of vegetation type, duration of the SRF stands since transition and location 

of the study sites. 
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Table 2 

  Rainfall (mm/month)  

Month Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 Site 7 Site 8 Site 9 Site 10 Site 11 

January 52.6 134.5 61.2 48.3 52.0 57.1 142.7 70.2 126.0 138.9 102.7 

February 44.3 104.7 47.8 37.3 51.1 53.8 102.9 61.5 96.9 98.7 72.6 

March 48.4 96.5 48.6 40.6 45.9 45.3 107.8 54.5 85.2 101.1 74.2 

April 47.2 82.1 47.9 45.4 44.9 47.7 82.9 54.2 61.8 68.3 52.6 

May 46.1 75.7 49.3 45.2 49.1 51.3 81.3 53.7 61.8 69.4 60.9 

June 58.4 75.4 55.9 60.3 55.5 57.2 87.4 58.2 67.0 72.6 60.2 

July 59.3 96.4 58.5 46.6 57.2 63.0 96.6 60.6 76.6 83.8 66.6 

August 62.6 97.9 68.0 53.0 62.9 63.7 117.0 66.8 86.2 94.9 76.9 

September 58.1 95.3 59.4 49.2 61.9 68.2 120.3 62.7 85.2 101.2 84.4 

October 62.4 144.9 60.7 55.9 79.6 80.7 141.2 97.7 121.5 134.5 100.1 

November 69.0 141.8 69.5 52.6 65.8 72.0 142.6 84.4 113.0 136.0 93.8 

December 58.5 138.5 64.7 52.0 55.4 58.9 150.5 67.5 112.2 138.1 91.1 

  Temperature (C˚/month)  

Month Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 Site 7 Site 8 Site 9 Site 10 Site 11 

January 6.6 3.9 2.9 4.1 3.6 3.3 2.2 2.9 3.4 2.3 2.9 

February 7.0 4.1 3.0 4.4 3.8 3.5 2.3 3.1 3.9 2.6 3.13 

March 9.2 5.5 4.8 6.5 5.2 4.9 4.0 4.5 5.5 4.1 4.88 

April 11.5 7.3 6.9 8.6 7.3 7.3 6.3 6.4 7.8 6.3 7.16 

May 14.2 10.5 9.9 11.6 9.7 9.6 9.3 9.0 10.5 9.4 9.9 

June 17.0 12.8 12.8 14.5 12.3 12.3 12.1 11.8 13.0 12.0 12.8 

July 19.4 14.7 14.8 16.7 14.3 14.3 13.8 13.7 14.7 14.0 14.4 

August 19.2 14.7 14.9 16.5 14.1 14.1 13.6 13.5 14.6 13.6 14.2 

September 16.7 12.6 12.9 14.1 12.0 12.1 11.6 11.4 12.3 11.3 11.9 

October 12.9 9.7 9.7 10.6 9.0 9.0 8.6 8.2 9.0 8.3 8.9 

November 9.2 6.5 5.8 6.9 5.8 5.8 5.0 5.0 5.9 5.0 5.3 

December 6.9 4.1 3.7 4.4 3.2 2.9 2.9 2.6 3.0 2.8 3.2 

Table 2: Long-term (30 years) monthly rainfall and temperature at the location of the study 

sites. 



35 
 

Table 3 

 

    0-30 cm soil depth 0-100 cm soil depth 

Site Reference field 
Soil C  

(t C ha
-1

) 

Bulk density 

 (g/cm
3
) 

Clay (%)* Silt (%)* Sand (%)* 
Soil C  

(t C ha
-1

) 

Bulk density  

(g/cm
3
) 

Clay (%)* Silt (%)* Sand (%)* 

1 Arable 112.0 1.3 23 33 44 151.9 1.3 39 33 29 

2 Pasture 76.2 0.9 23 49 29 81.0 1.0 23 51 26 

3 Rough Pasture 101.4 0.6 6 29 64 115.3 1.1 4 25 71 

4 Rough Pasture 54.0 1.2 8 17 75 64.5 1.4 4 9 87 

5 Rough Pasture 94.6 0.8 10 24 66 169.6 1.0 10 24 66 

6 Pasture 39.3 1.1 8 22 70 58.0 1.2 6 15 79 

7 Rough Pasture 117.2 0.7 23 33 44 239.6 1.2 23 36 42 

8 Pasture 80.7 0.7 9 33 58 90.6 0.9 8 29 62 

9 Pasture 122.9 1.0 20 27 52 285.5 1.2 25 29 46 

10 Pasture 83.0 1.0 19 30 51 164.8 1.0 29 32 39 

11 Rough Pasture 83.2 1.2 5 56 39 123.9 1.2 5 58 37 

Table 3: Measured  soil C, measured bulk density, percentage of clay, silt and sand at 0-30 cm and 0-100 cm soil depth for the reference fields. 

* Data extracted from “Falloon” soil database.  
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Table 4 

    
R t value  

t value 
E 

E  
F value 

F value 

     at P = 0.05 (95% Confidence Limit)  (Critical at 5%) 

0-30 cm  

Reference 1.00 52.02 2.26 0 24 0.00 2.03 

SRF 0.93 13.48 2.05 -4 27 0.00 1.55 

 Averaged SRF  0.96 10.58 2.26 -4 16 0.00 2.03 

Averaged ΔC 0.66 2.61 226 93 -2003 0.18 2.03 

0-100 cm 

Reference 0.99 17.84 2.26 0 58 0.00 2.03 

SRF 0.82 7.23 2.06 -3 72 0.01 1.56 

 Averaged SRF  0.87 5.39 2.26 -13 52 0.02 2.03 

Averaged ΔC 0.72 3.15 2.26 91 -1068 0.07 2.03 

Table 4: ECOSSE model performance at simulating soil C and soil C changes (ΔC) at the reference, SRF and averaged SRF fields for two soil 

depths (0-30 cm and 0-100 cm). Averaged SRF represents statistical analysis on averaged soil C values of the SRF fields at each site. Averaged 

ΔC represents averaged change in soil C of the SRF fields at each site. Association is significant for t > t (at P=0.05). Model bias is not 

significant for E < E95. Error between measured and modelled values is not significant for F < F (critical at 5%). 
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Figure 3 

 

 

 

 

 

 

 

 



Figure 4 

 

 

 

 

 

 

 

 



Figure 5 
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