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Abstract. Biogeochemical ocean circulation models used to

investigate the role of plankton ecosystems in global change

rely on adjustable parameters to capture the dominant bio-

geochemical dynamics of a complex biological system. In

principle, optimal parameter values can be estimated by fit-

ting models to observational data, including satellite ocean

colour products such as chlorophyll that achieve good spa-

tial and temporal coverage of the surface ocean. However,

comprehensive parametric analyses require large ensemble

experiments that are computationally infeasible with global

3-D simulations. Site-based simulations provide an efficient

alternative but can only be used to make reliable inferences

about global model performance if robust quantitative de-

scriptions of their relationships with the corresponding 3-D

simulations can be established.

The feasibility of establishing such a relationship is in-

vestigated for an intermediate complexity biogeochemistry

model (MEDUSA) coupled with a widely used global ocean

model (NEMO). A site-based mechanistic emulator is con-

structed for surface chlorophyll output from this target model

as a function of model parameters. The emulator comprises

an array of 1-D simulators and a statistical quantification of

the uncertainty in their predictions. The unknown parameter-

dependent biogeochemical environment, in terms of initial

tracer concentrations and lateral flux information required

by the simulators, is a significant source of uncertainty. It is

approximated by a mean environment derived from a small

ensemble of 3-D simulations representing variability of the

target model behaviour over the parameter space of interest.

The performance of two alternative uncertainty quantifica-

tion schemes is examined: a direct method based on compar-

isons between simulator output and a sample of known target

model “truths” and an indirect method that is only partially

reliant on knowledge of the target model output.

In general, chlorophyll records at a representative array of

oceanic sites are well reproduced. The use of lateral flux in-

formation reduces the 1-D simulator error considerably, con-

sistent with a major influence of advection at some sites. Em-

ulator robustness is assessed by comparing actual error dis-

tributions with those predicted. With the direct uncertainty

quantification scheme, the emulator is reasonably robust over

all sites. The indirect uncertainty quantification scheme is

less reliable at some sites but scope for improving its perfor-

mance is identified. The results demonstrate the strong poten-

tial of the emulation approach to improve the effectiveness of

site-based methods. This represents important progress to-

wards establishing a robust site-based capability that will al-

low comprehensive parametric analyses to be achieved for

improving global models and quantifying uncertainty in their

predictions.
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1 Introduction

A need for better understanding of the role marine biota will

play in influencing the nature and rate of global change in re-

sponse to human activities has led to the inclusion of process-

based models of ocean biogeochemistry in ocean circula-

tion models (Sarmiento et al., 1993) and more recently in

models of the whole Earth system (Séférian et al., 2013).

They are designed to capture the dominant responses of com-

plex ecosystems to variability in the physical environment.

The biogeochemistry models vary in complexity from simple

models in which the biota are represented by single phyto-

plankton and zooplankton types (e.g. Six and Maier-Reimer,

1996; Palmer and Totterdell, 2001) to more complex func-

tional type models in which a much larger range of dif-

ferent planktonic groups are represented (e.g Moore et al.,

2004; Gregg et al., 2003; Le Quéré, 2005; Aumont and Bopp,

2006).

The process-based models are often referred to as mecha-

nistic, as distinct from statistical or data-based models. Yet

they are also semi-empirical, incorporating adjustable pa-

rameters. Such parameters are important in process-based

models of complex systems where incomplete knowledge

and practical limits on the degree of complexity that can be

resolved make it impossible to design a model that represents

all relevant mechanisms. Predictions given by each model

are thus affected by structural uncertainty, associated with

the model’s design, and parametric uncertainty, associated

with its chosen parameter values. The equivalent parameters

in nature are typically highly variable in space and time and

among different organisms present in any assemblage, mak-

ing the optimal values particularly elusive. Effective use of

ocean observations to constrain model parameters and reduce

parametric uncertainty is necessary to improve the predictive

skill of particular models and to gain a better understanding

of inadequacies in model design.

Any rigorous exploration of a biogeochemical model’s pa-

rameter space is computationally intensive, requiring many

thousands of simulations. This has generally dictated the use

of fast site-based experiments for parametric analyses, fol-

lowing the pioneering work of Fasham and Evans (1995) and

Matear (1995). Parameters are optimized to fit observations

at individual sites (e.g. Losa et al., 2004; Fasham et al., 2006;

Friedrichs et al., 2006, 2007; Dowd, 2011; Kidston et al.,

2011; Fiechter et al., 2013; Prieß et al., 2013a; Ward et al.,

2013) or at multiple sites simultaneously (Hurtt and Arm-

strong, 1999; Schartau and Oschlies, 2003; Hemmings et al.,

2004; Friedrichs et al., 2007; Kane et al., 2011; Xiao and

Friedrichs, 2014). In these experiments, the biogeochemistry

model is integrated in a 1-D or 0-D framework representing

a single water column at each site, and a local approximation

of the physical environment is used as forcing data to drive

the simulation.

In the site-based study of Dowd (2011), a sequential data

assimilation method with a stochastic configuration of a bio-

geochemistry model was used to estimate the models’ static

parameters in combination with its time varying state (i.e. its

prognostic variables). Sequential methods use a series of

analysis cycles in which analysis steps combine observations

with model forecasts, taking into account the uncertainties

in each. The forecast for each step is initialized from the

previous analysis. Dowd (2011) estimated new joint proba-

bility distributions for state and parameters at each observa-

tion time on the basis of the new observations and a previous

analysis. However, in most cases variational inverse meth-

ods are used, the aim being to constrain the parameters of

the deterministic free-running model. Parameter values are

varied with the objective of minimizing or maximizing some

function of the model-data differences. The solution is then

the best fit to the complete observational data set that satis-

fies the model equations exactly (ignoring error introduced

by time discretization in the numerical solver). An exception

is made in the inverse approach of Losa et al. (2004), where

the model equations are used as a weak constraint and both

parameters and state are estimated. This allows for sources

of simulation uncertainty that are not associated with the ad-

justable parameters, such as structural error or error in the

forcing data.

Sequential data assimilation approaches are particularly

useful in short-term forecasting, where the forecast is highly

dependent on the initial state and state estimation is the pri-

mary goal. However, for long-term future projections that

must rely on free-running models, the estimation of model

parameters is paramount. Methods that preserve the integrity

of the model dynamics are inherently better suited to this

problem but simulation error impacting on the state variables

cannot be ignored and a more rigorous treatment of simula-

tion uncertainty is needed before the potential of these meth-

ods can be fully realized (Hemmings and Challenor, 2012).

In this study, we focus specifically on simulation uncer-

tainty introduced by the use of 1-D simulations to approxi-

mate 3-D model behaviour. The uncertainty is primarily as-

sociated with differences in the representation of the physical

environment and differences in the horizontal fluxes and ini-

tial values of biogeochemical properties. Despite this uncer-

tainty, site-based calibrations have been shown to improve

the predictive skill of 3-D models (Oschlies and Schartau,

2005; Kane et al., 2011; McDonald et al., 2012). However,

the relationship between 1-D and 3-D simulations is not well

understood in quantitative terms. Parameter vectors that are

optimal in one context are unlikely to be optimal in the other,

inevitably compromising the utility of established parameter

estimation methods.

The lack of information about biogeochemical fluxes as-

sociated with horizontal advection and diffusion is an ob-

vious source of uncertainty. Some consideration has been

given to this problem. Losa et al. (2004) introduced their

weak constraint approach primarily to allow for the neglect

of horizontal transport. Fasham et al. (2006) parametrized

diffusive fluxes based on the analysis of a passive tracer re-
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lease associated with an iron fertilization experiment, while

Friedrichs et al. (2007) included an advective flux diver-

gence term for nutrients based on 3-D model output. Fasham

et al. (1999) took a different approach, optimizing parame-

ters in a Lagrangian framework to fit data from a survey of

the North Atlantic spring bloom. The survey followed the

track of a drogued buoy to minimize the impact of horizontal

advection on the biogeochemical system under study. More

typically though, horizontal fluxes are ignored in site-based

calibration studies.

In a relatively small number of studies, parameters have

been optimized for the biogeochemistry model within its host

3-D circulation model. This is practical for limited time and

space domains: Garcia-Gorriz et al. (2003) and Huret et al.

(2007) estimated parameters for regional models by assimi-

lating satellite-derived chlorophyll data over periods of order

1 month. Doron et al. (2013) assimilated these data at a sin-

gle point in time into an eddy-permitting model of the North

Atlantic using an adapted Kalman filter analysis with a per-

turbed parameter ensemble simulation. The ensemble simu-

lation was similarly of 1-month duration. Fan and Lv (2009)

estimated spatially varying parameters for the global domain

but with an assimilation window limited to 5 days. In con-

trast, Tjiputra et al. (2007) used a 3-month assimilation pe-

riod, assimilating seasonal maps of surface chlorophyll and

nitrate into a global model of the annual cycle, but relied on

a coarse resolution model (3.5◦ horizontal resolution) and,

in common with a number of other studies, only optimized

locally in parameter space.

The type of compromises imposed on parametric analy-

ses of 3-D biogeochemical models by limited computer re-

sources are generic to many different fields in which com-

puter models are used. This problem has motivated the

development of statistical emulation techniques that allow

more comprehensive investigations of parameter space to be

achieved. A good introduction is given by O’Hagan (2006).

An emulator provides a prediction of a chosen model out-

put, or a metric used in its assessment, for any setting of the

parameter values, together with a measure of uncertainty in

that prediction. A relatively small ensemble of model runs is

required to provide training data for emulator construction,

although this is still a significant overhead for 3-D models.

Statistical emulation techniques have been applied to the

estimation of marine biogeochemical model parameters in

regional studies. Leeds et al. (2013) used emulators for com-

putational efficiency in a Bayesian hierarchical framework

that linked spatially distributed 1-D simulations. In other

work, emulators were constructed for relatively expensive 3-

D simulations to allow the required coverage of parameter

space to be achieved: Hooten et al. (2011) used 50 ensem-

ble members to represent a 7-dimensional parameter space,

while Mattern et al. (2012) used a similar ensemble size in

a two-parameter study.

Although, to the authors’ knowledge, the application of

statistical emulators to ocean biogeochemistry has so far

been limited to regional studies, they are starting to be used at

the global scale for parametric analyses of other Earth system

model components, including the coupled ocean–atmosphere

system (Williamson et al., 2013) and atmospheric aerosol

concentrations (Lee et al., 2012). These studies involved

the use of perturbed parameter ensemble simulations with

global 3-D models. Williamson et al. (2013) investigated

a 30-dimensional parameter space, benefitting from a very

large ensemble generated using climateprediction.net, a dis-

tributed computing project in which personal computers are

volunteered by members of the public. Lee et al. (2012) used

a much smaller ensemble (80 members) to investigate para-

metric uncertainty over an 8-dimensional parameter space.

The ensemble size was computationally practical owing to

the coarse resolution of the model and the limited duration

of the runs (4 months).

The application of statistical emulators to global ocean

biogeochemical models would make investigation of the

models’ predictive potential more tractable. However,

achieving sufficiently large training ensembles for periods

that fully capture the seasonal variability at an appropriate

spatial resolution will be challenging. Mesoscale and sub-

mesoscale dynamics are known to have a strong impact on

biogeochemical processes in the upper ocean (Lévy, 2008),

yet global simulations that resolve the ocean mesoscale re-

quire considerable computing resources, severely limiting

ensemble size.

Given the potential for improving the representation

of biogeochemical cycles by increasing model resolution,

avoidance of unnecessary trade-offs between resolution and

ensemble size is desirable. Improving 1-D modelling capa-

bilities is a potential solution. The goal would be to pro-

duce a set of site-based simulators that could serve as an ef-

ficient and reliable surrogate model for emulating arbitrary

3-D model outputs with quantified uncertainty. The number

of sites could be adapted according to the required ensem-

ble size and the resources available. Like a statistical emula-

tor, the system would provide a prediction of model output

and a measure of uncertainty in that prediction. We refer to

the proposed system as a mechanistic emulator to distinguish

it from statistical site-based emulators (Leeds et al., 2013)

that treat the target model as a black box. For some paramet-

ric analyses, a mechanistic emulator of this type would be

sufficient. Where more comprehensive analyses are required

it would be used to bridge the gap between the 3-D target

model and one or more statistical emulators of model out-

puts or metrics.

Here we introduce an experimental mechanistic site-based

emulator and use it to explore the feasibility of establishing

a robust relationship between 1-D and 3-D simulations. The

emulator predicts annual cycles of surface chlorophyll output

produced by a target model of the global ocean. The aim is

to provide a way of exploiting satellite chlorophyll or related

ocean colour products for making reliable inferences about

the target model performance for arbitrary trial parameter
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vectors, without having to run the corresponding 3-D sim-

ulations.

Section 2 describes the components of the mechanistic em-

ulator and the method for its construction and Sect. 3 gives

the experimental method used to evaluate its performance.

The results are presented in Sect. 4. In Sect. 5 the findings

are discussed with regard to the potential of the emulation

scheme as an enabling tool for improved parametric analyses

of global models, using satellite ocean colour data in combi-

nation with in situ observations. A summary of the work is

given in Sect. 6.

2 The mechanistic emulator

The site-based emulator combines a surrogate model with

a probabilistic prediction of its error with respect to the 3-D

target model. The surrogate model takes the form of an array

of 1-D simulators. Variation of the predicted error distribu-

tion of surface chlorophyll output from the surrogate model

over its time and space domain is fully described. The inten-

tion is to establish a form of traceability between the surro-

gate model and the target model that allows robust inferences

about target model skill to be made from analyses of surro-

gate model output.

Inferences about model performance are often made on the

basis of a cost function, summarizing the misfit of a simula-

tion to observational data. The cost function typically takes

the form

J (yP)= (yP− yO)
TR−1(yP− yO), (1)

where yO is a vector of n observations, yP is the correspond-

ing vector of predicted values and R−1 is the inverse of the

n×n error covariance matrix (Stow et al., 2009). The super-

script T is the transpose operator. The error covariance matrix

describes the predicted error structure of the model output.

It weights the contributions of individual model-data misfits

according to their significance, taking into account prior ex-

pectations of uncertainty.

It is commonly assumed that the individual misfits are in-

dependent. The off-diagonal elements of R are then zero and

the cost function can be written

J (yP)=
1

n

n∑
i=1

(Pi −Oi)
2

σ 2
ii

, (2)

where Pi and Oi are the elements of yP and yO respectively

and σ 2
ii represents the diagonal elements of R.

If both observation and simulation error are relevant in an

analysis, the error variance σ 2
ii is the predicted variance of the

combined error from both sources. When using a surrogate

model, the simulation error includes the surrogate model er-

ror with respect to the target model. It may also include error

from other sources such as target model input data or struc-

tural error, depending on the objective of the analysis. Hem-

mings and Challenor (2012) discuss cost function design for

different analyses in more detail.

Predicted surrogate model error statistics can be used in

a cost function to make the function more informative about

the likely misfit between the target model and the observa-

tions. They do this by increasing the weight given to model-

data misfit where the surrogate model error is expected to be

small and decreasing the weight elsewhere. The cost func-

tion can then be used to evaluate the goodness-of-fit of the

target model simulation to the observations, given the surro-

gate model output.

In the experimental emulator presented here, the statistical

prediction of the error with respect to the target model is re-

stricted to its mean and variance at individual data points. If

the emulator were used in a cost function-based analysis, the

predicted error variance would contribute directly to σ 2
ii and

the predicted mean error would be used to give bias-corrected

values for Pi . Estimation of the mean and variance is a first

step towards a more complete uncertainty quantification that

would include the error covariance structure required to fully

specify R.

The target model in the present study is NEMO-

MEDUSA, combining the MEDUSA 1.0 biogeochemistry

model (Model for Ecosystem Dynamics, carbon Utilisation,

Sequestration and Acidification) described by Yool et al.

(2011) with the NEMO ocean model (Nucleus for European

Modelling of the Ocean; Madec, 2008).

2.1 The biogeochemical simulator

The 1-D simulator incorporates a representation of the bio-

geochemistry that is identical to that in the target model.

MEDUSA is an intermediate complexity model, representing

the plankton ecosystem by 11 compartments in the form of

biogeochemical tracers. These include six nitrogen pools for

two phytoplankton groups (diatoms and non-diatoms), two

zooplankton groups (micro- and meso-zooplankton), slow-

sinking detritus and dissolved inorganic nitrogen. The re-

maining compartments represent two additional dissolved

nutrients required by the phytoplankton (silicon and iron),

the chlorophyll concentrations associated with the two phy-

toplankton types and the silicon concentration associated

with the diatoms. The effect of fast-sinking detritus is rep-

resented by instantaneous vertical redistribution of material

in the water column.

1-D integrations of MEDUSA are performed in a 3-D con-

text where physical and biogeochemical information from

the target model provide environmental input data for the

site-based simulations. The physical environment required

by the 1-D simulator is independent of the biogeochemi-

cal model parameters. However, the biogeochemical envi-

ronment is parameter-dependent, making its representation

in a site-based parametric analysis less straightforward. The

1-D simulator for MEDUSA is configured using the Marine

Model Optimization Testbed facility described by Hemmings
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and Challenor (2012). The testbed software, MarMOT 1.1, is

open source and freely available as detailed in the code avail-

ability section at the end of this article.

The MEDUSA state variables are the biogeochemical

tracer concentrations at each model grid point. The evolution

equation for the concentration cik of the ith biogeochemical

tracer at depth level k in the 1-D simulator is

dcik

dt
=− (wp +wi)

∂ci

∂z
+
∂

∂z

(
Kρ

∂ci

∂z

)
(3)

+SMSik(C,F )+pik(Ck,p
?
jk).

The first two terms represent the tendencies (i.e. rates of

change) due to vertical flux divergence. wp is the vertical ve-

locity of the water, wi is the active vertical velocity of the bi-

ological material relative to the water andKρ is the turbulent

diffusion coefficient. SMSik is the source-minus-sink term

from the MEDUSA plankton model. It is a function of the

state vector C and a forcing vector F comprising tempera-

ture, downwelling solar radiation at the sea surface and input

of soluble iron from atmospheric dust deposition. SMSik is

depth-dependent because the light available for phytoplank-

ton photosynthesis and the nutrient sources from the rem-

ineralization of fast-sinking detritus depend on tracer con-

centrations at k− 1 shallower levels. wi is assigned a con-

stant sinking rate for the detritus tracer, corresponding to the

MEDUSA sinking rate parameter for slow-sinking detritus.

It is zero for all other tracers. Values for wp, Kρ and F are

provided by the physical environment from the target model.

The final term in Eq. (3) is a perturbation term used to

represent the effect of horizontal flux divergence. The di-

vergence tendency for the ith tracer pik depends on the

local state Ck (a vector containing the subset of tracer

concentrations at depth level k) and an applied perturba-

tion p?jk . Tracer-specific perturbations are applied to trac-

ers representing dissolved nutrients and the nitrogen con-

tent of the plankton. These are referred to as primary trac-

ers. The phytoplankton chlorophyll and silicon tracers (sec-

ondary tracers) are affected indirectly, following the pertur-

bations to the corresponding nitrogen tracers in such a way as

to preserve the phytoplankton chlorophyll : nitrogen and sil-

icon : nitrogen ratios. For a primary tracer, j = i. For a sec-

ondary tracer, j indexes the relevant primary tracer.

The input data set required to define the biogeochemical

environment comprises the initial state and the applied per-

turbations controlling the tracers’ horizontal flux divergence

tendencies. This is the biogeochemical environment vector

B = {C(to),P
?
}. (4)

C(to) is the initial state vector containing the concentrations

of the 11 tracers at each depth level on the model grid at time

to and the vector P ? contains applied perturbations at each

depth level for the eight primary tracers at 5-day period mid-

points for t > to. Perturbations represent the effect of lateral

advection inferred from an analysis of local currents and up-

stream property gradients in the 3-D model output. The effect

of horizontal diffusion is ignored.

The advective tendencies of individual tracers are depen-

dent on their upstream gradients and often tend to co-vary

with their local concentrations. It is important to give some

attention to preserving such relationships that are prevalent

in the 3-D simulation as far as possible. A particular exam-

ple of a prevailing relationship occurs when tracer concen-

trations are low. If we have a negative advective tendency it

should increase towards zero as the concentration approaches

zero, otherwise the concentration will become negative. In

the 3-D simulation, this happens naturally because the up-

stream gradient driving it tends towards zero (assuming the

upstream concentration cannot be negative). In the 1-D sim-

ulation, adaptation of tendencies to the local concentration is

necessary to counter any inconsistencies between the two.

This concentration dependency is introduced by using ap-

plied perturbations that represent rates of change of trans-

formed tracers. The choice of transformation determines the

form of the dependency and is an important consideration in

simulator design.

Analysis of 3-D simulations indicate that the concentra-

tion dependency of horizontal gradients varies temporally

and spatially and between different tracers. Use of the square

root transformation protects against the evolution of nega-

tive concentrations and was found by Hemmings and Chal-

lenor (2012) to be a reasonable compromise between using

untransformed and log-transformed concentrations. A square

root transformation was therefore chosen for all primary trac-

ers at all sites so that a perturbation p? specifies the rate of

change of
√
c, where c is the tracer concentration. The im-

plied concentration tendency is then

p = 2
√
cp?. (5)

For secondary tracers the tendency is

pi =
ci

cj
pj , (6)

where i is the secondary tracer index and j indexes the as-

sociated primary tracer. The applied perturbation diagnosed

from 3-D model output is

p? =−uh · ∇h

√
c, (7)

where the subscript h denotes vectors in the horizontal plane

and uh is the current velocity.

Differences between the simulator output and that of the

target model arise due to the combined effects of a number

of sources of simulation error. Specifically these are approx-

imation error in the physical environment variables due to

temporal averaging of the 3-D target model data on which

they are based, error in the advective flux divergence tenden-

cies, error introduced by ignoring horizontal diffusion and

differences in solver numerics. Any differences between the
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initial state C(to) and the target model state at time to will

contribute an additional source of error.

2.2 The uninformed simulator and biogeochemical

environment model

In a calibration exercise or other parametric analysis, the 1-D

simulator is used to learn about the likely behaviour of 3-D

target model simulations that have not been performed. For

an arbitrary trial parameter vector xo, the parameter-specific

biogeochemical environment B(xo) is typically unknown.

Instead we use an environment vector derived from a sta-

tistical model. The corresponding 1-D simulator is referred

to as the uninformed simulator indicating that it is not in-

formed by parameter-specific environment data. Our surro-

gate model consists of an array of uninformed simulators at

different sites, spanning a range of oceanic conditions.

The statistical model used to define the biogeochemical

environment for the uninformed simulator is constructed

with reference to a small ensemble of 3-D simulations, de-

signed to be representative of the infinite set of 3-D simula-

tions covering a parameter space of interest χ . If we denote

an output value from the simulator with biogeochemical en-

vironment vector B and parameter vector x by g(B,x) and

the corresponding output from the target model by f (x), then

for parameter vector xo

f (xo)= g
(
B,xo

)
+ ε1, (8)

where B is an estimate of the expected environment

E[B(x)] : x ∈ χ and ε1 is a stochastic residual. This is the

uninformed simulator residual and its negated value is the

uninformed simulator error. The simulator output may have

biases so the residual ε1 is not assumed to have zero mean.

The environment model consists of a model for E[B(x)],

referred to as the mean environment model, and a stochas-

tic environment generator that is used in quantifying the un-

certainty of the simulator output. The environment model

assumes multi-variate Gaussian probability distributions for

a vector S(to) that specifies the initial state and for the ap-

plied advective flux perturbation vector P ?. S is an alterna-

tive description of the state C. It comprises elements
√
c for

each primary tracer concentration c in C and composition

ratios ci/cj for each secondary tracer concentration ci in C.

cj is the concentration of the associated primary tracer at the

same depth level. An estimate of E[B(x)] is given by the

ensemble means of S(to) and P ? from the 3-D ensemble.

2.3 The uninformed emulator

If an array of 1-D simulators is to be used to make robust in-

ferences about the target model, it must be combined with un-

certainty estimates for its predictions of target model output

in the form of predicted error statistics. The combination of

the uninformed simulator array with its predicted error statis-

tics is referred to here as the uninformed emulator. This is the

complete mechanistic emulator for the target model.

Two different methods are used in this study for quantify-

ing uncertainty in the uninformed simulator output: a direct

method and an indirect method. In the direct method, statis-

tics for ε1 are estimated by comparing simulator and target

model output for matching parameter vectors, using the tar-

get model output available from our small 3-D ensemble. In

the indirect method, the uncertainty introduced by using the

mean environment vector B in place of the unknown envi-

ronment vector B(xo) is treated separately from that due to

other simulator error sources. It is quantified by an uncer-

tainty analysis, using the stochastic environment generator

to create multiple realizations of the unknown environment.

Uncertainty from other sources is estimated by applying the

direct method to g[B(xo),xo], referred to as the informed

simulator. The indirect method is more complicated to ap-

ply than the direct method but is less dependent on the small

target model ensemble. This means that the indirect method

could be more robust than the direct method in situations

where the ensemble poorly represents the variability of target

model solutions over the parameter space χ .

2.3.1 Direct method for uncertainty quantification

In the direct method, values of ε1 for the variable of interest

at each point in space and time are determined from matching

pairs of uninformed simulator and target model output values

using Eq. (8). Statistics for ε1 are then estimated from this

sample. A conceptual overview of the data flow in the emu-

lator construction and evaluation process is given in Fig. 1.

The processing is divided into a construction phase and an

application phase. In a practical application, the construction

phase is intended for single execution, whereas the applica-

tion phase must be executed for each trial parameter vector.

The procedure for assessment of the uninformed emulator

against a known truth is shown as an extension to the appli-

cation phase.

Error statistics must be determined using target model data

that are independent from those used in the simulation. This

means that, in the construction phase, target model ensemble

members used to determine ε1 for the simulator output must

be different from those used to construct the mean environ-

ment model for the simulator input. Furthermore, any tar-

get model ensemble member used to assess the uninformed

emulator performance must be different from any ensemble

member used in the construction phase.

2.3.2 Indirect method for uncertainty quantification

The indirect method requires an explicit quantification of

the uncertainty associated with use of the mean environment

vector B in lieu of unavailable parameter-specific environ-

ment information. Reliance on B introduces a parameter-

dependent source of environment-induced error into the
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Figure 1. Data flow for emulator construction and application to

the prediction of target model output where simulator uncertainty

is quantified by the direct method. A1 and A2 are arbitrary sets of

indices satisfying A1 ∩A2 =∅. Simulation steps are indicated by

circles. The dotted lines and uncoloured boxes indicate data flow

for validating emulator performance against a known truth. They

are not part of the practical application procedure, where the truth

would be unknown.

simulation. The resulting contribution to simulation error is

referred to as the parametric environment error. To define it,

we consider a perfect simulator gT(., .), such that

f (xo)= gT[BT(xo),xo], (9)

where BT is the complete and accurate description of the

local biogeochemical environment in the 3-D simulation, in-

cluding advective and diffusive flux perturbations. The sim-

ulator is perfect in the sense that it exactly reproduces the

results of the 3-D simulation. Introducing parametric uncer-

tainty in the biogeochemical environment and representing

the environment by its expectation then gives

f (xo)= gT{E[BT(x)],xo}+ εB : x ∈ χ, (10)

where εB is a stochastic residual, possibly with a non-zero

mean. This is the negated parametric environment error or

parametric environment residual.

It is important to note that many different designs are pos-

sible for a perfect simulator satisfying Eq. (9), having differ-

ent formulations for concentration dependency in the flux di-

vergence tendencies. Variants of the applied perturbation P ?

will give different results for the simulator term in Eq. (10),

where the environment is not consistent with the simulation

state, and therefore different residuals. The parametric envi-

ronment error is therefore not just a property of the target

model but depends also on the simulator design.

Combining Eqs. (8) and (10), the residual for the target

model output with respect to the uninformed simulator out-

put can be expressed as

ε1 = εS+ εB, (11)

where εS is a stochastic residual given by

εS = gT{E[BT(x)],xo}− g
(
B,xo

)
. (12)

εS is the departure of the hypothetical output of the perfect

simulator with the true mean environment from the output

of the uninformed simulator. The first term describes a per-

fect mean environment simulation, while the second term de-

scribed its approximation by the simulator. In this context,

we can refer to the uninformed simulator as a mean envi-

ronment simulator. We refer to εS as the mean environment

simulation residual. Mean environment simulation error (the

negated residual) is caused by basic simulation errors that

are not associated with parametric uncertainty in the envi-

ronment.

It is not possible to evaluate the perfect simulator term in

Eq. (12) and directly determine values for εS. However, we

can get a handle on the impact of basic simulation errors from

analysing the informed simulator. The relationship between

the target model output for xo and that of the corresponding

informed simulator is given by

f (xo)= g[B(xo),xo] + ε2, (13)

where B(xo) is the environment data derived from 3-D sim-

ulation output for xo and ε2 is a stochastic residual, possibly

having non-zero mean, referred to as the informed simulator

residual. Its negated value is the informed simulator error.

The residuals ε2 and εS are closely related, in that the input

B(xo) in the informed simulator is intended to approximate

the true parameter-specific environment in the same way that

B in the uninformed simulator (or mean environment simu-

lator) is intended to approximate the perfect simulator input

E[BT(x)]. Both residuals are affected by basic simulation er-

rors. The difference is that the environment in Eq. (12) is not

specific to the parameter vector xo.

The uninformed simulator is one of a set of generic sim-

ulators, in which the constraint that the input environment

is intended to represent the parameter-specific environment

does not apply. In generic simulators, inconsistencies be-

tween the environment and the simulation state are likely to
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be greater than in the informed simulator. The mean envi-

ronment simulation residual εS may therefore be more sen-

sitive to the concentration-dependency formulation than the

informed simulator residual ε2. Nevertheless, to model εS

we make the pragmatic assumption that it is identically dis-

tributed to ε2. Statistics for ε2 are determined by direct com-

parison of informed simulator output with true output records

from the target model.

The model for the parametric environment residual εB is

derived from a parametric uncertainty analysis, following

Hemmings and Challenor (2012). The environment corre-

sponding to the trial parameter vector is unknown so we

examine the distribution of the residual over many possible

environments, aiming to achieve adequate coverage of the

environment space that maps to the parameter space of in-

terest. The method involves running a 1-D ensemble simula-

tion based on a sample of environment realizations. These are

generated using the mean environment model and stochastic

environment generator introduced in Sect. 2.2.

The environment generator uses independent statistical

models for generating the initial state and the input flux per-

turbations. For each of these two data sets, separate multi-

variate Gaussian models are constructed using empirical or-

thogonal functions (EOFs) that capture the dominant modes

of variability in the target model ensemble output at each

site. The statistical models for the initial state preserve spa-

tial covariances (in the vertical) and covariances between the

biogeochemical properties, as characterized by the first five

EOFs of the sample anomalies, anomalies being determined

with respect to the ensemble means. The statistical models

for the advective flux perturbations preserve temporal and

spatial covariances and covariances between the eight pri-

mary tracers, again as characterized by the first five EOFs of

the anomalies.

To derive the statistical model for a simulator’s initial state

from a target model ensemble of size n, an n×m matrix Y3d

is constructed containing the n available instances of the ini-

tial state, as defined by the alternative state vector S. (m is

the number of elements in S.) If y·j is the mean and s2
j the

variance of the j th column of Y3d, then the matrix Z3d with

elements

zij =
yij − y·j

sj
(14)

is the normalized form of Y3d for which each column has

zero mean and unit variance.

The environment generator uses the eigenvalues and

eigenvectors obtained from the spectral decomposition of the

correlation matrix for Z3d:

6 =
1

n− 1
ZT

3dZ3d = VT3V. (15)

3 is a diagonal matrix with diagonal elements λ1 ≥ λ2. . .≥

λm containing the eigenvalues of 6. Rows of V are the cor-

responding eigenvectors.

A data set containingN realizations of the alternative state

vector is generated by

Z1d =Q13
1
2
pVp

+Q2 diag

(√
1− vT

13pv1, . . .,

√
1− vT

m3pvm

)
, (16)

where the subscript p is used to indicate the first p rows and

columns of 3 and rows of V and vi is the ith column of Vp.

(Here p = 5.) Q1 is anN×pmatrix of random values and Q2

is an N ×m matrix of random values. The random variates

are independent and normally distributed with zero mean and

unit variance. Z1d is back-transformed (re-arranging Eq. 14)

to obtain an N ×m matrix containing N realizations of the

state vector S(to) for the 1-D environment ensemble. The

same analysis is applied to the n available instances of the

advective flux perturbation vectors from the 3-D ensemble to

generate N realizations of the P ? vector.

Each of the N randomly generated environment realiza-

tions is used to provide a separate estimate of the parametric

environment residual corresponding to a possible truth. For

the ith ensemble member this is

εBi = g(Bi,xo)− g
(
B,xo

)
, (17)

where Bi is the ith environment realization generated by the

environment model. For the true environment, Bi would be

B(xo), as in the informed simulator. The environment resid-

ual statistics var(εB) and E(εB) are approximated by var(εBi)

and E(εBi) : i ∈ {1, . . .,N}. In Eq. (17), we rely on the sim-

ulator g(., .) to provide estimates for the terms f (xo) and

gT(E[BT(x)],xo) in Eq. (10). Thus, the estimated environ-

ment residual statistics are to some extent affected by basic

simulation errors and will not be strictly independent of the

statistics for the mean environment simulation residual εS.

It should be noted that the residual εB and its predicted

distribution are dependent on the trial parameter vector xo.

Hemmings and Challenor (2012) demonstrated that the de-

pendency of environment error variance estimates on varia-

tions in the simulation trajectory over the parameter space is

potentially important in the context of a parametric analysis.

For this reason, estimation of the environment residual statis-

tics must be performed for each trial parameter vector in the

analysis, so is a significant overhead.

If the underlying distributions of the residuals εS and εB

are taken to be Gaussian then they are fully described by their

means and variances. Statistics for the uninformed simulator

residual ε1 are obtained under the assumption that εS and εB

can be considered only weakly dependent such that

E(ε1)= E(εS)+E(εB) (18)

and

var(ε1)≈ var(εS)+ var(εB). (19)
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Figure 2. Data flow for emulator construction and application to

the prediction of target model output where simulator uncertainty is

quantified by the indirect method. A is an arbitrary set of indices.

Simulation steps are indicated by circles. The dotted lines and un-

coloured boxes indicate data flow for validating emulator perfor-

mance against a known truth. They are not part of the practical ap-

plication procedure, where the truth would be unknown.

Any indirect dependency between εS and εB that might arise

from their dependencies on the simulator design is ignored.

The uninformed simulator statistics are determined by sub-

stituting our estimates for the residual statistics for each er-

ror component in Eqs. (18) and (19). In doing so, we also

ignore potential dependency arising from the effect of basic

simulation errors on var(εBi).

A conceptual overview of the data flow for the indirect

method is given in Fig. 2. Once again, the processing is di-

vided into a construction phase intended for single execution

and an application phase to be applied with each trial parame-

ter vector. The procedure for assessment of the uninformed

emulator is included in the application phase.

3 Experimental method

Anticipating the use of satellite ocean colour data for model

calibration, an emulator was constructed for the NEMO-

MEDUSA surface chlorophyll output at an array of oceanic

sites. The surface chlorophyll concentration is the sum of the

surface level chlorophyll concentrations for the two phyto-

plankton types. Data for defining the biogeochemical envi-

ronment were provided by a 10-member reference ensemble

of global 3-D simulations with the NEMO-MEDUSA tar-

get model. For emulator assessment, the known “truth” for

a given trial parameter vector is defined by chlorophyll out-

put from a target model simulation with that parameter vec-

tor.

3.1 1-D experimental framework

To provide a representative range of oceanic conditions for

the experiments, 12 sites were selected, located on a merid-

ional transect along 20◦W in the North Atlantic at 5◦ inter-

vals from 5 to 60◦ N. This spans the sub-tropical gyre and

temperate regions further north where large spring blooms

are typical, extending into the sub-polar gyre south of Ice-

land. To the south, it also crosses a high productivity region

off the East African coast between the shelf break and the

Cape Verde Islands.

Physical forcing data for the 1-D experiments, in the form

of vertical velocity wp, the vertical diffusion coefficient Kρ
and temperature are taken from 5-day mean output common

to all of the 3-D NEMO-MEDUSA simulations. Five-day

mean time series of downwelling solar radiation at the sea

surface and the soluble iron flux from dust deposition are

likewise taken from 5-day data common to all reference sim-

ulations.

Biogeochemical environment vectors for the 1-D experi-

ments are based on initial state vectors and applied perturba-

tion vectors from one or more 3-D simulations. Initial con-

centrations are taken from NEMO-MEDUSA restart files.

Approximate values for the applied perturbation p? are de-

rived from the target model’s 5-day mean current vector and

primary tracer concentration fields using Eq. (7).

1-D simulations use the same vertical grid as the 3-D

NEMO-MEDUSA simulations. The dynamics of interest are

largely confined to the upper ocean where the seasonal sig-

nal is most pronounced. A depth threshold of 1000 m was

therefore chosen for the simulations, reducing the number of

model levels from 63 to 37 with consequent computational

savings. Level 36 spans the 1000 m threshold and Level 37

is included purely to act as a sink for detritus entering from

above. In the target model, sinking detritus is remineralized

at the bottom of the water column. In the simulator it is rem-

ineralized in Level 37 instead and the vertical velocity and

diffusion at the bottom of Level 36 are set to zero to pre-

vent any interaction between Level 37 and the water column

above. Zeroing the vertical velocity does have the effect of
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introducing an anomalous divergence in the vertical flow but

the effect on the overall simulation is negligible. The upper

ocean levels have boundaries at depths 6, 12, 19, 25, 32, 39,

46, 54, 62, 71, 80, 90, 100, 112, 124, 137, 152, 168, 187, 207,

229, 254, 281, 312, 347, 386, 429, 477, 531, 591, 656, 729,

809, 896, 991 and 1093 m.

The schemes used for vertical tracer transport are the same

as those used in the target model and are described by Madec

(2008). The diffusion scheme is an implicit scheme and the

advection scheme is the Monotonic Upstream Scheme for

Conservative Laws (Van Leer, 1977; Hourdin and Armen-

gaud, 1999), introduced into NEMO for use in biogeochem-

ical modelling studies by Lévy et al. (2001). A 1 h forward

Euler time step is used.

3.2 Model parameter space

Full details of the derivation of the parameter space for the

emulation experiments are given in Appendix A. Initially,

a 28-dimensional parameter space of interest was defined;

28 parameters of particular relevance to the seasonal plank-

ton dynamics in the upper ocean were selected from a set

of 60 potential input parameters in the MarMOT 1.1 imple-

mentation of MEDUSA. The parameter bounds were defined

according to a set of rules designed to ensure that parame-

ter values within the bounds are biologically plausible with

respect to their defined roles.

The set of adjustable input parameters differs from the set

of internal model parameters defined by Yool et al. (2011)

due to a number of modifications made to facilitate paramet-

ric analyses. For example, where pairs of parameters such

as rate parameters are used in the model for the two differ-

ent phytoplankton types, the diatom parameter has been re-

placed in the input vector by the ratio of the two internal pa-

rameters. The input non-diatom parameter then scales both

of the internal phytoplankton parameter values without af-

fecting their relationship, while the new input parameter con-

trols the relationship. The zooplankton parameters are treated

similarly. The changes allow us to consider the effects of a

phytoplankton rate parameter or a zooplankton rate parame-

ter on the system without having to consider the impact of

directly changing the relationship between rates for closely

related plankton types. It is then easier to interpret parameter

effects at a high level of abstraction which facilitates compar-

ison with simpler models where parameters represent rates

for more aggregated plankton compartments.

The dimensionality of the initial parameter space was re-

duced further with reference to a sensitivity analysis, per-

formed at the experimental sites, to identify parameters that

are influential with respect to annual primary production

and sinking particle flux outputs from the model (see Ap-

pendix A). Improving the reliability of these outputs in the

target model will be important for understanding and pre-

dicting change in the global carbon cycle. Eight model pa-

rameters were chosen on the basis of the findings. The corre-

sponding parameter space is defined by Table 1.

One finding of the sensitivity analysis was that the input

parameters controlling the relationship between associated

internal parameters for different plankton types were less in-

fluential than the input parameters exerting control over the

different plankton types jointly. None of the input parame-

ters from the first set were selected. The mapping of input

parameters to internal parameters means that varying any of

the five non-diatom phytoplankton parameters in Table 1 will

also change the corresponding internal diatom parameters

in proportion. The non-diatom density-independent loss rate

and half-saturation concentration for density-dependent loss

will additionally affect the corresponding internal parameters

for both zooplankton types in proportion and the microzoo-

plankton grazing half-saturation concentration will affect the

corresponding internal parameter for mesozooplankton in the

same way.

3.3 3-D reference simulations

A 10-member ensemble of 3-D simulations was used to cre-

ate a reference sample of NEMO-MEDUSA output data that

is representative of variability in the target model solution

over the defined parameter space. The 10 parameter vectors

are distributed in parameter space according to a Latin hyper-

cube design (McKay et al., 1979). For improved coverage,

a “maximin” criterion (Johnson et al., 1990) was applied to

1000 randomly generated hypercubes: the hypercube design

is selected that maximizes the smallest Euclidean distance

between parameter vector pairs in terms of their positions on

a parameter space grid with an equal number of intervals in

each dimension. Grid intervals are in log units for rate pa-

rameters and half-saturation concentrations.

The chosen parameter vectors are given in Table 2.

NEMO-MEDUSA integrations were performed for each of

the 10 parameter vectors to provide representative output for

a 2-year period, beginning in 1997. The second year, 1998,

is the first complete year for which satellite ocean colour

data from the SeaWiFS sensor are available (although these

data are not used in the present study). The integrations, at

1◦ horizontal resolution, were initialized from the NEMO-

MEDUSA simulation of Yool et al. (2011) at the beginning

of 1995 and integrated for 4 years with their respective modi-

fied parameter sets, thereby allowing a 2-year spin-up period

prior to any analysis to attenuate the worst effects of tran-

sient behaviour with respect to the seasonal cycle in the upper

ocean. A longer spin-up time would normally be envisaged

for a practical application, consistent with the intended use

of the target model.

The 3-D reference sample is used in two ways. Chloro-

phyll records are used for evaluating 1-D simulation error,

while the initial concentrations and horizontal gradients of

the biogeochemical tracers are used to provide parameter-
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Table 1. 8-dimensional MEDUSA parameter space for target model emulation.

Parameter Description and units Lower bound Upper bound

αPn chlorophyll-specific initial slope of P-I curve for non-diatoms

gC (gchl)−1 (Wm−2)−1 d−1
7.5 30

kN,Pn N nutrient uptake half-saturation concentration for non-diatoms

mmolNm−3
0.1 2.5

kFe,Pn Fe nutrient uptake half-saturation concentration for non-

diatoms

mmolFem−3

0.000066 0.0017

kµ microzooplankton grazing half-saturation concentration

mmolNm−3
0.16 4

φ zooplankton grazing inefficiency

–

0.05 0.45

µ1,Pn non-diatom phytoplankton density-independent loss rate

d−1
0.01 0.04

kPn non-diatom phytoplankton half-saturation concentration for

density-dependent loss

mmolNm−3

0.1 2.5

wg detrital sinking rate

md−1
1.5 6

Table 2. Representative sample from 8-dimensional MEDUSA parameter space.

Parameter set αPn kN,Pn kFe,Pn kµ φ µ1,Pn kPn wg

1 12.2 1.54 0.00104 0.19 0.27 0.0325 0.31 1.61

2 10.6 1.12 0.00021 0.94 0.39 0.0283 0.22 4.87

3 18.5 2.13 0.00011 0.36 0.23 0.0123 1.54 5.60

4 8.0 0.31 0.00145 0.26 0.15 0.0246 0.81 3.22

5 14.0 0.81 0.00055 0.68 0.35 0.0107 0.43 2.12

6 28.0 0.12 0.00008 1.79 0.11 0.0214 0.12 2.44

7 9.2 0.43 0.00015 3.41 0.19 0.0187 0.16 1.85

8 21.2 0.22 0.00076 1.30 0.07 0.0141 0.59 3.69

9 24.4 0.16 0.00039 0.49 0.43 0.0162 1.12 4.24

10 16.1 0.59 0.00028 2.47 0.31 0.0373 2.13 2.80

specific environment information for 1-D simulator construc-

tion.

3.4 Emulator construction and assessment

Performance of the basic 1-D simulator array is evaluated,

with respect to surface chlorophyll, for a set of trial parame-

ter vectors for which the true target model output is known.

The performance of emulators constructed using the two un-

certainty quantification methods is then assessed. Finally, to

explore the importance of the lateral flux perturbations, we

assess the performance of simulator arrays in which these are

omitted. In this context, the behaviour of an alternative array

employing informed simulators is examined in addition to

that of the uninformed simulator array used in the emulator.

Doing this allows us to see the impact of omitting lateral flux

perturbations in a scenario where other error sources are min-

imized. The experimental methods for the assessments are as

follows.

3.4.1 Simulator assessment

Informed simulator skill is described by error statistics cal-

culated from a set of 10 experiments with the representative

parameter vectors defined in Table 2, so that each experiment

corresponds to one of the available 3-D reference simula-

tions. In each experiment, the informed simulator is initial-

ized at the start of 1997 and run for 2 years. If the set of repre-

sentative parameter vectors is denoted by X = {x1, . . .,x10},

then the trial parameter vector for the ith experiment is xi
and the environment is defined by the 3-D ensemble member

with parameter vector xi .

The error statistics describing the skill of the uninformed

simulator were determined from 10 similar experiments,
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covering the same time period. One experiment was per-

formed for each parameter vector in X but simulator con-

struction was performed on a leave-one-out basis: in the ith

experiment, the trial parameter vector is xi and the mean en-

vironment is derived from the nine NEMO-MEDUSA en-

semble members with x 6= xi , x ∈X, leaving the NEMO-

MEDUSA output f (xi) as independent data for validation.

Thus, each experiment uses a slightly different version of the

simulator, constructed by applying the same method to a dif-

ferent nine-member ensemble.

Error statistics are calculated with respect to the log-

transformed 5-day mean chlorophyll output. The log trans-

formation applied to the 5-day means acts to stabilize the er-

ror variance which otherwise tends to increase with increas-

ing chlorophyll concentration. Its use in the analysis of sur-

face chlorophyll variability is strongly supported by theoret-

ical considerations and empirical data (Campbell, 1995).

3.4.2 Assessment of the full emulator

Validation of the complete uninformed emulator for surface

chlorophyll is by analysis of the results from the 10 leave-

one-out experiments, taking into account the predicted sim-

ulator error statistics to determine the emulator robustness.

These uncertainty estimates are, like the simulator itself, re-

quired to be independent of parameter-specific environment

information. Thus, for the ith experiment, they are derived

using the nine NEMO-MEDUSA ensemble members with

x 6= xi . The uninformed emulator uncertainty is quantified

using the direct and indirect methods.

When the indirect method is used, the nine NEMO-

MEDUSA ensemble members are used to derive statistics for

the two component residuals εS and εB. In the estimation of

the statistics for the mean environment simulation residual

εS (assumed identically distributed to the informed simula-

tor residual ε2), the 3-D ensemble members are required for

comparison with the corresponding informed simulators to

determine informed simulator error. In the estimation of the

statistics for the parametric environment residual εB, the 3-

D ensemble is required for building the environment model

used in the parametric uncertainty analysis.

When the direct method is used, the nine NEMO-

MEDUSA ensemble members are used to derive statistics for

the uninformed simulator residual ε1. Each of the nine cor-

responding uninformed simulators require independent data

for their mean environment input. In the ith experiment, the

mean environment for the uninformed simulator with para-

meter vector xj is derived from the eight NEMO-MEDUSA

members with x 6= xi ∩x 6= xj . As a result, simulators must

be constructed with 90 different mean environment estimates

to calculate the uncertainty estimates for the 10 experiments.

For the uncertainty quantification analyses, Gaussian error

distributions in log-transformed chlorophyll are assumed so

that the resulting probability density functions for the resid-

uals are fully described by their mean and variance, both of

which are allowed to vary in time and between sites. The

residuals are defined with respect to log-transformed 5-day

mean chlorophyll concentrations. Their predicted distribu-

tions are described by their monthly means and variances,

interpolated to 5-day intervals. Appendix B gives the estima-

tion method for the residual statistics and the resulting time

series.

4 Results

The surface chlorophyll records from the 3-D NEMO-

MEDUSA reference ensemble at each of the experimental

sites are shown in Fig. 3. This shows the spatial variation in

chlorophyll from values a little above 0.001 mgm−3 in the

oligotrophic gyre at 30 and 35◦ N for Parameter Set 6 to sea-

sonal highs associated with the spring bloom in temperate

regions (45–60◦ N), approaching 10 mgm−3 for a number of

the parameter vectors. It also illustrates the variability in the

seasonal response of the plankton dynamics which is gener-

ally stronger at the more northerly sites.

The variation between records produced by different pa-

rameter vectors is large compared with the seasonal vari-

ability. At some sites, particularly 5–10◦ N and 25–35◦ N,

the parameter dependency manifests primarily as a control

on the overall chlorophyll concentration level in the surface

layer, throughout the annual cycles. These are generally the

more oligotrophic sites, where concentrations remain below

or very close to 1 mgm−3 for all parameter vectors. At other

sites, particularly in the north, the different parameters also

have a notable influence on the dynamic range and there

is some evidence of an impact on the characteristics of the

spring bloom.

Some parameter vectors tend to have the same effect on

overall surface chlorophyll levels at all sites. For example,

Parameter Set 10 gives elevated levels over the whole data

set. However, this is not generally the case. Parameter Set 6,

for example, shows a strong tendency to give low chloro-

phyll concentrations at many of the sites but gives some of

the higher concentrations at 55 and 60◦ N. With this para-

meter vector, the phytoplankton light-response controlled by

αPn is exceptionally strong and nutrient-limitation is reduced

by low half-saturation concentrations kN,Pn and kFe,Pn. As a

result, the phytoplankton can achieve very high growth rates.

This can cause blooms that lead to long-term nutrient de-

pletion as a consequence of organic material sinking out of

the euphotic zone. Subsequent growth is then inhibited. At

four sites (5, 10, 30 and 35◦ N), nitrogen depletion during

the 2-year spin-up period results in very low chlorophyll con-

centrations at the start of 1997 which remain relatively low

throughout 1997 and 1998.

Parameter Sets 1 and 4 also lead to some interesting site-

specific impacts. They are associated with very low winter-

time chlorophyll concentrations at the most northerly sites,

particularly in 1997, although are associated with some of
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Figure 3. Five-day mean surface chlorophyll output from 3-D NEMO-MEDUSA simulations for the 10 parameter vectors in Table 2, colour

coded by Parameter Set number.

the highest concentrations throughout 1997 and 1998 at the

most southerly sites. These parameter vectors combine low

αPn values with low values for the grazing half-saturation

concentration kµ, reducing phytoplankton production at low

light levels and making them more susceptible to zooplank-

ton grazing. This makes the phytoplankton less well-suited

to over-wintering at the high latitude sites where light avail-

ability is very low due to the combination of low surface ir-

radiance and deep winter mixing.

The strong variation between parameter vectors indicates

the potential for significant constraints on the parameter val-

ues to be realized by the assimilation of satellite chlorophyll

data.

4.1 Emulator prediction of target model output

Chlorophyll concentrations given by the uninformed simula-

tor at all sites are compared against the corresponding values
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Figure 4. Five-day mean surface chlorophyll output for 1998 at all

12 sites from the uninformed simulator, compared with that from

the matching 3-D NEMO-MEDUSA reference simulation. Results

are shown for the 10 different parameter vectors in Table 2, colour

coded by Parameter Set number.

from the matching 3-D experiment in Fig. 4. Data are shown

for the 1998 annual cycle only, so are representative of the

simulator performance 1 year on from its initialization year,

during which errors have had time to develop.

The correlation between simulator and target model val-

ues is good. Pearson’s correlation coefficient r for the simu-

lator and target model output is 0.91, indicating that 83 %

of the variance in the log-transformed surface chlorophyll

from the simulator array is explained by the target model out-

put. There are some notable examples of poor performance

though. In particular, the results for Parameter Set 6 indicate

a strong positive bias, with the simulator array overestimat-

ing some surface chlorophyll values by an order of magni-

tude. There are some fairly large negative biases for other

parameter sets, notably Parameter Sets 7 and 10 at mid-range

concentrations, although these are less systematic. Also, the

simulator array poorly reproduces the relatively low variabil-

ity in chlorophyll associated with Parameter Set 1.

The chlorophyll output from the uninformed emulator in-

cludes a bias correction term which depends on the un-

certainty quantification method. (This corrects for spatio-

temporal biases rather than for parameter-related biases.)

When using the direct uncertainty quantification method, the

bias-corrected error in log-transformed 5-day mean chloro-

phyll is

dUd = g
(
B,xo

)
+ u1− f (xo), (20)

where u1 is our estimate of E(ε1). When using the indirect

method, the bias correction includes corrections for both the

mean environment simulation bias and the bias associated

with parametric environment uncertainty. The bias-corrected

error is then

dUi = g
(
B,xo

)
+ uS+ uB(xo)− f (xo), (21)

where uS and uB are our estimates of E(εS) and E(εB) re-

spectively and B is our estimate of the mean environment.

The estimates u1 and uS were determined without reference

to results for Parameter Set 6. These were excluded on the

basis of the unrepresentative simulator performance, to avoid

excessive influence from a single outlier. Time series of u2

and uS are therefore based on an ensemble size of 8 (or 9,

when Parameter Set 6 is the trial parameter vector).

Error statistics for the uninformed emulator results are

given in Fig. 5. Results are presented for the basic simula-

tor array with no bias correction (u1 = uS = uB = 0) and for

the full emulator with bias correction. There are only minor

differences between the mean and rms values for dUd and

dUi.

Biases are reduced by the emulator’s bias correction

scheme, irrespective of the method used. Time series of sim-

ulator bias before and after correction show that in both cases

the bias correction is effective at all sites, with the possi-

ble exception of 20◦ N where dUi shows the introduction of

a negative bias in the summer of 1998 when using the in-

direct uncertainty quantification method. In particular, note

that the summer 1998 bias at 60◦ N is largely removed and

the correction is particularly effective in removing negative

bias at some of the more oligotrophic sites (5 and 25–30◦ N)

and at 50◦ N in 1997.

The relatively high rms errors for early 1997 at most sites

are the consequence of transient behaviour associated with

error in the initial conditions. This source of error seems to

influence the model primarily in the early half of the year,

before the local dynamics start to dominate over the environ-

mental influence. The lack of parameter-specific information

about the lateral fluxes appears to be a less dominant source

of simulation error. Nevertheless, it does contribute strongly

to the relatively large 1998 errors at 5 and at 50◦ N.

4.2 Robustness of the emulator

The robustness of the uninformed emulator is assessed by

comparing the MarMOT-MEDUSA chlorophyll records with

the NEMO-MEDUSA results for the matching parameter

sets, taking into account the quantified emulator uncertainty

in terms of the predicted bias and error variance. The results

are presented here in terms of the normalized emulator er-

ror, which is the error in the bias-corrected simulator output

scaled by the reciprocal of its predicted standard deviation.

The scaling factor ensures that the predicted normalized er-

ror distribution for both versions of the emulator is Gaussian

Geosci. Model Dev., 8, 697–731, 2015 www.geosci-model-dev.net/8/697/2015/



J. C. P. Hemmings et al.: Site-based emulation of an ocean biogeochemical model 711

-0.6
-0.3
0.0
0.3
0.6

Bi
as

0.0

0.3

0.6

0.9

R
M

SE

60N
a) b)

-0.6
-0.3
0.0
0.3
0.6

Bi
as

0.0

0.3

0.6

0.9

R
M

SE

55N

-0.6
-0.3
0.0
0.3
0.6

Bi
as

0.0

0.3

0.6

0.9

R
M

SE

50N

-0.6
-0.3
0.0
0.3
0.6

Bi
as

0.0

0.3

0.6

0.9

R
M

SE

45N

-0.6
-0.3
0.0
0.3
0.6

Bi
as

0.0

0.3

0.6

0.9

R
M

SE

40N

-0.6
-0.3
0.0
0.3
0.6

Bi
as

0.0

0.3

0.6

0.9

R
M

SE

35N

-0.6
-0.3
0.0
0.3
0.6

Bi
as

0.0

0.3

0.6

0.9
R

M
SE

30N

-0.6
-0.3
0.0
0.3
0.6

Bi
as

0.0

0.3

0.6

0.9

R
M

SE

25N

-0.6
-0.3
0.0
0.3
0.6

Bi
as

0.0

0.3

0.6

0.9

R
M

SE

20N

-0.6
-0.3
0.0
0.3
0.6

Bi
as

0.0

0.3

0.6

0.9

R
M

SE

15N

-0.6
-0.3
0.0
0.3
0.6

Bi
as

0.0

0.3

0.6

0.9

R
M

SE

10N

-0.6
-0.3
0.0
0.3
0.6

J F M A M J J A S O N D J F M A M J J A S O N D
1997 1998

Bi
as

0.0

0.3

0.6

0.9

J F M A M J J A S O N D J F M A M J J A S O N D
1997 1998

R
M

SE

5N

un-corrected direct UQ indirect UQ

Figure 5. Uninformed emulator error statistics for log10(surface chlorophyll) (mgm−3) over 10 experiments, one experiment for each of

the parameter vectors in Table 2: (a) bias and (b) rms error. The statistics are shown for the simulators without bias correction and for the

bias-corrected simulator array, which is the uninformed emulator. The emulator statistics are given for emulator versions constructed using

direct and indirect uncertainty quantification methods (i.e. for errors dUd and dUi).

with zero mean and unit standard deviation at all times and

locations.

The normalized uninformed emulator error for each log-

transformed 5-day mean surface chlorophyll concentration

depends on the uncertainty quantification method. For the di-

rect method, it is given by

DUd =
g
(
B,xo

)
+ u1− f (xo)

s1
, (22)

where s2
1 is our estimate for var(ε1). For the indirect method,

it is

DUi =
g
(
B,xo

)
+ uS+ uB(xo)− f (xo)√
s2

S + s
2
B(xo)

, (23)

where s2
S and s2

B are our estimates for var(εS) and var(εB) re-

spectively. s2
1 and s2

S, like the residual mean estimates u1 and
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Figure 6. Normalized uninformed emulator error for emulator versions constructed using (a) the direct uncertainty quantification method

(DUd) and (b) the indirect uncertainty quantification method (DUi). Errors are shown for the 10 different parameter vectors in Table 2, colour

coded by Parameter Set number. Off scale DUi values not shown at the beginning of 1997 go up to about 26 at 55◦ N and about 35 at 60◦ N.

uS, were determined without reference to the results for Para-

meter Set 6, so were likewise based on a sample size of eight

(or nine when Parameter Set 6 is the trial parameter vector).

The denominator in Eq. (22) varies between 0.014 and 0.62

log10 units and that in Eq. (23) varies between 0.015 and 0.50

log10 units (with chlorophyll concentration in mgm−3). Fur-

ther details of the residuals’ statistics and their variation in

time and between sites can be found in Appendix B.

The normalized uninformed emulator errors for each ex-

periment are shown in Fig. 6. In Experiment 6 (pertaining

to trial Parameter Set 6), the positive errors already noted

are extreme, relative to the predicted error variance. This is

a consequence of the unusually large simulator errors associ-

ated with Parameter Set 6. The atypical behaviour associated

with this parameter vector may be truly representative of the

model dynamics over a significant region of parameter space.

However, such detail is not resolved with our small sample so
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is not represented in the data used for emulator construction.

Large normalized error values in Experiment 6 are therefore

unsurprising.

When the indirect uncertainty quantification method is

used, Fig. 6 shows that there are also very large extremes as-

sociated with the post-initialization phase, particularly at 55

and 60◦ N. These highDUi values occur for experiments with

the two parameter vectors that were seen to cause unusu-

ally low winter-time chlorophyll concentrations at the start

of 1997 in the target simulation (Fig. 3, Parameter Sets 1 and

4). Fortunately, at these sites, the extreme error appears fairly

transient, lasting only a few months. At other sites, in partic-

ular at 5◦ N, DUi remains correlated to some extent with its

early 1997 value over the whole 2-year period, suggesting

that parametric error in the initial state may be introducing

persistent biases. This pattern seems to be a common fea-

ture of the more oligotrophic sites, being reflected also at

latitudes from 25 to 35◦ N. At more northerly sites, there is

a tendency for persistent biases over long time periods where

relatively large errors occur (e.g. at 45 and 50◦ N for the indi-

rect method) but this pattern develops later with no obvious

connection to initialization error.

Comparing the two uncertainty quantification methods, it

is seen that DUi initially tends to be larger than DUd at all

sites. The post-initialization DUd values are more consistent

with their predicted distribution. In particular, the extreme

positive DUi values seen in early 1997 are not replicated in

DUd. From these observations, it is clear that the indirect

method is generally less effective at quantifying initial uncer-

tainty. Furthermore, at the oligotrophic sites where the early

1997 biases tend to persist, there is a general tendency for

DUi to be larger than DUd over the 2-year period.

The normalized error distributions for the uninformed em-

ulators are compared with the predicted distribution in Fig. 7.

Results, including 1998 data only, are shown for each site.

Experiment 6 is excluded to allow the results for the remain-

ing experiments to be more clearly represented. The emula-

tor with direct uncertainty quantification appears fairly ro-

bust with DUd distributions broadly similar to the predicted

distribution at all sites. The worst performance is arguably

at 30◦ N where there are a significant proportion of anoma-

lously low values associated with persistent negative errors in

the experiments with Parameter Sets 1 and 4 (Fig. 6). How-

ever,DUi shows a strong tendency to be larger than expected

at a number of the sites. In general, these are the sites that

have already been associated with persistent error in some

of the experiments (5, 25–35, 45–50◦ N). A smaller propor-

tion of the DUd values at 15 and 20◦ N are rather larger than

predicted. These are associated with extreme negative biases

occurring in Experiment 9 that persist only for a month or

two.

Table 3 summarizes the uninformed emulator results in

terms of the mean and standard deviation of the normalized

errors. Statistics are given for all 10 experiments combined

and in brackets for the 9 experiments excluding Experiment

Table 3. Uninformed emulator robustness evaluation for all 10 ex-

periments and for the 9 experiments excluding Experiment 6.

Direct UQ method Indirect UQ method

Site DUd mean DUd SD DUi mean DUi SD

60◦ N 0.03 (0.08) 1.17 (1.16) 0.15 (0.20) 0.98 (0.89)

55◦ N 0.01 (−0.03) 1.17 (1.07) −0.02 (−0.07) 1.10 (0.97)

50◦ N 0.48 (0.05) 1.88 (0.98) 0.58 (−0.15) 3.06 (1.43)

45◦ N 0.16 (0.03) 1.19 (0.99) 0.08 (−0.07) 1.48 (1.32)

40◦ N −0.19 (−0.07) 1.41 (1.29) −0.12 (−0.10) 0.98 (0.99)

35◦ N 0.16 (0.04) 1.06 (1.02) −0.47 (−0.72) 1.89 (1.77)

30◦ N 0.07 (−0.04) 1.15 (1.15) 0.36 (0.03) 1.88 (1.53)

25◦ N −0.07 (−0.03) 1.08 (1.12) −0.76 (−0.70) 1.63 (1.69)

20◦ N −0.04 (−0.07) 1.33 (1.31) −0.64 (−0.66) 1.04 (1.01)

15◦ N 0.47 (−0.01) 2.07 (1.21) 0.23 (−0.38) 2.60 (1.29)

10◦ N 0.36 (0.01) 1.55 (1.03) 0.19 (−0.10) 1.21 (0.74)

5◦ N 0.03 (−0.07) 1.23 (1.22) −0.09 (−0.30) 2.10 (2.01)

ALL 0.12 (−0.01) 1.41 (1.13) −0.04 (−0.25) 1.82 (1.39)

6. The difference between the two sets of results illustrates

to some extent the sensitivity of the evaluation statistics to

sampling error.

When the emulator performance with direct uncertainty

quantification is evaluated over all experiments and all sites,

the DUd standard deviation is rather high at 1.41, suggest-

ing that the emulator is a little over-confident. When Exper-

iment 6 is excluded from the evaluation, the standard devia-

tion drops to 1.13. Whether or not this is a more appropriate

measure of performance depends on the extent to which the

model dynamics with Parameter Set 6 are representative of

its behaviour over a significant region of parameter space.

The performance with respect to the other parameter vectors

is fairly reliable at all sites, with standard deviations from

0.98 to 1.31 and very little sign of post-correction bias shown

by DUd mean values. All but two of the standard deviations

are above 1, indicating a slight tendency for the spread of

the simulator residuals to be under-estimated. When Experi-

ment 6 results are included in the evaluation data set, this ten-

dency for over-confidence is more evident and there are no-

table positive biases at a number of sites (DUd mean greater

than 0.3 at 10, 15 and 50◦ N). These are associated with rel-

atively large DUd standard deviations (1.55 to 2.07).

The high standard deviation in DUi of 1.82 is consistent

with results already presented that show the emulator with

indirect uncertainty quantification has a clear tendency to-

wards over-confidence in its predictions. If Experiment 6 is

excluded, the overall standard deviation is less at 1.39, but

the performance still leaves some room for improvement.

The over-confidence is particularly notable at the highly olig-

otrophic site at 5◦ N, with a standard deviation of just over

2 reflecting the persistent parameter-specific biases already

noted at this site (Fig. 6). There is also a tendency for the em-

ulator with indirect uncertainty quantification to significantly

under-estimate chlorophyll concentrations. In particular, the

nine-parameter vector sample shows large negative biases of

around −0.7 at some of the other oligotrophic sites (20, 25
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Figure 7. 1998 distributions of the normalized error for the uninformed emulator constructed using the direct and indirect uncertainty

quantification methods: DUd and DUi. Results for 9 of the 10 parameter vector experiments are combined. Experiment 6, for which large

extremes occur, is excluded. The predicted normalized error distribution, over-plotted for reference, is Gaussian with zero mean and unit

standard deviation at all times and locations.

and 35◦ N). Fairly large negative biases of −0.30 and −0.38

are also seen at 5 and 15◦ N respectively. Nevertheless, the

performance at a number of the sites is good. The subset of

five sites at 10, 40–45 and 55–60◦ N has standard deviations

in the range 0.74–1.32 with small biases (−0.1–0.2).

4.3 The importance of lateral advection

In the majority of site-based calibration studies, the effect of

lateral advection is ignored. It is useful then to examine the

extent to which the skill of our 1-D simulations is depen-

dent on the explicit representation of the advective flux di-

vergence term. Figure 8 shows the chlorophyll values given

by the uninformed simulator array compared with the match-

ing target model output when the uninformed simulators are

run with all lateral flux perturbations removed. Comparison

with Fig. 4 shows that the omission of lateral flux perturba-

tions degrades the performance of the simulator array con-

siderably. Pearson’s correlation coefficient r for the simula-

tor and target model output drops from 0.91 to 0.75, indi-

cating that just 56 % of the variance in the log-transformed

surface chlorophyll from the simulator array is explained by

the target model output, compared with 83 % in the standard

simulator array with lateral flux perturbations.

The impact of omitting lateral flux perturbations is most

clearly seen in the performance of the informed simulator

array, where removing the effects of the parametric environ-

ment uncertainty minimizes other sources of error. The initial

state error for this simulator array is zero and the lateral flux

perturbations are parameter-specific. The error for each log-

transformed 5-day mean chlorophyll concentration is defined

by

dI = g[B(xo),xo] − f (xo), (24)

where B(xo) is the appropriate set of environmental input

data, either including or not including lateral flux perturba-

tions. Error statistics for the informed simulator results, with

and without perturbations, are given for each site in Fig. 9.
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Figure 8. Five-day mean surface chlorophyll output for 1998 at all

12 sites from the uninformed simulator with lateral flux perturba-

tions set to zero, compared with that from the matching 3-D NEMO-

MEDUSA reference simulation. Results are shown for the 10 dif-

ferent parameter vectors in Table 2, colour coded by Parameter Set

number.

The use of lateral flux perturbations leads to strong re-

ductions in bias and rms error at most of the low and mid-

latitude sites to 40, and at 50◦ N from the summer of 1998

onwards. The improvement is particularly notable at 10, 25,

35 and 40◦ N, where the addition of these perturbations cor-

rect a long-term drift very effectively, albeit with slight over-

correction of the positive bias at 10◦ N. Performance is a little

more equivocal at 20◦ N where perturbation of the simulation

leads to a relatively large over-correction of a negative bias

but the overall rms error is still reduced.

The perturbed simulator does not perform better every-

where. The main exception is seen at 60◦ N, where the sim-

ulator shows a tendency to over estimate chlorophyll in the

summer of 1998. Another exception is an over correction of

the positive bias at 50◦ N in 1997 which leads to a bias of

larger magnitude over some parts of the year. These detri-

mental effects are minor compared with the overall improve-

ment achieved.

It is clear from Fig. 9 that omitting lateral flux perturba-

tions altogether can lead to particularly large biases associ-

ated with serious drifts. Biases of magnitude 0.6 log10 units,

representing a factor 4 error in surface chlorophyll, are not

uncommon. Examination of the uninformed simulator results

in Fig. 5 before any bias correction shows that even at the

sites where the error is relatively large, the biases are not.

The largest biases are of magnitude 0.3 log10 units, equiva-

lent to a factor of 2. This indicates that a scheme based on

average flux perturbations for the parameter space (i.e. the

mean environment) can reduce the problem of drift to a large

extent, even though the environment information is not para-

meter specific.

5 Discussion

In this section, the performance of the experimental mecha-

nistic emulator is first examined and scope for its improve-

ment identified. Practical application of the site-based em-

ulation scheme is then considered and its envisaged role in

enabling advances in the parametric analysis and calibration

of global biogeochemical models is discussed.

5.1 Mechanistic emulator performance

Two alternative versions of a mechanistic emulator for sur-

face chlorophyll from global NEMO-MEDUSA simulations

have been evaluated. Each of these site-based emulators uses

the same set of site-specific 1-D simulators. The two emula-

tors differ in the method they employ to quantify uncertainty

in the simulator predictions.

The site-based emulator with direct uncertainty quantifica-

tion is able to predict the 1998 chlorophyll record for a given

parameter vector to an accuracy broadly consistent with its

uncertainty prediction at all sites. It should therefore serve as

a reasonably reliable emulator of the target model for para-

metric analyses. There is a slight tendency to under-estimate

the uncertainty, which is likely to be a consequence of the

small target model ensemble size used to represent the known

truth (8 or 9). This interpretation would be consistent with

a parametric uncertainty analysis of a regional 3-D biogeo-

chemical model by Fiechter (2012), spanning a similar pa-

rameter space, in which an ensemble size of 10 was found

to give significantly low estimates for ensemble spread com-

pared with 25, 50 and 100-member ensembles. In a practical

application, the tendency towards over-confidence could be

compensated for by a small inflation factor applied to the

residual variance estimate. The optimal factor would be the

normalized error variance from the evaluation experiments

(i.e. 1.28, based on the standard deviation of 1.13 for the nine

trial parameter vector experiments in Table 3).

The emulator with indirect uncertainty quantification is

able to predict the 1998 record to an accuracy consistent with

its uncertainty prediction at about half of the experimental

sites, so clearly has some potential. However, it shows a ten-

dency to be over-confident in its predictions at other sites,

particularly at the more oligotrophic sites studied. Its per-

formance therefore requires some improvement before it can

be considered generally robust over a wide range of oceanic

conditions.

The most notable instances of poor emulator performance

occur for parameter vectors associated with the more extreme

behaviour in the target model. This raises the question of
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Figure 9. Informed simulator error statistics for log10(surface chlorophyll) (mgm−3) over 10 experiments, one experiment for each of the

parameter vectors in Table 2. (a) Bias and (b) rms error. The statistics are shown for informed simulators with and without lateral flux

perturbations.

whether it is really necessary to emulate the target model

over such large parameter ranges. Certainly, restricting the

parameter space further should help to make our reference

sample more representative. In principle, comparisons with

observational data at an early stage could be used to iden-

tify implausible target model behaviour and suggest ways in

which the parameter space might be reduced. However, any

such constraints based on the sparse sampling of parameter

space achieved by the target model ensemble could greatly

increase the risk of excluding promising parameter combi-

nations and should be undertaken with care. Modifications

of the parameter space that are consistent with our biologi-

cal understanding of the parameters are the most easily justi-

fied but, acknowledging the high level of abstraction involved

in modelling a system of such complexity, we should avoid

over-reliance on subjective priors. Increasing the sample size

or improving the emulation methods may be preferable.
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While the indirect uncertainty quantification method is

currently less robust than the direct method, it has the ad-

vantage of being less reliant on the small target model en-

semble. Simulator uncertainty due to basic simulation error

and parametric environment error are quantified separately,

the latter being the uncertainty due to substitution of the true

parameter-specific environmental input by a mean environ-

ment. The quantification method for basic simulation uncer-

tainty relies wholly on the target model ensemble. However,

that for parametric environment uncertainty relies on it only

for providing environmental data for a 1-D uncertainty anal-

ysis. The output uncertainty depends on the way in which

these input data interact with the parameter-specific dynam-

ics in the 1-D simulators and the 1-D ensemble size can

be relatively large. As found by Hemmings and Challenor

(2012), the output standard deviation can be highly depen-

dent on the trial parameter vector (see Appendix B). This

parameter dependency cannot be accounted for by the di-

rect method. For this reason, a refined version of the indirect

method could prove to be more robust than the direct method,

particularly if basic simulation errors can be reduced so that

the uncertainty quantification for this error component be-

comes less critical.

The presence of very large normalized error values early

in 1997 when the indirect uncertainty quantification method

is used suggests that the environment model for the ini-

tial conditions should be improved, perhaps through the

use of different variance-stabilizing transformations in the

EOF analysis used to characterize the environmental uncer-

tainty. Tracer-specific transformations should be considered

in place of the square root transformations applied to all pri-

mary tracers. Another refinement that may improve perfor-

mance in the post-initialization phase would be to include

covariances between the initial state and the advective flux

divergences of the transformed tracer concentrations, instead

of modelling the two separately. The persistence of biases

at some sites over the whole simulation period, in particular

those associated with poor emulator performance, suggests

that such improvements could improve robustness of the em-

ulation of the 1998 chlorophyll records.

A fairly simple way of improving the simulator itself

would be to provide physical forcing based on 3-D model

output at higher temporal resolution for the experimental

sites, as the impacts of important weather events are attenu-

ated in the 5-day mean output. Improvements in the represen-

tation of concentration dependency in the simulator’s lateral

flux divergence tendencies are also likely to be beneficial.

Concentration dependency in the 1-D simulations is con-

trolled by the transformation applied to the tracer concentra-

tions. A promising approach to improving its representation

might be to introduce tracer-specific transformations, possi-

bly varying in space and time, based on statistical analyses

of 3-D model output. A key consideration will be the need to

reduce the potential for positive feedback cases, where con-

centration errors reinforce error in the advective tendencies.

This type of positive feedback can cause the growth of large

positive errors, particularly in the dissolved nutrient tracers.

It may also lead to excessive nutrient depletion rates where

an initial tendency towards negative bias in nutrient concen-

trations is increased by reduction in lateral supply. Such er-

rors are likely to have a greater impact on surface chlorophyll

at oligotrophic sites, where the phytoplankton dynamics are

more sensitive to nutrient concentration. It is at these sites

where the emulator with indirect uncertainty quantification

appears least robust. However, an investigation of the surface

nutrient records output by the simulator (not presented) did

not show evidence of severe nutrient depletion that might be

expected from positive feedback.

5.2 Application of the emulation scheme

For calibration of global ocean biogeochemical models

against ocean colour data, the spatial extent of the simulator

array can readily be extended to produce a mechanistic emu-

lator with truly global coverage based on a larger set of rep-

resentative sites. Similarly, the emulation procedure could be

extended to records of the annual cycle from multiple years.

Importantly, we expect the method to be applicable to mod-

els of much higher resolution than the 1◦ target model used

in the present demonstration, with minimal adaptation. The

requirement for a small ensemble of 3-D reference simula-

tions is relatively modest, making useful parametric analyses

feasible for eddy-permitting and eddy-resolving global mod-

els.

While the emulation scheme has the potential to make con-

siderable reductions in the number of 3-D simulations re-

quired in a parametric analysis, it must be recognized that

even a single 3-D simulation may be a large overhead if long

spin-up periods are required. The 2-year spin-up period em-

ployed for producing the reference ensemble in our exper-

iments is sufficient to demonstrate proof-of-concept. How-

ever, biogeochemical models and carbon cycle models in

particular require long spin-up times, typically thousands of

years, to reach equilibrium. This implies that in many practi-

cal applications much longer spin-up times would be needed.

Fortunately, recent advances in the estimation of steady state

annual cycles for global models (Khatiwala, 2007, 2008)

promise to alleviate this problem. The efficient Transport

Matrix Method of Khatiwala (2007) has recently been ex-

ploited in parametric analyses where simulations are evalu-

ated against global nutrient data (Kriest et al., 2010, 2012).

It has also been combined with a surrogate-based optimiza-

tion technique for practical parameter estimation (Prieß et al.,

2013b). Incorporating these new steady state estimation tech-

niques into the target model prior to site-based emulation

would be particularly advantageous.

Continued development of the indirect uncertainty quan-

tification method is motivated by its potential in situations

where a known truth is unavailable. Such a situation arises

if we want to emulate a target model for which we have
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no model-specific 3-D ensemble but must rely on results

for a related model. For example, we might try to emulate

a high-resolution model, for which we have perhaps just one

simulation, by adapting the method to make use of biogeo-

chemical information from lower resolution ensembles. In

this scenario, the statistical environment model could be con-

structed using the high resolution flow field in combination

with upstream gradient and initial state information from the

low resolution model. Additional uncertainty in the gradient

and state information associated with the change of resolu-

tion would be quantified with reference to the equivalent high

resolution model fields. The effect of basic simulation errors

would, of course, have to be quantified with reference to the

single high resolution simulation but this is less likely to be

a problem if the basic simulation errors can be made small

compared with the parametric environment error.

In applying the emulator with indirect uncertainty quan-

tification to each trial parameter vector, the requirement for

a parameter-specific set of 1-D ensemble simulations in the

environmental uncertainty analysis imposes a large over-

head. The significance of this overhead depends on the exper-

imental set up. For a 1◦ target model emulated by a global ar-

ray of simulators at 10◦ intervals, the computational savings

in replacing the 3-D simulation by the emulator array would

be fairly limited if an ensemble size of 100 were used as in

the present study (being largely those due to the reduced ver-

tical domain and use of pre-calculated physical fields). How-

ever, for a 0.25◦ model with the same array, savings would

be considerable. Moreover, it seems likely that the ensemble

size could be reduced and investigation of the sensitivity of

performance measures to ensemble size would certainly be

worthwhile.

In a practical calibration exercise where the uncertainty

statistics are required for weighting model-data misfit to ac-

count for simulation uncertainty, we should not ignore tem-

poral covariance in simulation error. Although the covariance

structure of the error has not been quantified in this study, the

results are indicative of strong temporal correlation over long

time scales at some sites. This suggests that it will be impor-

tant to extend the chosen uncertainty quantification proce-

dure to predict the temporal error covariances for each site-

specific simulator. Correlation between sites may also need

to be considered, particularly if sites are relatively close to-

gether.

Although the emphasis of the present study has been on

emulating surface chlorophyll, the method can in principle

be used to emulate other observable variables associated with

the target model. A full set of model outputs are available

from the 1-D simulations at each site and simulation uncer-

tainty measures can similarly be predicted for any of these

variables, although the robustness of such predictions is as

yet untested. Use of in situ observations in conjunction with

the satellite ocean colour data will provide valuable addi-

tional constraints on parameter values, making this an im-

portant extension to the mechanistic emulator capability.

5.3 The role of a site-based mechanistic emulator

Thorough investigation of the large multi-dimensional para-

meter spaces associated with mechanistic biogeochemistry

models like MEDUSA will inevitably place great demands

on our computer resources. For most parametric analyses, it

is envisaged that the mechanistic emulator would be used in

combination with one or more statistical emulators for which

it would provide the training data and associated uncertainty

estimates. This would facilitate the use of rigorous Bayesian

analysis techniques which would otherwise not be compu-

tationally feasible. Introducing mechanistic emulation as an

intermediate step should greatly decrease the number of ex-

pensive 3-D simulations that are needed.

Modern Bayesian calibration methods, following Kennedy

and O’Hagan (2001), provide a comprehensive statistical

framework for addressing issues of parametric uncertainty

as well as uncertainty from other sources. They allow es-

timation of joint posterior distributions for model parame-

ters and model discrepancy. Model discrepancy, originally

referred to as model inadequacy, quantifies error associated

with the model design that cannot be corrected by parameter

adjustment. Arhonditsis et al. (2008) and Zhang and Arhon-

ditsis (2009) demonstrate the application of Bayesian cali-

bration methods to aquatic biogeochemical modelling in a 1-

D framework, indicating the value of these methods for quan-

tifying uncertainty associated with model predictions. A ca-

pability for routine application of these methods to biogeo-

chemistry at the global scale would contribute to more robust

probabilistic predictions of global change.

A flexible alternative to full Bayesian calibration is

the well-established history matching approach adopted by

Williamson et al. (2013) in their coupled ocean–atmosphere

model analysis. This relatively simple technique uses per-

turbed parameter ensembles in combination with an implau-

sibility metric to rule out regions of parameter space. The

implausibility function takes into account the relevant un-

certainties and can be applied iteratively, introducing addi-

tional observational data at each stage, to rule out successive

regions. The initial focus can be on simple model outputs

that are easy to model statistically over the whole parame-

ter space. Subsequent re-focussing of computational effort

on smaller regions of parameter space can then be used to

develop statistics for more complex outputs.

In this way, history matching can be used as a precursor

to Bayesian calibration or, if the region of parameter space

not ruled out by the history matching process is sufficiently

small, further calibration may be omitted in favour of an av-

eraged parameter vector. The emphasis on defining a “not-

ruled-out-yet” region of parameter space, rather than find-

ing the optimal parameter vector, is well-suited to ecosystem

modelling where the “underdetermination problem” high-

lighted by Ward et al. (2010) is ubiquitous.

It is important to recognize that the site-based experi-

mental framework is designed to investigate relatively short
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time-scale responses of the biogeochemistry to physical

drivers. The efficiency of the method makes the correspond-

ing output relatively easy to model statistically and so is well

suited to the early stages of history matching. However, we

cannot rule out the possibility of interactions with the ocean

circulation that would compromise performance of particular

parameter vectors in much longer simulations. Further tests

would be needed in 3-D simulations to fully determine suit-

ability.

In designing a calibration strategy for ocean biogeochem-

ical models, we can take advantage of the relatively weak

coupling between the upper ocean and the interior and the

different time-scales associated with upper ocean processes

and the sinking and remineralization of material in the deep

ocean. Site-based methods are best suited to the optimization

of parameters associated with seasonal productivity cycles

in the upper ocean, occurring on short time scales compared

with those for the redistribution of plankton by the large scale

circulation. Parameters associated primarily with slow deep

water processes that interact more strongly with the circula-

tion can be optimized separately in 3-D experiments, without

compromising the seasonal dynamics.

There are parallels with an established system used in ter-

restrial carbon cycle modelling. This is the Carbon Cycle

Data Assimilation System (Rayner et al., 2005), which uses

a two stage process to calibrate a terrestrial biogeochem-

istry model. The first step involves optimization of parame-

ters controlling phenology and soil moisture by assimilating

satellite data related to vegetation activity. The second step

then uses fields from the optimized model as input to a sim-

pler model version, combined with a 3-D atmospheric trans-

port model, for constraining the remaining model parameters

to fit atmospheric CO2 data.

5.4 Site-based process model analysis

As a final point, it should be stressed that we have focused

here on enabling parametric analyses for a coupled model

system, where the optimal parameter values are conditional

on a particular representation of the physical ocean. This is

important for applications of biogeochemistry models in spe-

cific host model configurations. However, there is also a need

to be able to evaluate and improve the fidelity of the biogeo-

chemistry model with respect to the processes it is designed

to represent, independently of a particular physical simula-

tion. This is emphasized by parameter optimization experi-

ments of Friedrichs et al. (2006) which show that likely error

in the physical forcing data can have a large effect on the

biogeochemical simulations, leading to inappropriate poste-

rior parameter values.

Site-based methods can be adapted to allow for such error

by including a quantification of uncertainty in the physical

environment in the analysis as suggested by Hemmings and

Challenor (2012). By doing this, we aim to emulate the out-

put that would be obtained from the biogeochemistry model

if it were embedded in a perfect physical simulation. History

matching could then be used to rule out areas of parame-

ter space that are inconsistent with a plausible representation

of the biogeochemical dynamics. Computing effort would

be focused primarily on data-rich sites, including established

biogeochemical time series observatories.

A statistical model of the biogeochemical environment

would be required for the 1-D simulations at each site. The

methods introduced here provide the basis for constructing

such a model. However, they would need to be refined to al-

low for additional uncertainty involved in making inferences

about a hypothetical perfect physics ensemble from analysis

of a practical 3-D ensemble. The development of a robust

method is more likely to be achievable if a good observation-

ally constrained statistical description of the local flow field

can be established. Then, only the upstream tracer gradient

and initial state information would need to be inferred from

the 3-D model analysis. Furthermore, it should be possible

to take initial state information from an observation-based

statistical model of the real-world state, say from a climatol-

ogy. Inferences about the model would then be restricted to

its behaviour over relatively short time scales. However, this

seems likely to be the most practical approach.

In principle, the site-based capability could be adapted for

use in a Lagrangian framework allowing a Eulerian simu-

lator array to be augmented by 1-D simulations following

Argo floats or surface drifter trajectories. Physical data from

Eulerian observatories and Lagrangian platforms, in combi-

nation with satellite Earth observation data could be used in

conjunction with 3-D simulations to develop observationally

constrained statistical representations of the physical envi-

ronment to which the biogeochemistry responds. Bringing

these different components of the global observation system

together in a robust statistical framework for model calibra-

tion and assessment will be an important step in develop-

ing a reliable predictive capability for the Earth system that

accounts for the role of marine biogeochemistry in global

change.

6 Summary and conclusions

A mechanistic site-based emulator for annual cycles of sur-

face chlorophyll output from the global NEMO-MEDUSA

model was presented. The emulation scheme introduces two

fundamental improvements to our site-based biogeochemi-

cal modelling capabilities: an explicit representation of the

lateral flux divergences of the model tracers, following Hem-

mings and Challenor (2012), and a quantification of output

uncertainty with respect to the target model.

The emulator relies on an array of 1-D simulators of the

target model dynamics. In the absence of parameter-specific

3-D model information about the environment at each site,

the simulators use a mean environment provided by a small

ensemble of target model simulations. This 3-D ensemble
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is designed to be representative of variability in the model

dynamics over the parameter space of interest. It provides

information about the local environment in the form of esti-

mates of the required initial state and lateral flux divergences,

together with their uncertainties. The use of lateral flux infor-

mation reduces simulator error considerably, consistent with

a major influence of advection at some sites, and this has

been instrumental in achieving a promising level of perfor-

mance.

Two different versions of the mechanistic emulator have

been evaluated. One is constructed using a direct uncertainty

quantification method, in which output uncertainty is quan-

tified by comparison with a known truth. The other is con-

structed using an indirect method, in which output uncer-

tainty is inferred from separate analyses for two contributing

factors: the set of basic simulation errors and the paramet-

ric environment error. Uncertainty due to basic simulation

errors is quantified by applying the direct method to the sim-

ulator with a known parameter-specific environment. Para-

metric environment error is the error in the simulator output

when an unknown parameter-specific environment is approx-

imated by the mean environment (an estimate of the expecta-

tion of the environment over the parameter space of interest).

Uncertainty associated with this error is quantified by 1-D

uncertainty analyses.

The analysis for NEMO-MEDUSA indicates that the em-

ulator with direct uncertainty quantification should provide

a reasonably robust site-based emulation capability for the

surface chlorophyll output from 3-D models. The indirect

uncertainty quantification scheme, although more expensive

in terms of the number of 1-D simulations required, has the

advantage of accounting for the dependency of simulation

uncertainty on the trial parameter vector. However, as imple-

mented here, it was found to be less robust. Nevertheless,

a number of improvements to the method have been sug-

gested which are expected to improve its reliability. Irrespec-

tive of whether this leads to the performance of the indirect

method exceeding that of the direct method in terms of ro-

bustness, the indirect method provides the basis for a more

flexible approach that is less reliant on target model simula-

tions. The potential of both versions of the emulation scheme

to improve the effectiveness of site-based approaches to para-

metric analysis of ocean biogeochemical models is clear.

Our experimental mechanistic emulator serves as a pro-

totype for an improved site-based capability. This facil-

ity would allow robust inferences to be made about the

parameter-dependent behaviour of global biogeochemical

models on the basis of analyses performed on representative

arrays of 1-D simulators. It would thus enable the routine

execution of relevant parameter perturbation ensembles with

100s of members. In conjunction with statistical emulators,

this would enable comprehensive investigations of large pa-

rameter spaces to be performed.

In addition, the new developments in the treatment of lat-

eral advection and quantification of environmental uncer-

tainty for 1-D simulators will be important for performing

analyses of biogeochemistry models that are based on their

representation of the biogeochemical dynamics, rather than

being conditional on a particular representation of the physi-

cal circulation. This type of process-based analysis is essen-

tial for assessing and improving the fidelity of process repre-

sentation in biogeochemical models.

Site-based analyses of both coupled and stand-alone bio-

geochemistry models promise to make important contribu-

tions to our ability to constrain model parameters and quan-

tify biogeochemical uncertainty in ocean and Earth system

model predictions.
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Appendix A: Defining the parameter space

Table A1. MEDUSA phytoplankton parameters (MarMOT 1.1 con-

figuration).

Symbol Description and units Standard

value

αPn chlorophyll-specific initial

slope of P-I curve for

non-diatoms

gC (gchl)−1 (Wm−2)−1 d−1

15

fαPd =
αPd
αPn

chlorophyll-specific initial

slope of P-I curve for di-

atoms relative to that for

non-diatoms

–

0.75

VPn maximum non-diatom

growth rate at 0 ◦C

d−1

0.53

fVPd =
VPd
VPn

maximum growth rate at

0 ◦C of diatoms relative to

that of non-diatoms

–

0.9434

kN,Pn N nutrient uptake half-

saturation concentration for

non-diatoms

mmolNm−3

0.5

fkN,Pd =
kN,Pd

kN,Pn
N nutrient uptake half-

saturation concentration for

diatoms relative to that for

non-diatoms

–

0.5

kSi Si nutrient uptake half-

saturation concentration for

diatoms

mmolSim−3

0.75

kFe,Pn Fe nutrient uptake half-

saturation concentration for

non-diatoms

mmolFem−3

0.00033

fkFe,Pd =
kFe,Pd

kFe,Pn
Fe nutrient uptake half-

saturation concentration for

diatoms relative to that for

non-diatoms

–

2.03

The first step in parametric analysis of a model, whether

for purposes of uncertainty analysis or calibration, is defining

the parameter space to be investigated. Our primary interest

here is in exploring uncertainty in the seasonal cycle and its

impact on annual primary production and the export of mate-

rial from the euphotic zone. We therefore want to investigate

plankton system parameters that have a significant influence

on these processes. These are identified by a formal sensi-

tivity analysis involving 28 relevant model parameters varied

over ranges consistent with their defined roles in the model.

A1 Initial parameter selection

The MEDUSA 1.0 model as described by Yool et al. (2011)

has over 60 parameters. Our focus is on the seasonal cycle

in the euphotic zone with the ultimate aim of using satellite-

derived chlorophyll data to constrain upper ocean plankton

dynamics in the model. On this basis, a number of parameter

groups are excluded from the model analysis. These are the

parameters of the inorganic iron and carbonate systems and

parameters associated with the remineralization of sinking

particles that occurs mainly in the ocean interior. Parameters

related to stoichiometry are, in general, relatively well known

compared with many of the other parameters and are also ex-

cluded from the analysis. However, this is largely a pragmatic

decision to reduce the size of the parameter space; sensitivity

to these parameters within their expected ranges should ide-

ally be explored in future studies. The parameters referred to

are the carbon : nitrogen and iron : nitrogen ratios for the or-

ganic components and the parameters controlling the variable

chlorophyll : carbon ratios for the two phytoplankton types

and the diatom silicon : nitrogen ratios.

The remaining set of parameters used in MEDUSA in-

cludes parameters that are conceptually related in such a way

as to complicate the interpretation of parametric analyses in

which they are varied independently. For example, the two

phytoplankton types each have their own set of rate parame-

ters, so adjusting a rate parameter for one phytoplankton type

affects the relative rates for each type. There are no individ-

ual parameters controlling the overall rates associated with

phytoplankton as an aggregated biotic group. To avoid prob-

lems of this kind, the input parameter set in the MarMOT 1.1

configuration of MEDUSA has been modified from the para-

meter set used internally.

The 37 input parameters relevant to this study and their

relationships to the internal parameters specified in Yool

et al. (2011) are shown in Tables A1–A3. The standard val-

ues tabulated are those used in the standard simulation of

Yool et al. (2011) or their equivalents. The standard sim-

ulation is referred to in the National Oceanography Cen-

tre’s archive as EXP276 (available on request from A. Yool;

axy@noc.ac.uk). There are inconsistencies between values

for three of the zooplankton density-dependent loss parame-

ters in Table A3 (fµ2,Zµ, fkZµ and fµ2,Zm) and values ap-

pearing in Yool et al. (2011) since the latter were incor-

rect. The correct standard simulation values for the micro-

zooplankton maximum loss rate and half-saturation concen-

tration are µ2,Zµ = 0.1 and kZµ = 0.5 respectively (in units

of d−1 and mmolNm−3). These match the corresponding

standard simulation values for phytoplankton. The correct

value for the mesozooplankton maximum loss rate µ2,Zm is

0.2 d−1.

Pairs of rate or half-saturation concentration parameters

for the different phytoplankton or zooplankton types have

been replaced by a base value, pertaining to the smaller

plankton type (non-diatoms or microzooplankton), and a
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Table A2. MEDUSA zooplankton parameters (MarMOT 1.1 configuration).

Symbol Description and units Standard value

gµ maximum microzooplankton grazing rate

d−1
2

fgm =
gm
gµ

maximum grazing rate of mesozooplankton relative to that of microzoo-

plankton

–

0.25

kµ microzooplankton grazing half-saturation concentration

mmolNm−3
0.8

fkm =
km
kµ

grazing half-saturation concentration for mesozooplankton relative to that

of microzooplankton

–

0.375

φ zooplankton grazing inefficiency

–

0.2

βN zooplankton N assimilation efficiency

–

0.69

aβC =
βC−βN
βN

,βC ≤ βN

aβC =
βC−βN

1−βN
,βC > βN

offset of zooplankton C assimilation efficiency from that of N as a fraction

of maximum offset possible

–

0

kC zooplankton net C growth efficiency

–

0.8

pµPn microzooplankton grazing preference for live food (non-diatom phyto-

plankton)

–

0.75

pmLive = pmPn+pmPd+

pmZµ

mesozooplankton grazing preference for live food (phytoplankton or micro-

zooplankton)

–

0.85

pc,mP =
pmPn+pmPd

pmPn+pmPd+pmZµ
mesozooplankton conditional grazing preference for phytoplankton, given

live food

–

0.5882

pc,mPn =
pmPn

pmPn+pmPd
mesozooplankton conditional grazing preference for non-diatoms, given

phytoplankton

–

0.3

relative value for the larger type (diatoms or mesozooplank-

ton). This leads to new parameters that are non-dimensional

factors. For the diatom growth process these are fαPd, fVPd,

fkN,Pd and fkFe,Pd. For mesozooplankton growth we have

fgm and fkm. The new parameters for the diatom loss pro-

cesses are fµ1,Pd, fµ2,Pd, fkPd. For the zooplankton loss pro-

cesses, the microzooplankton values fµ2,Zµ and fkZµ are

defined in terms of the non-diatom phytoplankton values

and the mesozooplankton values fµ2,Zm, fkZm are defined

in terms of the microzooplankton values. This suite of mod-

ifications allows individual parameters, the base values, to

be varied without affecting the relationships between closely

associated parameters. The parameter relationships can be

controlled independently using the new parameters.

A similar approach is taken for assimilation efficiencies

and feeding preference parameters. The carbon assimilation

efficiency for zooplankton grazers has been re-expressed in

terms of their nitrogen assimilation efficiency by a non-

dimensional offset parameter aβC. The value is the fraction

of the maximum possible offset determined by the constraint

that assimilation efficiencies must logically be within the

range 0–1. Mesozooplankton feeding preferences have been

re-expressed in a hierarchical way so that instead of prefer-

ence factors for each individual food type, there is an overall

preference for live food (as opposed to detritus) pmLive and

two conditional preferences: a preference for phytoplankton

given live food pc,mP and a preference for non-diatoms given

phytoplankton pc,mPn.

Yool et al. (2011) used identical values for some parame-

ter pairs and groups to avoid introducing arbitrary complex-

ity. The new definition of the input parameter set described

here allows the values of associated internal parameters to be

kept the same while varying their values via the base para-

meter. Adding additional complexity over that of the origi-

nal model is not justified for the present calibration experi-

ments so the relevant non-dimensional factors are fixed at 1

wherever identical parameter values were used by Yool et al.

(2011), thereby further reducing dimensionality of the para-

meter space. By the same argument, aβC is fixed at 0.
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Table A3. MEDUSA plankton loss-related parameters (MarMOT 1.1 configuration).

Symbol Description and units Standard value

µ1,Pn non-diatom phytoplankton density-independent loss rate

d−1
0.02

fµ1,Pd =
µ1,Pd

µ1,Pn
density-independent loss rate of diatoms relative to that of non-diatom phyto-

plankton

–

1

fµ1,Zµ =
µ1,Zµ

µ1,Pn
density-independent loss rate of microzooplankton relative to that of non-

diatom phytoplankton

–

1

fµ1,Zm =
µ1,Zm

µ1,Zµ
density-independent loss rate of mesozooplankton relative to that of microzoo-

plankton

–

1

µ2,Pn non-diatom phytoplankton maximum density-dependent loss rate

d−1
0.1

kPn non-diatom phytoplankton half-saturation concentration for density-dependent

loss

mmolNm−3

0.5

fµ2,Pd =
µ2,Pd

µ2,Pn
maximum density-dependent loss rate of diatoms relative to that of non-diatom

phytoplankton

–

1

fkPd =
kkPd
kPn

density-dependent loss half-saturation concentration of diatoms relative to that

of non-diatom phytoplankton

–

1

fµ2,Zµ =
µ2,Zµ

µ2,Pn
maximum density-dependent loss rate of microzooplankton relative to that of

non-diatom phytoplankton

–

1

fkZµ =
kZµ

kPn
density-dependent loss half-saturation concentration of microzooplankton rela-

tive to that of non-diatom phytoplankton

–

1

fµ2,Zm =
µ2,Zm

µ2,Zµ
maximum density-dependent loss rate of mesozooplankton relative to that of

microzooplankton

–

2

fkZm =
kZm
kZµ

density-dependent loss half-saturation concentration of mesozooplankton rela-

tive to that of microzooplankton

–

1.5

D1frac fast detritus fraction of diatom losses

–

0.75

D2frac fast detritus fraction of mesozooplankton losses

–

1

Diss diatom frustule dissolution rate

d−1
0.006

wg detrital sinking rate

md−1
3

The standard value for the fast detritus fraction of meso-

zooplankton losses D2frac is 1, implying that all mesozoo-

plankton losses are treated as fast-sinking detritus. Adjusting

this value would cause the losses to be divided between slow

and fast sinking detritus adding a small amount of additional

complexity to the model processes. Again, we chose to avoid

introducing this new complexity and left this parameter fixed.

As a consequence of excluding less relevant parameter

groups from the analysis and choosing to avoid the intro-

duction of new complexity, an initial parameter space of 28

dimensions was considered in the present study. The remain-

ing parameters are constrained a priori to take their standard

values; this constraint effectively becomes part of the model

design. Further dimension reduction was performed objec-

tively on the basis of a sensitivity analysis.
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Table A4. MEDUSA parameter space for 28-dimensional sensitiv-

ity analysis.

Parameter Standard Lower Upper Transformation

value bound bound

αPn 15 7.5 30 log

fαPd 0.75 0.56 1 log

VPn 0.53 0.27 1.1 log

fVPd 0.9434 0.89 1 log

kN,Pn 0.5 0.1 2.5 log

fkN,Pd 1.5 1 2.3 log

kSi 0.75 0.15 3.8 log

kFe,Pn 0.00033 0.000066 0.0017 log

fkFe,Pd 2.03 1 4.1 log

gµ 2 1 4 log

fgm 0.25 0.13 0.5 log

kµ 0.8 0.16 4 log

fkm 0.375 0.14 1 log

φ 0.2 0.05 0.45

βN 0.69 0.44 0.94

kC 0.8 0.55 0.95

pµPn 0.75 0.5 0.95

pmLive 0.85 0.6 0.95

pc,mP 0.5882 0.34 0.84

pc,mPn 0.3 0.05 0.55

µ1,Pn 0.02 0.01 0.04 log

µ2,Pn 0.1 0.05 0.2 log

kPn 0.5 0.1 2.5 log

fµ2,Zm 2 1 4 log

fkZm 1.5 1 2.3 log

D1frac 0.75 0.5 0.95

Diss 0.006 0.003 0.012 log

wg 3 1.5 6 log

A2 Parameter ranges

Acceptable ranges for each of the parameters to be included

in the analysis are defined according to a set of rules as fol-

lows.

Rule 1: for all positive parameters with no inherent up-

per limit, bounds are symmetric about the prior value on

a geometric scale. This applies to rate parameters and half-

saturation concentrations, whether expressed in absolute or

relative units. Rate parameter bounds are set initially at half

and double the prior. A factor of 5 is used for half-saturation

concentrations.

Rule 2: for fractions, such as efficiencies and feeding pref-

erences, limits are initially set at ±0.25. Limits of 0.05 and

0.95 are imposed on the lower and upper bounds respectively

and the bounds are adjusted if necessary.

Rule 3: the sign of differences between associated inter-

nal parameters is preserved. This is done for rates and half-

saturation concentrations by imposing 1 as a lower or upper

limit for the ranges of the parameters that are expressed as

relative values, depending on whether their priors are greater

than or less than 1. The relevant bound is adjusted if neces-

sary.

Rule 4: if either bound is adjusted in applying Rule 3, then

symmetry is used to reset the opposite bound. Geometric

symmetry is applied to rates and half-saturation concentra-

tions. This rule applies a constraint on the difference between

associated parameters that is dependent on their difference in

the prior parameter set.

The resulting parameter space is defined by Table A4.

Log-transformed values are used for some parameters when

dividing up the parameter space for sampling purposes. The

dimensions to which this applies are indicated in the table.

A3 Parameter sensitivity analysis

Following the initial parameter selection, further reduction

in the dimensionality of the parameter space to be explored

in the calibration process is based on the potential impact

of parameters on annual primary production and the ratio of

annual particulate export to annual primary production, re-

ferred to as the pe-ratio. (The inorganic fraction of partic-

ulate carbon export associated with carbonate production is

excluded.) The value of the pe-ratio at 207 m is used since

this is the greatest depth at which photosynthesis can occur

in the model.

Annual mean values for 1998 at 12 sites were determined

for 5000 different parameter vectors in the 28-dimensional

parameter space. The parameter vectors were distributed in

parameter space using a Latin hypercube design (McKay

et al., 1979) with a “maximin” criterion (Johnson et al., 1990)

applied to 10 randomly generated hypercubes. For generating

the design points, distance is defined in terms of positions on

a parameter space grid with an equal number of intervals in

each dimension. Grid intervals are in log units for rate pa-

rameters and half-saturation concentrations. The sensitivity

analysis was performed using the 1-D experimental frame-

work described in Sect. 3, with the time step increased to

2 h for efficiency. 1-D simulations were initialized from the

standard 3-D simulation of Yool et al. (2011) at the start of

1997, allowing one complete annual cycle for adjustment to

the new parameter values and the 1-D context to reduce the

impact of transient behaviour. Lateral fluxes were ignored.

The results of an initial sensitivity analysis for all 28 pa-

rameters were examined to identify parameters that have

a clear impact on the primary production and the pe-ratio.

Parameters that individually explained less than 5 % of the

variance in both variables at all sites were then automatically

excluded. The sensitivities of the two variables to the remain-

ing parameters are summarized in Table A5 in terms of the

number of sites out of 12 at which the parameter explains at

least 5 % of the variance and the proportion of variance ex-

plained given by the squared Pearson correlation coefficient

r2.

There are nine parameters that explain more that 5 % of the

variance in both model outputs. Of these, kC has a relatively
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Table A5. Parameter sensitivity of annual mean model output from 28-dimensional analysis, showing parameters that explain 5 % or more

of the variance in either variable at one or more sites.

Parameter Primary production Particulate export ratio at 207 m Selected?

No. of sites Maximum No. of sites Maximum

with r2
≥ 0.05 r2 with r2

≥ 0.05 r2

αPn 8 0.44 4 0.08 yes

VPn 4 0.15 0 < 0.05 no

kN,Pn 5 0.22 2 0.10 yes

kFe,Pn 9 0.34 3 0.08 yes

kµ 5 0.17 2 0.13 yes

fkm 0 < 0.05 1 0.05 no

φ 4 0.15 7 0.17 yes

kC 3 0.07 2 0.10 no

µ1,Pn 6 0.11 11 0.10 yes

µ2,Pn 3 0.06 0 < 0.05 no

kPn 4 0.22 7 0.15 yes

wg 6 0.17 11 0.38 yes

weak effect on both and is excluded. Of the remaining three

parameters, VPn is the only one with any stronger influence

than kC on either output, having some impact on primary

production. However, its effect does not appear to be any

greater than the least influential of the other parameters to

be retained. Given its lack of influence on pe-ratio, it is dis-

carded along with fkm and µ2,Pn leaving an 8-dimensional

parameter space for the emulation experiments.

The sensitivity analysis was repeated in the 8-dimensional

parameter space, again with a sample size of 5000 parameter

vectors. Discarding the other 20 parameters reduced the total

variance in primary production at each site by between 5 and

38 %. The reduction in the pe-ratio variance was generally

less, varying from 6 to 19 %. The parametric uncertainty in

primary production and pe-ratio associated with the final 8-

dimensional parameter space is illustrated by the coefficient

of variation (ratio of standard deviation to mean) for the two

variables at each site. The coefficient of variation for primary

production ranges from 0.29 (at 15◦ N) to 0.48 (at 55◦ N).

That for the pe-ratio is generally greater, ranging from 0.38

(at 60◦ N) to 1.06 (at 30◦ N).

Appendix B: Quantification of simulator uncertainty

Uncertainty for the log-transformed 5-day mean chlorophyll

output is quantified in terms of time series of the predicted

monthly means and variances of the uninformed simula-

tor residual. In the direct uncertainty quantification method,

these statistics are derived from differences between the 5-

day uninformed simulator output and the corresponding tar-

get model output over all parameter vectors in the Construc-

tion Phase ensemble. In the indirect method, they are derived

from the sums of the mean and variance estimates for the

mean environment simulation residual εS and the paramet-

ric environment residual εB. The εS statistics are estimated

from differences between the 5-day informed simulator out-

put and the target model output over the parameter vectors

in the Construction Phase ensemble. The εB statistics are es-

timated from the 5-day output of a parametric uncertainty

analysis using 100 ensemble members.

For each residual, the mean and variance of the 5-day

probability distributions are estimated from the relevant

ensemble-based sample: ui , i ∈ {1, . . .,n}. The unbiased pop-

ulation variance estimator

s2
u =

∑n
i=1(ui − u)

2

n− 1
(B1)

is used. The 5-day statistics are then used to derive monthly

means and variances which are interpolated to give continu-

ous time series um(t) and s2
m(t) respectively for uncertainty

quantification. The procedure for calculating the time series

from the 5-day statistics is as follows.

Five-day samples are grouped in pseudo-monthly bins (in-

tervals of 30.42 days) and the monthly mean residual um is

estimated from the k sample means in each bin using the un-

weighted average, so

um =
1

k

k∑
i=1

ui, (B2)

where ui is the mean of the ith 5-day sample. um is then

linearly interpolated between monthly mid-points to ob-

tain um(t). Values for early January 1997 and late Decem-

ber 1998 are equated to those at the respective monthly mid-

point. um(t) is the estimate of the expected residual used for

bias correction.

The true residual for the trial parameter vector xo can be

expressed as

ψo(t,xo)= um(t)+ εµ+ εψ , (B3)
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Figure B1. Statistics for the uninformed simulator residual ε1, predicted by the direct and indirect uncertainty quantification methods for all

10 experiments: (a) residual means u1 and uS+uB; (b) residual standard deviations s1 and

√
s2
S
+ s2

B. Values are in log10(chlorophyll) units

with chlorophyll in mgm−3.

where εµ is the departure of the true residual mean from the

estimated residual mean:

εµ = µ(t)− um(t) (B4)

and εψ is the departure of the true residual from the true

residual mean:

εψ = ψo(t,xo)−µ(t). (B5)

For the purposes of uncertainty quantification, these depar-

tures are assumed to be independent Gaussian random vari-

ables with zero means and variances s2
µ(t) and s2

ψ (t) respec-

tively, derived from the sample data. Variances s2
µ and s2

ψ are

determined for each pseudo-monthly bin. The monthly vari-

ance estimate for the residual is then given by

s2
m = s

2
µ+ s

2
ψ . (B6)
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Figure B2. Predicted statistics for the mean environment simulation residual εS and the parametric environment residual εB for all 10

experiments: (a) residual means uS and uB; (b) residual standard deviations sS and sB. Values are in log10(chlorophyll) units with chlorophyll

in mgm−3.

This is converted to a continuous time series by interpola-

tion and end-point extrapolation, as for the residual means,

to obtain s2
m(t).

For each bin, s2
µ is given by the monthly variance of the

anomaly between the 5-day sample mean u and the expected

residual estimate um at the 5-day interval mid-point. So

s2
µ =

∑k
i=1(ai − a)

2

k− 1
, (B7)

where

ai = ui− um(ti). (B8)

s2
ψ is given by the pooled estimates of the residual variance

s2
ψ =

1

k

k∑
i=1

s2
u,i, (B9)
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where s2
u,i is the variance estimated from the ith 5-day sam-

ple.

Determination of monthly means and variances for the

residuals from the 5-day samples is expected to give more

robust estimates. However, the increase in effective sample

size depends on the extent to which samples are temporally

correlated over each pseudo-monthly bin. This is not quanti-

fied in the present study.

Time series of uninformed simulator residual statistics

given by the direct and indirect uncertainty quantification

methods are shown in Fig. B1. (Note that for an arbitrary

residual εX, um is denoted uX and sm is denoted sX.) For

both methods, the time series determined for all 10 trial pa-

rameter experiments are shown. The statistics for the unin-

formed simulator residual ε1 predicted by the direct method

do not account for dependency of the true residual distribu-

tions on the trial parameter vectors. Thus, variation in the

time series between experiments is due only to sampling un-

certainty. The ε1 statistics predicted by the indirect method

do account for this parameter dependency and the variation

between experiments is then in part due to the parameter-

specific dynamics of the environment ensemble simulation

used for the parametric uncertainty analysis.

Time series for the statistics of the component residuals

contributing to the uninformed simulator statistics given by

the indirect method are shown in Fig. B2. The statistics for

the mean environment simulation residual εS, like the ε1

statistics given by the direct method, differ between exper-

iments only due to sampling uncertainty. They exhibit less

variation between experiments than the ε1 statistics, reflect-

ing the lack of dependency of the true distribution of εS on

the trial parameter vector. The statistics for the parametric en-

vironment residual εB, the component residual that explicitly

accounts for the trial parameter vector dependency in the un-

informed simulator uncertainty, show much greater variation

between experiments.

Geosci. Model Dev., 8, 697–731, 2015 www.geosci-model-dev.net/8/697/2015/



J. C. P. Hemmings et al.: Site-based emulation of an ocean biogeochemical model 729

Code availability

MarMOT 1.1 is open source software available under the

CeCILL Free Software License Agreement. It is designed

for use on UNIX-based systems, including LINUX and

Mac OS X. The original code was released on 21 Novem-

ber 2013. The current version, MarMOT 1.1.1, released on

23 January 2015, is functionally equivalent to the original

but includes modifications to address a known portability is-

sue and improve reliability. A tar archive containing the Mar-

MOT 1.1.1 distribution can be downloaded from the National

Oceanography Centre’s web site at http://noc.ac.uk/project/

marmot or supplied by the corresponding author on request.

The software release includes a set of command line tools for

handling MarMOT-compatible data tables. Full documenta-

tion and test data are included with the distribution.

The MEDUSA 1.0 code is available as a supplement to

Yool et al. (2011). A version of this original code with adap-

tations for interfacing with the MarMOT testbed is included

in the MarMOT 1.1.1 distribution.

The Supplement related to this article is available online

at doi:10.5194/gmd-8-697-2015-supplement.
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