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Sequestration efficiency in the iron-limited North
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1National Oceanography Centre, Southampton, UK, 2Univerity of Southampton, Southampton, UK, 3Departmento Físíca
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Abstract Estimates of the amount of carbon sequestered in the ocean interior per unit iron (Fe)
supplied, as quantified by the sequestration efficiency (Ceffx), vary widely. Such variability in Ceffx has
frequently been attributed to estimate uncertainty rather than intrinsic variability. Here we derive new
estimates of Ceffx for the subpolar North Atlantic, where Fe stressed conditions have recently been
demonstrated. Derived values of Ceffx from across the region, including areas subject to atypical external Fe
fertilization events during the year of sample collection (2010), ranged from 17 to 19 kmol C (mol Fe�1).
Comparing these estimates with values from other systems, considered in the context of variable bloom
durations in the different oceanographic settings, we suggest that apparent variability in Ceffxmay be related to
the mode of Fe delivery.

1. Introduction

Iron (Fe) availability has been shown to control phytoplankton growth in the so-called high nitrate low
chlorophyll (HNLC) regions [Blain et al., 2007; Boyd et al., 2004; de Baar et al., 2005; Pollard et al., 2009; Smetacek
et al., 2012] including the Southern Ocean, equatorial Pacific, and subpolar North Pacific. More recently, some
oceanic regions characterized by marked seasonal chlorophyll peaks (blooms), including the Irminger and
Iceland Basins (hereafter IRB and IB, respectively) of the high latitude North Atlantic (HLNA), [Nielsdottir et al.,
2009; Ryan-Keogh et al., 2013; Sanders et al., 2005] have also been suggested to experience a degree of Fe
stress. Within all these regions, Fe deficiency potentially contributes to incomplete utilization of surface
macronutrients. Subsequent subduction of these unused macronutrients in regions of deep water formation,
including the Southern Ocean or the HLNA, represents an inefficiency in the biological carbon pump [Marinov
et al., 2008; Nielsdottir et al., 2009; Sarmiento and Orr, 1991]. Consequently, oceanic Fe availability has been
invoked as a potential control on atmospheric CO2 [Martin et al., 1990], with for example, higher aerosol
deposition to the glacial Southern Ocean hypothesized to have partly contributed to glacial/interglacial CO2

cycles [Jickells et al., 2005; Martinez-Garcia et al., 2014; Ridgwell and Watson, 2002].

Quantitative understanding of linkages between variability in external Fe inputs and carbon cycling in
different oceanic settings requires an understanding of the relationship between Fe supply and carbon
sequestration, as encapsulated in the sequestration efficiency (Ceffx). To date, estimates of Ceffx (defined as the
ratio of carbon exported per unit of Fe supplied) from field programs have varied widely (~1.2 to 154 kmol C
(mol Fe)�1) [Boyd et al., 2007; de Baar et al., 2005; Morris and Charette, 2013]. The mode of Fe supply has
previously been suggested as a mechanistic driver of such variability in Ceffx [Boyd et al., 2007; Chever et al.,
2010]. However, in the absence of any observed systematic basis for the reported >2 order of magnitude
range in Ceffx, these differences may also reflect uncertainties in calculations [Morris and Charette, 2013],
including incomplete accounting for Fe sources or differing approaches for estimating C export. With the
exception of values derived for Fe fertilized blooms around (sub-) Antarctic island systems, such as reported
for the KErguelen Ocean and Plateau compared Study (KEOPS) and Crozet natural iron bloom and export
experiment (CROZEX) studies [Blain et al., 2007; Pollard et al., 2009], no estimates of Ceffx have yet been
derived for highly productive natural oceanic systems. Here we report new estimates for Ceffx for the HLNA
and attempt to synthesize these into a growing understanding of potential controls on this variable in the
global ocean.
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2. Methods for Ancillary Data and Export Fluxes

Sampling took place from 4 July to 10 August 2010, on board the RRS Discovery cruise D354 as part of the
Irminger Basin Iron Study (IBIS) program. Inorganic nutrients and particulate organic carbon (POC) and
nitrogen (PON) were sampled and analyzed as previously described [Le Moigne et al., 2013b; Sanders and
Jickells, 2000]. POC and PON export fluxes were subsequently calculated using the 234Th “small-volume”
technique [Pike et al., 2005]. Briefly, vertical profiles of 234Th activity (integrated to a depth of 100m) were
converted to estimates of downward 234Th flux using a one dimensional steady-state model [Buesseler
et al., 1992]. Extraction efficiencies for 234Th were 90.6 ± 6.7% [Le Moigne et al., 2013a, 2012]. Observed
234Th:POC and 234Th:PON ratios for large (>53 μm) particles collected using in situ Stand Alone Pumping
Systems (SAPS) deployed for 1.5 h at a single depth beneath the mixed layer were then used to convert
234Th fluxes to POC/N fluxes. Approximately 1500–2000 L of seawater was filtered using 53 μmmesh filters
(Nitex), with swimmers manually removed following filtration. Particles were then rinsed off the filters
using Th-free seawater as prepared following [Le Moigne et al., 2013b], and the particle suspensions were
split and analyzed for 234Th, POC, and PON as described in Le Moigne et al. [2013b]. Maiti et al. [2012]
suggested that high flow rates may lead to particle disintegration. The pump rates we used were about two
times larger than those used by Maiti et al. [2012]; however, the surface area of our filters was around 4
times larger [Le Moigne et al., 2013b]. Therefore, the velocity of seawater through the filter was around
half of that used by Maiti et al. [2012]. Dissolved iron was determined following procedures reported by
Painter et al. [2014].

3. Results and Discussion
3.1. The High Latitude North Atlantic in 2010

Biogeochemical cycles in the HLNA were perturbed during 2010 as a result of aerosol Fe deposition to the
IB from the eruption of the Icelandic volcano Eyjafjallajökull [Achterberg et al., 2013]. In addition, winter mixed
layer depths prior to our cruise were shallower than average in the IRB, while the summer euphotic zone
(40 ± 5m) and mixed layer depths (28 ± 8m) represented typical conditions for both the IB and IRB [Henson
et al., 2013; Painter et al., 2014]. Consequently, inputs of Fe from deep winter convection were also likely up
to fourfold higher in the IB (37,500 nmolm�2) relative to the IRB (10,000 nmolm�2) [Painter et al., 2014].

Volcanic Fe inputs during May 2010 to the IB potentially resulted in enhanced macro-nutrient drawdown,
with low observed nitrate(<1 μM) during summer 2010 in the IB [Achterberg et al., 2013; Ryan-Keogh et al.,
2013], while concentrations remained relatively high (3–5 μM) and comparable with previous observations
in the IRB [Sanders et al., 2005] (Figures 1a and 1c). Silicate was also strongly depleted in the IB (<1 μM)
relative to IRB (1–4μM) (Figures 1b and 1d). Correspondingly, nutrient enrichment experiments demonstrated
clear evidence of Fe limitation in the IRB during summer, while Fe stress was much less severe under
the low macronutrient conditions encountered in the IB [Ryan-Keogh et al., 2013]. Furthermore, phytoplankton
Fe:C uptake ratios calculated using radiotracer incorporation techniques [Poulton et al., 2010; Twining
et al., 2004] averaged 0.9 (±0.6) and 4.1 (±1) μmol mol�1 during summer in the IRB and IB, respectively
(C. M. Moore and A. J. Poulton, unpublished data), comparable with observations of Fe-limited temperate
taxa (~2–10 μmolmol�1) [Sunda and Huntsman, 1995] and, for the IRB, Fe-limited taxa isolated from
chronically low Fe environments [Strzepek et al., 2012].

By the time of our summer sampling, chlorophyll-a (Chl-a) concentrations in the IB had decreased following
the spring bloom [Ryan-Keogh et al., 2013]. In contrast, a marked bloom (~1–4μg l�1) was still underway
in the central IRB, potentially as a result of anomalous hydrographic forcing [Henson et al., 2013]. Conditions in
the post-bloom western IRB [Ryan-Keogh et al., 2013] were similar to those within the classical Fe-limited
systems, with relatively low Chl-a concentrations (<1μg l�1) and residual nitrate (>4μM). Hereafter, we
thus restrict discussion of the IRB to this western region [Ryan-Keogh et al., 2013]. Consequently, we compare
carbon export measurements for two stations in the IRB (stations 10 and 16, hereafter lower Fe input, �Fe)
and three stations in the IB (stations 6, 28, and 33, hereafter higher Fe input, +Fe) (Figure 1).

3.2. Carbon Export

In order to derive Ceffx, estimates of both carbon export and Fe input fluxes are required. Following our previous
work [Pollard et al., 2009], seasonal nutrient deficits were combined with estimates of the 234Th- based C and N
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export fluxes [Buesseler et al., 1992; Le Moigne et al., 2013b]. Dividing the observed inorganic N deficit (Figure 2a)
with thorium-derived estimates of downward N flux, then multiplying the resultant estimates of export
duration by the thorium-derived daily organic carbon fluxes (Figure 2b) (see supporting information), we
determined annually integrated POC export estimates of 780 and 1330mmolm�2 in the IRB (�Fe) and the IB
(+Fe), respectively (Figure 2c, range for both +Fe and �Fe given in Table 1). Excess C export between the
Fe-replete (IB) and Fe-limited (IRB) area (Figure 2c) was thus 550mmolm�2, similar to a previous estimate for
the Crozet region [Morris and Charette, 2013; Pollard et al., 2009], but lower than that for the KEOPS experiment
[Blain et al., 2007].

3.3. Sources of New Iron

In keeping with prior work [Blain et al., 2007; Pollard et al., 2009], we consider new sources of Fe to the system
when deriving Ceffx, while acknowledging that recycled Fe was likely important in supporting additional
recycled production [Boyd and Ellwood, 2010]. As summarized in Table 1, we considered five potential sources
of new Fe to the IB and IRB during 2010 (see supporting information for detailed derivations), namely: (1)
typical (i.e., non volcanic) atmospheric deposition [Achterberg et al., 2013], (2) additional volcanic atmospheric
Fe flux to the IB as a result of the Eyjafjallajökull eruption [Achterberg et al., 2013; Painter et al., 2014], (3)
upward vertical diffusive flux [Painter et al., 2014], (4) convective winter mixing flux [Painter et al., 2014], and
(5) horizontal Fe flux from the adjacent continental shelves. The latter may include material originating from
benthic supplies from continental shelves [Elrod et al., 2004] and direct runoff from rivers and glacial melt
[Bhatia et al., 2013; Hawkings et al., 2014].

Horizontal fluxes were estimated by considering surface water Fe concentrations away from shelf regions,
ridges, or major currents in both the IB and the IRB following previously approaches [Bucciarelli et al., 2001;
Planquette et al., 2007; Rijkenberg et al., 2012] (see supporting information), considering two main sources to
the IB (Icelandic shelf and Reykjanes ridge) and three main sources to the IRB (Greenland shelf, the Reykjanes
ridge, and the Eastern Greenland Current). Overall, elevated dissolved and particulate iron (DFe and PFe)
concentrations (Figures S2 and S3) observed close to the Iceland and Greenland shelves did not persist into

Figure 1. Nutrients in the high-latitude North Atlantic. (a) Map of surface water nitrate+nitrite concentrations (μM) during
summer 2010. Carbon export stations are indicated for reference, 10 and 16 are the high nitrate stations while 06, 28, and
33 are the low nitrate stations. (b) Map of surface water silicate concentrations (μM) during summer 2010. (c) Nitrate +nitrite
concentration (μM) profiles at high (blue filled, triangles: st10; circles: st16) and low (green filled, circles: st6; triangles: st28,
squares: st33) nutrients stations. (d) Silicate concentration (μM) profiles at, st6, 10, 16, 28, and 33, symbols are in Figure 1c
(see Table S1, S2, and text in supporting information for full description).
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the central basins and hence horizontal inputs
were minor, albeit still somewhat uncertain
(Table 1). Horizontal fluxes and similar minor
vertical diffusive fluxes were scaled up by
multiplying daily fluxes by 100days (the
estimated bloom duration), and this showed that
bothwere ultimatelyminor contributors to overall
annual new Fe inputs (Table 1), which were
dominated by the winter convective supply
[Nielsdottir et al., 2009; Painter et al., 2014]. In total,
the annual input of new Fe to the IB
(0.041–0.044mmolm�2) was estimated to be
~4 times larger than the input to the IRB
(0.011mmolm�2), principally due to higher
convective and volcanic fluxes (Table 1).
Both these Fe input estimates are comparable
with reported values from the KEOPS
(0.001–0.023mmolm�2) and CROZEX
(0.016–0.076mmolm�2) studies [Morris and
Charette, 2013] (Figure 3a).

3.4. Sequestration Efficiency

Values of Ceff in the IB and IRB were ~30 and
~65 kmol C (mol Fe)�1, respectively (Table 2),
further confirming that the IB experienced Fe
fertilization (values of Ceff were calculated
separately for the two basins rather than as the
difference between the two basins, see
supporting information). Consistently with
previous studies [Blain et al., 2007; Pollard et al.,
2009], we also calculated the apparent efficiency
of the excess export resulting from the enhanced
flux of new Fe to the IRB (Ceffx) (supporting
information), yielding values of 17–19 kmol C
(mol Fe)�1, close to the CROZEX (17 kmolmol�1)
but lower than KEOPS (154 kmolmol�1) values
(Table 2, note hereafter we use the corrected
values [Chever et al., 2010; Morris and Charette,
2013] for KEOPS which include an additional
source of Fe not considered in the seminal study
[Blain et al., 2007]). All these estimates are
considerably higher those from three artificial Fe
fertilizations experiments (1.2–6.5 kmolmol�1,
locations, and references given in Table 2).

Previous studies discussing such ranges in estimates for Ceff(x) have tended to focus on the comparability and
validity of the methods used to construct Fe and C budgets [Blain et al., 2007; Chever et al., 2010; Morris and
Charette, 2013; Pollard et al., 2009], presumably based on the inherent assumption that the variability in Ceff(x)
was too large to be ascribed to natural factors.

3.5. Mode of Fe Supply

Here we focus on an alternative hypothesis, namely that, as previously suggested [Boyd et al., 2007; Chever
et al., 2010], the observed range may instead be driven by differences related to the mode of Fe supply.
Three distinct modes of Fe supply characterize the various experiments. (1) In the shallow waters of the
Kerguelen plateau (500m deep [Blain et al., 2007]) Ceffx was large at intermediate levels of Fe inputs during

Figure 2. Annual carbon export in the Iceland and Irminger
basins. (a) POC and PON export fluxes integrated at 100m
(mmolm�2 d�1), (b) nitrogen budget (nitrogen deficitmmol
m�2, and bloom duration, days, see main text for explanation),
and (c) annual carbon export (mmolm�2). Errors (standard
deviation) are also given in Table 1.
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the KEOPS study, with continued supply Fe throughout the year through a combination of diapycnal mixing
across a vertical gradient over the shallow shelf and a northwestward flow from Heard islands past the
eastern side of the Kerguelen plateau [Chever et al., 2010]. Hence, the Fe stocks above the plateau did not
appear to vary much over the duration of the bloom [Blain et al., 2008; Chever et al., 2010]. (2) Conversely, in
the deep waters of the productive HLNA and the fertilized region of the CROZEX bloom, the main supply of

Table 1. Fe Inputs and Carbon Budget in Both Iceland and Irminger Basins (IB and IRB)

Annual Flux of Iron
(nmolm�2) IRB (�Fe)

IB (+Fe)
Lower Limitb

IB (+Fe)
Upper Limitb Reference Carbon Budget IRB (�Fe) IB (+Fe)

Atmospheric (1168) 3478 6128 [Achterberg et al., 2013;
Painter et al., 2014]

Nitrate drawdown (mmolm�2) 201± 25 287± 9

Vertical diffusive flux 160a 250a 250a [Painter et al., 2014] Daily POC ex (mmolm�2 d�1) 7.0 ± 5.7 10.2 ± 4.1
Winter mixing 10,000 37,500 37,500 [Painter et al., 2014] Daily PON ex (mmolm�2 d�1) 0.8 ± 0.6 1.5 ± 0.6
Horizontal Fe 15a 4.5a 4.5a Bloom duration (days) 111 130
Total 11,343 41,232 43,882 Annual POCex (mmolm�2) 778 1331
Total (in mmolm�2) 0.011 0.041 0.044 Rangec (lower and upper limits) 682–769 1266–1449

aThis was multiplied by 100 days to reflect the duration of the bloom (see text in supporting information). Values in brackets are measured “background” fluxes
[Painter et al., 2014] (see text in supporting information).

bThe lower and upper limit of Fe flux to the IB reflect the sensitivity analysis on the modeled volcano iron deposition given in Achterberg et al. [2013].
cCalculated as [Pollard et al., 2009].

Figure 3. Sequestration efficiency, annual carbon export, and nutrients drawdown for six artificial and natural Fe fertiliza-
tion on the ocean. (a) Annual carbon export (mmolm�2) versus annual Fe input (mmolm�2), fertilized regions are in green
circles, and non-fertilized regions are in blue circles. Experiment names and fertilized/non fertilized regions are indicated
(I: IBIS; K: KEOPS; C: CROZEX). (b) Nitrate drawdown (mmolm�2) (inpatch� outpatch concentrations of nitrate multiplied
by export integration depth for SERIES, EIFEX, and SOFEX) versus Ceffx and Ceff (molmol�1); red are naturally fertilized
regions (circles: Ceffx, triangles: Ceff+ Fe regions, squares: Ceff �Fe regions), and blue circles are artifical fertilizations (Ceffx)
(see Table 2). The mode of Fe supply is indicated on top of the panel as well as the Fe:C ratio in phytoplankton (reference in
the main text). (c) Estimated export duration (days, given in [Pollard et al., 2009] for CROZEX and in Figure 2b for IBIS. KEOPS
export duration was estimated in a similar fashion by dividing the daily downward fluxes of POC by the “seasonaly
integrated” downward fluxes of POC given in Blain et al. [2007]] (their Table 1). Bloom durations for KEOPS are 198 and
167 days, respectively, for + and �Fe regions) versus Ceff (molmol�1); red circles are natural fertilized/non-fertilized
regions, and blue circles are artificial fertilizations (see Table 2) concentrations (in μM, estimated from nutrients references
given in Table 2 and Levitus [1982]) and annual carbon export (mmolm�2). (d) Bloom duration in the +Fe region (days)
estimated from observed satellite-derived Chl-a time series (KEOPS [Blain et al., 2007]; CROZEX [Pollard et al., 2009]; IBIS
[Achterberg et al., 2013], see Table S3 in supporting information) versus Ceffx. Bloom duration for artificial experiments is
assumed to be equal to the length of each experiment [Boyd et al., 2004; Buesseler et al., 2004; Smetacek et al., 2012].
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Fe appears to be seasonal [Pollard et al., 2009] (Table 1). Hence, in both these regions, Fe might be expected
to build up within the mixed layer during winter (a period of about 100 days). Once this mixed layer shoals in
spring, the Fe pool can be used during the productive season until exhaustion [Nielsdottir et al., 2009;
Planquette et al., 2007]. A similar situation is likely to characterize much of the Southern Ocean [Boyd et al.,
2012; Tagliabue et al., 2014]. (3) Finally, during the artificial experiments, several tons of FeSO4 were supplied
to the surface ocean in one or several discrete seedings over a period of several weeks, resulting in a large
loss of Fe due to the formation of insoluble Fe oxy-hydroxides [Boyd et al., 2000].

3.6. Implication for the Mode of Iron Supply in Fertilized Blooms

We suggest that it is likely that high Ceffx values are associated with protracted blooms where Fe availability is
maintained due to continuous Fe supply and perhaps also Fe complexation by organic ligands, sustaining
continued C export over a prolonged period, rather than being rapidly lost through precipitation and
scavenging. We test the association of high Ceffxwith prolonged blooms by comparing Fe supply modes to in
situ estimates of nitrate uptake, duration of the export phase, and bloom duration (derived from satellite
Chl-a time series, see supporting information Table S3). We acknowledge that estimates of the duration of
export for the HLNA and CROZEX are not independent of the calculated seasonally integrated C export (and
thus Ceff(x)), as both are based on observed nitrate drawdown. However, nitrate drawdown and Ceffx were
independent variables in KEOPS and in the artificial Fe release experiments. Moreover, bloom durations
derived from satellite Chl-a time series are independent of Ceffx calculations in all cases and scaled well with
estimated export durations (see Table S3 in supporting information). Overall, both Ceffx and/or Ceff, were
correlated with bloom (or experiment) nitrate uptake (Figure 3b), export duration (Figure 3c), and bloom
duration (Figure 3d). Moreover, the maximum estimates of Ceffx and/or Ceff were comparable to the range of
C:Fe ratios measured in Fe-replete phytoplankton cultures [Sunda and Huntsman, 1995], which could
conceivably set the upper bound on Ceffx. All the markedly lower estimates of Ceff to date thus appear to
relate to situations where Fe supply was discontinuous (Figure 3).

Blooms characterized by a more continuous supply of Fe (KEOPS) thus appear to export carbon more
efficiently per unit of Fe added over a complete seasonal cycle. Such an effect would be consistent with a low
but continuous supply of Fe allowing efficient retention of Fe within the dissolved phase in the euphotic
zone, likely through full complexation by organic ligands [Gledhill and Buck, 2012], or within the ecosystem
itself. Indeed, biological uptake within such blooms could be envisaged to generate the gradients in
bioavailable Fe at the periphery (either below or to the edges of the bloom), which would likely dictate
the magnitude of Fe flux into the bloom region. Such a scenario is in marked contrast to the situation in

Table 2. Carbon Sequestration Efficiency and Nutrient Drawdown

Area Type of Fertilization
Nitrate Drawdown

(mmolm�2)d
Sequestration Efficiency

(Ceffx and Ceff, kmolmol�1) Reference

Ceffx
HLNA Natural 287 17.2–19.0 This study
Southern Ocean Natural 687b 154.0a [Blain et al., 2007]
Southern Ocean Natural 404c 17.2a [Pollard et al., 2009]
Southern Ocean Artificial 75e 6.5 [Smetacek et al., 2012]
Southern Ocean Artificial 75e 3.3 [Buesseler et al., 2004]
Subarctic Pacific Artificial 200e 1.2 [Boyd et al., 2004]

Ceff
HLNA +Fe (IB) given above 30.2–32.5 This study

�Fe (IRB) 201 65.5
Southern Ocean
(KEOPS Kerguelen)

+Fe given above 227.3a [Blain et al., 2007]
�Fe 332b 2,883.3a

Southern Ocean
(CROZEX Crozet)

+Fe given above 18/8a [Pollard et al., 2009]
�Fe 161c 25.0a

aRecalculated in [Morris and Charette, 2013].
bNutrient data from KEOPS are presented in Mosseri et al. [2008].
cNutrient data from CROZEX are presented in Sanders et al. [2007] (reference in supporting information).
dNitrate drawdown in the upper panel of the table is given for the fertilized area or patch (+Fe).
eNutrient drawdown was calculated as surface nutrient in-patch� surface nutrient out-patch multiplied by export

integration depth.
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purposeful FeSO4 release experiments, where a large amount of Fe is supplied to a region with low pre-
existing biomass. Orders of magnitude lower Ceffx in such situations might be expected to result from loss of
much of the pulsed excess Fe inputs [Boyd et al., 2004; Buesseler et al., 2004; Smetacek et al., 2012] due to
saturation of the available Fe complexing ligands sites and rapid transfer of Fe into colloidal (>200 kDa)
phases with subsequent particle scavenging alongside a limited capacity for the extant microbial community
to take up the sudden large Fe excess [Bowie et al., 2001; Boyd et al., 2007]. Finally, in systems where the
supply of Fe is seasonally dominated (CROZEX, IBIS), the bloom likely terminates when the Fe stock is used
up [Boyd et al., 2012; Nielsdottir et al., 2009]. Consistent with such arguments, both the excess carbon export
(+Fe minus�Fe carbon export) and excess Fe input (+Fe minus�Fe Fe input) for IBIS were about half that of
CROZEX (552 versus 1041mmol Cm�2 and 0.031 versus 0.062mmol Fem�2, respectively).

As outlined above, our estimates of Ceffx are, by definition, based on new Fe inputs to the upper ocean.
However, a large fraction of the total Fe used by phytoplankton is likely derived from regeneration, for
example through grazing and viral lysis [Boyd et al., 2012, 2005; Strzepek et al., 2005]. Our simple explanation
for the apparent relationship between Ceff(x) and bloom duration (Figure 3), as dictated by the period over
which Fe is retained and/or resupplied to the system will, in reality, likely reflect a range of complex microbial
recycling processes in the mixed layer [Boyd and Ellwood, 2010; Strzepek et al., 2005]. Subsequent
consequences for Ceffx, as defined, will depend on the extent to which Fe or C/macronutrients are preferential
remineralized within a system [Frew et al., 2006; Twining et al., 2014]. For example, if C is effectively
remineralized at shallower depth than Fe, potentially due to (re-)scavenging of the latter [Frew et al., 2006;
Twining et al., 2014], Ceffx might be further depressed as the ratio between new and recycled Fe supply
(termed the “fe-ratio” [Boyd et al., 2005]) decreases, as might be expected in chronically low Fe systems or the
latter stages of the seasonal cycle [Tagliabue et al., 2014].

Overall, on the basis of available data (Figure 3), it thus appears that Ceff exhibits systematic variability which
is not a simple function of the magnitude of new Fe inputs (Figure 3a) but is instead related to the mode of
new Fe supply and the duration of the bloom/export phase (Figures 3b, 3c, and 3d), potentially moderated
further by the intensity of subsequent recycling. Consequently, differences in the natural modes of new Fe
supply likely result in spatio-temporal gradients in Ceffx within both the modern and paleo-oceans. For
example, relatively low but continuous benthic Fe inputs to coastal upwelling regions would be expected to
result in high Ceffx; however, this efficiency would be expected to decrease as inputs increase, particularly if it
exceeds biological demand or the complexing capacity of natural organic Fe binding ligands [Elrod et al.,
2004]. In contrast, aerosols inputs to Fe-limited regions, representing localized and seasonally variable
sources of Fe deposited over timescales of weeks to months [Jickells et al., 2005;Mahowald et al., 2009], might
be expected to be associated with mid range values of Ceffx, which could vary as a function of deposition
intensity, alongside other factors which may alter overall biological demand, such as the availability of
macronutrients. A more complete mechanistic understanding of linkages between atmospheric CO2 and
past [Martinez-Garcia et al., 2014; Ridgwell and Watson, 2002] or future [Jickells et al., 2005] natural Fe
fertilization from dust deposition may thus need to consider such processes. More broadly, any attempts to
quantitatively link the oceanic Fe and C cycles will need to consider the potential for delivery mode to control
the amount of carbon sequestered per unit Fe added.
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