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Abstract 13 

We have become progressively more concerned about the quality of some published 14 

ecotoxicology research. Others have also expressed concern. It is not uncommon for basic, but 15 

extremely important, factors to apparently be ignored. For example, exposure concentrations in 16 

laboratory experiments are sometimes not measured, and hence there is no evidence that the test 17 

organisms were actually exposed to the test substance, let alone at the stated concentrations. To 18 

try to improve the quality of ecotoxicology research, we suggest twelve basic principles that 19 

should be considered, not at the point of publication of the results, but during the experimental 20 

design. These principles range from carefully considering essential aspects of experimental 21 

design through to accurately defining the exposure, as well as unbiased analysis and reporting of 22 

the results. Although not all principles will apply to all studies, we offer these principles in the 23 

hope that they will improve the quality of the science that is available to regulators. Science is an 24 

evidence-based discipline and it is important that we and the regulators can trust the evidence 25 

presented to us. Significant resources often have to be devoted to refuting the results of poor 26 

research when those resources could be utilised more effectively. 27 

  28 
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Introduction 29 

We, and others, have become increasingly concerned that the quality of a significant proportion 30 

of ecotoxicological research is not as high as it could, and probably should, be.
1-4

 It is very 31 

common nowadays for us to read a scientific article published in a reputable journal and end up 32 

thinking “this effect of substance X is surprising”, or even “I find it very difficult to believe that 33 

substance X really does cause those effects at those concentrations”. Other scientists have also 34 

indicated that they have difficulty deciding what ecotoxicological research is sound and what is 35 

not.
5,6

 Indeed, some have already published papers suggesting improvements that could be made 36 

to ecotoxicological research.
7
 37 

We are not the first people to express concern about the quality of published research, either in 38 

our field (ecotoxicology) or any other field. For decades (and possibly hundreds of years), 39 

scientists have questioned the merits or demerits of particular pieces of research. Nearly half a 40 

century ago, an eminent physician, who was interested in possible links between the incidence of 41 

various diseases in people and their exposure to industrial chemicals in their working 42 

environments, published a set of criteria that he suggested should be used to support, or refute, 43 

reported associations between conditions in the workplace (e.g. exposure to industrial chemicals) 44 

and particular diseases.
8
 In other words, he was interested in assessing the quality of research 45 

that purported to link substance X with adverse effect Y. More recently, various toxicologists 46 

and ecotoxicologists have published updated sets of criteria for quality assessment of published 47 

(eco)toxicological studies,
9-12

 mainly as a prerequisite to determining what weight can be placed 48 

on a study before it can be used for environmental risk assessment.
5
 The outcomes of these 49 

assessments do not inspire much confidence in the existing literature: many influential studies 50 

are rated as ‘not reliable’ or ‘unacceptable’;
6
 at least one scientist has gone so far as to suggest 51 

that ‘most published research findings are false’.
13

 52 

We have no desire to undermine ecotoxicology; on the contrary, our desire is to improve it. We 53 

accept that some ecotoxicology, especially fieldwork, can be extremely difficult, if not 54 

impossible, to conduct in an ideal way. How, for example, does one obtain a clear-cut answer to 55 

a question such as ‘are perfluorochemicals adversely affecting albatrosses?’ in order to 56 

determine whether their documented exposure to these extremely persistent pollutants 
14

 is, or is 57 

not, of concern? Nevertheless we still consider that much ecotoxicology, including laboratory-58 

based studies, is not being conducted (or interpreted) as well as it could be. In order to try and 59 

improve the situation in the future, we list, then briefly expand upon, the factors we consider 60 
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most important to defining the quality and usefulness of ecotoxicological research studies. We 61 

present a set of principles which, if adhered to, would improve considerably the quality of such 62 

research (see Table 1). Our approach is based on the very successful establishment of the 63 

principles of Green Chemistry.
15,16

 However, whereas those principles were intended to 64 

accomplish the goals of green design and sustainability, ours are perhaps somewhat less 65 

ambitious and more practical, and specifically aimed at improving the quality of 66 

ecotoxicological research. Our principles also address the issue of reporting results in a balanced 67 

manner that reflects the results obtained. 68 

Discussing the principles of sound ecotoxicology has necessitated mentioning some examples of 69 

what we consider poor ecotoxicology. We have attempted not to be unfair to any individual, or 70 

to any particular issue in ecotoxicology, and have tried to provide balance in this article by also 71 

mentioning examples of what we consider are good ecotoxicological studies. Most of our 72 

examples are in the field of aquatic ecotoxicology and, in particular, endocrine disruption, 73 

because this is our area of expertise, but we believe the principles outlined here are relevant to 74 

ecotoxicology as a whole. 75 

  76 
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The Principles of Sound Ecotoxicology 

1. Adequate planning and good design of a study are essential 

If the planning stages are not thought through adequately, an entire study could be 

wasted. 

2. Define the baseline 

When any endpoint is assessed, the ‘normal’ level of that endpoint in an unexposed 

organism should be established. 

3. Include appropriate controls 

Solvent controls and positive controls should be used where possible/appropriate. The 

number of controls should also be considered. 

4. Use appropriate exposure routes and concentrations 

Ensure that the route of exposure is appropriate (e.g. via water or via food) and that the 

concentrations applied are discussed within the context of concentrations measured in the 

environment. 

5. Define the exposure 

It is important to measure actual concentrations of the substance/s used, so that the real 

exposure scenario can be described, rather than a hypothetical one. Further, exposure 

media should be assessed for common contaminants.  

6. Understand your tools 

Knowledge of the particular test organism and test substance used are vital to generating 

reproducible results. 

7. Think about statistical analysis of the results when designing an experiment 

The number of exposure concentrations, as well as of target organisms, needs to be 

carefully considered prior to starting the experiment, in order that the results have 

sufficient statistical power to provide an answer to the hypothesis being tested.  

8. Consider the dose-response 

Consider the dose-response; any ‘unusual’ pattern of response needs further analysis and 

justification. 
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9. Repeat the experiment 

This may not be necessary where results are striking and statistical power is strong. 

However, in general, and particularly where results are unexpected and/or borderline, 

results must be shown to be repeatable. 

10. Consider confounding factors 

Factors such as temperature, disease, and exposure to multiple substances should be 

taken into consideration; these may be especially relevant in fieldwork. 

11. Consider the weight of evidence 

Results should be compared with previous studies, e.g. do fieldwork and laboratory 

studies support each other? Do the effects fit with known mechanism of action of the 

respective substance/s? Consider the plausibility of the results. 

12. Report findings in an unbiased manner 

Do not over-extrapolate (e.g. from in vitro to in vivo); be aware of the limitations of the 

study; don’t over-hype a result with very low significance; report negative (i.e. no effect) 

as well as positive findings. 

 77 

Table 1. A summary of the Principles of Sound Ecotoxicology 78 

  79 
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Principle 1: Adequate planning and good design of a study are essential 80 

It can often be the case that studies are undertaken in a hurry without sufficient forethought of 81 

the several critical factors involved. The first stage is to define the aim of the experiment. For 82 

example, is the aim to define the Lowest Observable Effect Concentration (LOEC) of a 83 

particular substance, or is it to establish whether effects might be seen at very low concentrations 84 

(equivalent to those seen in the natural environment)? Once the aim is agreed, a great deal of 85 

effort needs to go into planning the details of the study. Factors to be considered include: how 86 

many substances to investigate in any one study; how many exposure concentrations to use (and 87 

how far apart these should be spaced); how many replicates (e.g. tanks in the case of fish) of 88 

each concentration; how many subjects (e.g. fish per tank); the physico-chemical properties of 89 

the substance to be tested; whether the use of an organic solvent can be avoided; when to sample 90 

for chemical analysis; how many endpoints to assess (and which are the most relevant for the 91 

substance concerned). In addition, experimental planning needs to incorporate steps that can be 92 

taken to avoid operator bias, such as random allocation of animals between treatments and 93 

blinded analysis of samples where possible. Trying to achieve too much from a study can be as 94 

detrimental to the quality of the results as trying to do too little; a balance must be struck. The 95 

planning of a good ecotoxicological study can in some circumstances take longer than the 96 

exposure study itself.  97 

Another factor which should be considered at this point is that adequate recording and 98 

documentation, not just of the outcome but of all the procedures undertaken along the way, are 99 

essential. If any queries arise during or after an experiment, researchers must be able to back up 100 

every step of their working, in order to be able to defend and, if necessary, correct what they 101 

have done. Furthermore, adequate information should be provided to enable others to repeat the 102 

study in full. We would not go so far as to say that all laboratories should follow ‘Good 103 

Laboratory Practice’ (GLP) guidelines, although we could learn much from these principles. 104 

Instead, we consider it sufficient to work to the spirit of GLP. For example, researchers should 105 

be prepared to share their raw data, (perhaps through a link to an appropriate database if the files 106 

are too large to be included as Supplementary Information), in addition to retaining a full report 107 

of how the study was designed, conducted and analysed in order to allow adequate interpretation 108 

of the results. Such steps were amongst those described in a recent editorial announcement in 109 

Nature,
3
 a journal which is also recognising the problems faced by the recent spate of 110 

publications of unreliable data, and now, along with many other journals, stipulates that 111 
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scientists should deposit large datasets in an approved database prior to publication of the 112 

manuscript.  113 

We cannot stress enough that good planning and management of an ecotoxicological study is 114 

vital for a successful outcome. 115 

Principle 2: Define the baseline 116 

To discriminate between exposed and unexposed test organisms, toxicological studies usually 117 

measure one or more biomarker or sublethal effect that occurs in response to substance 118 

exposure. Studies may include organisms sampled from wild populations or, in a laboratory 119 

context, the use of standard test species. Whatever the origin of the animals, it is important to 120 

characterise the natural variability in parameters or endpoints that form the basis of the 121 

investigation (in order to be able to design experiments that are sufficiently sensitive to 122 

discriminate real effects). In mammalian multi-generation studies, inter-laboratory variability in 123 

negative control data has been intensively studied to improve the sensitivity of the test 124 

methods.
17

 Several fish species have also been the subject of detailed study to ensure that the 125 

experimental design is matched to the reproductive biology of the species used (e.g. the fathead 126 

minnow [Pimephales promelas] and zebrafish [Danio rerio]).
18,19

 Essentially, if one of the 127 

endpoints in an exposure study is, for example, a plasma hormone concentration, it is important 128 

to know what are the ‘normal’ changes that occur within and between individuals over time. 129 

Plasma concentrations of sex steroid hormones in particular are highly dependent on the state of 130 

maturity of the gonads and thus show strong seasonal fluctuations. These need to be taken into 131 

account when planning and subsequently interpreting studies. 132 

Another problematic area in the study of chemical effects on reproductive biology is sex 133 

differentiation. It is essential that there is a good understanding of the most sensitive period for 134 

this parameter for the species being studied, so that this can be taken account of in the 135 

experimental design, and exposure can be focussed on key windows – although it is 136 

acknowledged that there are in the zebrafish, in particular, contrasting views on the exact timing 137 

of sex differentiation, as discussed by Segner.
20

 138 

Studies on the reproduction of molluscs have raised a number of disagreements with, for 139 

example, respect to whether or not substances such as Bisphenol-A (BPA) at very low 140 

concentrations increase fecundity in the ramshorn snail (Marisa cornuarietis).
21

 Benstead et al 141 
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demonstrated the importance of establishing baseline seasonal fecundity patterns before 142 

investigating the effects of endocrine disrupting compounds on gastropod molluscs.
 22

 In that 143 

study, a clear correlation between number of eggs laid and photoperiod was established in the 144 

reference group, with a subsequent steep decline in egg production following the summer 145 

solstice. Although the effect reported in that paper (an extended reproductive season in snails 146 

exposed to 17β-estradiol [E2]) was observed to be a trend rather than being significantly 147 

different from the reference group at any one timepoint, the establishment of the baseline 148 

reproductive performance pattern of these snails is clearly important in determining whether or 149 

not estrogenic substances can impact on snail reproduction, and will provide useful background 150 

information for future research in this field. 151 

Ultimately, the environmental significance of the results of a study can be better interpreted 152 

when there is a good understanding of baseline conditions. 153 

Principle 3: Include appropriate controls 154 

In theory, this is a relatively easy objective to achieve, at least in terms of laboratory exposure 155 

studies (perhaps less so in fieldwork situations). There are four main points that need to be 156 

considered: 157 

a)  Use appropriate ‘negative’ controls 158 

Negative controls are those where no treatment is administered, and hence no response is 159 

expected. A scenario where particular thought should be given to the nature of the negative 160 

control is that where solvents are used to dissolve substances that are relatively insoluble in 161 

water, and thus the concentrated stocks require an organic solvent (such as ethanol, methanol, 162 

dimethylformamide, acetone) to deliver the substance to the exposure medium. It has been 163 

shown that such solvents can affect various endpoints in exposed organisms, even when used at 164 

low concentrations.
23

 Hence it is imperative to minimise the use of solvents and also to include a 165 

control in which organisms are exposed to the same concentration of solvent as in the substance 166 

treatments. Crucially, these ‘solvent controls’ (as opposed to the ‘dilution water controls’) must 167 

also be used for comparison with the substance treatments when it comes to the statistical 168 

analysis of the results. 169 

It has to be acknowledged that negative controls can be more difficult to implement properly in 170 

fieldwork, since there may simply not be any pristine sites available with which to compare 171 
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organisms from exposed sites. An example of this would be the work undertaken by Jobling et al 172 

(see also Iwanowicz et al),
24,25

 where a small proportion of male roach (Rutilus rutilus) at 173 

supposedly clean sites (i.e. not exposed to Waste Water Treatment Plant (WWTP) effluents) 174 

were found to be intersex (albeit mildly so). The likely reason is that these sites are not as clean 175 

as we think (or hope) they are, and are likely often subject to diffuse pollution sources. These 176 

sites are nonetheless a useful source of reference values and scientists can use a measure of the 177 

relative contamination between sites (even if this is as simple as whether the site is upstream or 178 

downstream of an effluent outfall) to judge the influence of such contamination on the level of 179 

intersex in the fish under investigation. 180 

b)  Use a positive control where appropriate and/or available. 181 

The use of a positive control with known levels of activity may not always be possible, but can 182 

be incredibly helpful in the interpretation of ecotoxicological data when implemented. One 183 

example of this is in endocrine disruption work, where the apparent hormonal activity of a 184 

substance is being investigated. For example, some synthetic estrogen mimics are very weak in 185 

comparison to the natural steroid hormone, E2, or the synthetic steroid, ethinylestradiol (EE2). If 186 

we compare the estrogenic potency of parabens in vivo with a control group, they are certainly 187 

estrogenically active. However, in comparison with a positive control, such as E2, these 188 

substances have been shown to be only weakly estrogenic both in mammals and in fish.
26,27

 Thus 189 

a positive control allows us to put the results into perspective, as well as verifying that the 190 

bioassay (i.e. test procedure) is actually working properly. 191 

c) Consider the number of controls. 192 

Part of the reason for including controls in experiments is to establish the degree of variability in 193 

the responses of the test animals. Hence if an insufficient number of control subjects is used, 194 

then an inaccurate assessment of variability may be made and consequently the comparison with 195 

the treated subjects will be made on false assumptions. One example of a study which has 196 

demonstrated the importance of a robust experimental design including sufficient numbers of 197 

controls has been reported by Owen at al.
28

 The authors initially found an effect of clofibric acid 198 

on the growth rate and condition of juvenile rainbow trout, but an expanded version of the study 199 

(using an increased number of control animals, spread over four tanks) did not repeat their 200 

original findings. Specifically, the effect observed in the original study was because the 201 

relatively small number of control fish (n=8) were exceptional and outperformed normal 202 

expectations, further highlighting the need for appropriate controls. 203 
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d) Use the appropriate type of control. 204 

This advice refers to the fact that researchers must be aware that any bias introduced into the 205 

‘selection’ or handling of control subjects is unacceptable. That is, the control organisms should 206 

be the same sex, age, of a similar size, from the same population as those in the treated groups, 207 

and definitively not pre-selected for desirable features which make them reliable controls. 208 

Further, all controls must be handled in the same way as treatment groups with respect to factors 209 

such as disturbance, food, and experimental conditions (such as light and temperature). If one 210 

tank requires cleaning, for example, all tanks should be cleaned. 211 

Principle 4: Use appropriate exposure routes and concentrations 212 

It is probably true to say that the weakest aspect of many ecotoxicological papers concerns 213 

exposure to the test substance(s). Most ecotoxicologists have their main training in biology, not 214 

chemistry. Ideally, ecotoxicologists should confer with environmental chemists and modellers 215 

before any experiments are designed. Some of the main issues to consider regarding exposure 216 

are examined in this and the next principle.  217 

a)  What is the most environmentally-relevant route of exposure? 218 

Before exposing an organism to a substance in a laboratory experiment, it is wise to consider the 219 

most appropriate route of exposure. For aquatic organisms this is likely to be either via the water 220 

or the diet, depending in part on the hydrophobicity of the test substance as well as the behaviour 221 

and feeding characteristics of the organism concerned. In the wild, exposure to strongly 222 

hydrophobic chemicals may occur primarily via the diet; in which case, this route of exposure 223 

should be used, if at all practical. The toxicity of a substance can vary depending on the route of 224 

exposure.
29,30,31

 In the terrestrial environment, exposure via diet is very common, and is often the 225 

main route of exposure to substances: recall the devastating effects that pesticides had on birds 226 

of prey in the 1950s and beyond.
32

 In contrast, injecting any organism with a test substance (in 227 

the context of ecotoxicological studies) is wholly unrealistic and should be avoided, as it cannot 228 

shed any light on the real environmental exposure of wild animals. 229 

b) What is meant by an ‘environmentally relevant concentration’? 230 

The concept of an ‘environmentally relevant concentration’ is clearly important in 231 

ecotoxicology, as it allows us to judge whether a substance is not merely a hazard but actually 232 

poses a risk. Since 1991, the phrase ‘environmentally relevant concentrations’ has appeared in 233 
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the title, or abstract, of 1675 papers according to the Web of Science (accessed January 2013). 234 

Unfortunately, because there is no clear definition of the phrase ‘environmentally relevant 235 

concentration’, the whole issue can be dangerously misleading. This problem can be illustrated 236 

by considering the following issues. 237 

What is meant by ‘environment’: the sewage effluent, a sewage ditch, or a river? 238 

It is not unknown for scientists to use a value reported in sewage effluent when justifying their 239 

experimental concentration as being environmentally relevant to aquatic organisms.
33,34,35

 Some 240 

WWTPs discharge into very small streams which are essentially formed from sewage effluent, 241 

but could be classed as a water course. However, the vast majority of freshwater aquatic wildlife 242 

live in rivers where considerable dilution of the sewage effluent is the norm. 243 

Could the quoted environmental concentration result from an unreliable measurement? 244 

Trying to detect a substance of interest at low and sub ng L
-1

 concentrations in complex matrices 245 

is fraught with difficulties.
36

 Hence it is also possible that reported exposure concentrations 246 

(particularly in the environment) are in error, and require independent verification before they 247 

are accepted. For example, the very high (hundreds of ng L
-1

) concentrations of many sex steroid 248 

hormones, particularly EE2, in UK and US streams reported by Aherne and Briggs 
37

and Kolpin 249 

et al 
38

have proved not to be repeatable.
39

 Such erroneous reports can have enormous influence 250 

on what are, and are not, considered to be ‘environmentally relevant’ concentrations of 251 

substances of concern. Hence the need for a broad review of the literature and/or the 252 

collaboration with an analytical chemist in studies where necessary. 253 

Might the quoted environmental concentration be accurate but be entirely unrepresentative of 254 

the majority of situations encountered by wildlife in time and space? 255 

Occasional very high concentrations can occur in the environment but in terms of probability 256 

they are likely to be rare. A good example is the modelling of 11 large US catchments where the 257 

50%ile cumulative probability for EE2 was between 0.0008 and 0.01 ng L
-1

 at mean and low 258 

flow, respectively, but there remained in the 99%ile probability a potential for 0.3-1.0 ng L
-1

 259 

being detected. Thus, the vast majority of American aquatic wildlife would be most likely to be 260 

exposed to concentrations in the 0.0008-0.01 ng L
-1

 EE2 range and only a tiny minority to 261 

concentrations of ≥0.3 ng L
-1

.
39

 So whilst some authors might imply that 5 ng L
-1

 EE2 is 262 

environmentally relevant,
33,35

 the overwhelming evidence is that it would be atypical. 263 
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We should also make it clear that we are not asserting that only environmentally relevant 264 

concentrations should be used in ecotoxicological experiments. Indeed, there will be occasions 265 

where researchers have to use significantly higher concentrations in order to properly define a 266 

LOEC for a substance. The LOEC of a substance is, in fact, far more useful in the regulatory 267 

sphere than is a conclusion that no effect occurs at environmentally relevant concentrations, 268 

because a LOEC enables the regulators to impose more accurate and meaningful safety limits. 269 

Our primary message here is that the explanation of the concentrations selected for a particular 270 

study should be comprehensive, and the authors should be open and honest about the context of 271 

their results in relation to those concentrations which have been measured (or predicted) in real 272 

environmental samples. Thus the derivation of the measured environmental concentration 273 

(MEC) and the predicted environmental concentration (PEC) are also key factors here. 274 

Principle 5: Define the exposure 275 

A useful exercise to undertake when considering this principle is to remind ourselves of why we 276 

undertake ecotoxicological studies in the first place. The major reason is that we are concerned 277 

about the occurrence of certain substances in the environment, and we need to determine 278 

whether they are present at concentrations which can be harmful to living organisms. Thus, in 279 

conducting such studies, we hope to supplement the database which is used to risk assess 280 

environmental contaminants. Such risk assessments will clearly be inaccurate if the 281 

concentrations on which they are based are also inaccurate. The two main points to consider 282 

within the scope of this principle are outlined below. 283 

a)  The actual amount of exposure substance in the system must be measured 284 

It is paramount that an attempt is made to determine the actual concentrations of substance/s 285 

present in the test media to which organisms are exposed. This can be done using either 286 

analytical chemistry or biological methods of analysis such as immunoassays or receptor binding 287 

assays. Which of these methods is more suitable is debatable; however, there is no doubt that 288 

without any attempt to measure concentrations of the test substance, the results of the study 289 

cannot be fully interpreted. We should also add at this juncture that it is important there is good 290 

quality control of analytical chemistry procedures employed, as the data obtained using such 291 

methods are of little use if it the associated methods have not been properly validated. 292 
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There are many examples in the literature where no analytical analyses have been performed. In 293 

these cases the researchers have no idea whether the concentration to which the organisms are 294 

exposed is (for example) 100 ng L
-1

 or 1 ng L
-1

, leaving the results wide open to 295 

misinterpretation. Many of these studies also involved the use of a static-renewal system, which 296 

further increases the risk of unreliable results compared with a flow-through exposure system, 297 

hence rendering the measurement of the test substance even more important. Examples of such 298 

studies include those undertaken by Oehlmann et al,
21

 whereby prosobranch snails were exposed 299 

to octylphenol (OP) and BPA at nominal concentrations ranging from 1 to 100 µg L
-1

. The 300 

authors describe effects being observed ‘at the lowest concentrations’ but it is unclear as to what 301 

those concentrations actually were. This is critical information from a risk assessment point of 302 

view. Similarly equivocal information has been generated by Lister et al,
40

 Di Poi et al,
41

 303 

Franzelletti et al
42

 and Guler and Ford;
43

 these studies tested pharmaceutical products, including 304 

fluoxetine, at nominal concentrations as low as 0.3 ng L
-1

 in static renewal systems; however no 305 

measurements of the actual concentrations of the substances that they were testing were 306 

performed. We accept that if a significant biological effect is observed in a dose-related manner 307 

it might be difficult to argue that something is not present in the water that is causing that 308 

response. But this information is of no use to the regulators if it is not known how much of the 309 

substance causes that response. In addition, if a response is observed which is unrelated to the 310 

concentration of the substance used, or if there is no response at all, it is impossible to provide an 311 

accurate interpretation of the data when the exposure concentrations are unknown. There may 312 

actually be no effect of the substance concerned at the (nominal) concentration, but it may be 313 

that no effect was observed because the chemical was not present in the tanks at anything like 314 

the concentrations that were expected. Finally, although technically more problematic, it is 315 

particularly important that verification of the actual exposure concentrations is provided when 316 

concentrations that are reported to be causing effects are extremely low (i.e. at concentrations 317 

similar to those found in the environment). 318 

b) Potential contaminants in the system should also be monitored, thus providing an 319 

accurate profile of all major substances in the test media. 320 

It is useful to have some knowledge of potential contaminants in the system. Clearly, not all 321 

eventualities can be accounted for, but what is looked for should include the more commonly 322 

occurring contaminants, to assess whether they are present at high enough concentrations to be 323 

of concern, or whether their presence can be ignored. There may be occasions where 324 

contaminants are found in sufficiently high concentrations that they are likely to act as 325 
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confounding factors in the toxicological assessment. Such a case was reported by Hala et al,
44

 326 

who discovered butyltin leaching from airline tubing in a flow-through exposure system at 327 

concentrations high enough to confer toxic effects on organisms. Conversely, Aoki et al reported 328 

intermittent detection of diethylhexyl phthalate (DEHP) in a study undertaken to assess the anti-329 

androgenic nature of dibutyl phthalate (DBP) in fish;
45 

however, in this case it was concluded 330 

that the DEHP originated from contamination during the extraction/analysis procedure (i.e. not 331 

from the tank water itself), and in any case it was present at such low levels as to be negligible in 332 

terms of its effect on the fish in this study. It is unlikely that any study which monitors 333 

concentrations of DEHP as a contaminant in water would not contain a trace of this chemical, 334 

but it is nonetheless wise to determine the concentrations of DEHP present (particularly in 335 

phthalate exposure studies) in order that their significance can be assessed. Another potentially 336 

problematic situation is where a test substance might be found to be present in the control tank 337 

(for example, via cross-contamination, or even due to inadequate cleaning of equipment between 338 

studies). Such information could be critical to understanding the results. 339 

Principle 6: Understand your tools 340 

When using live organisms to try to understand what are often dynamic processes, it is important 341 

to try to minimise the variability encountered by having a good understanding of the background 342 

of these organisms. For example, the quality of data obtained can be influenced by the age of 343 

animals, as well as by the conditions in which they were reared and/or maintained prior to the 344 

study. In addition, some species are very difficult to rear in the laboratory (or it is sometimes 345 

inappropriate for the particular assay in use) and if wild-caught organisms are used instead, it is 346 

vital that the conditions in the environment in which they have been living are well understood. 347 

The presence/absence of parasites should also be established. The presence of parasites can 348 

affect physiological parameters in animals,
22,46,47

 and if those parameters overlap at all with 349 

those being used in a controlled exposure study, the interpretation of data obtained from infected 350 

animals can be problematic, to say the least.
48,49

 Parasite infections such as microsporidians can 351 

cause gonadal disruption, produce intersex and female-biased populations, as well as affecting 352 

secondary sexual characteristics.
50

 Such combinations of changes can be mistaken for changes 353 

that result from chemical exposure. Therefore baseline information on the prevalence of 354 

parasitism in different species and an awareness of the potential effects ensuing from this are 355 

essential considerations in studies undertaken with wild-caught animals.  356 
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In some mammalian studies, an understanding of the particular strain used in toxicological 357 

studies is necessary, as it is well known that some strains are more sensitive than others.
51

 358 

Likewise, with commonly used fish species, differences in sensitivities occur in the responses to 359 

stressors observed between different strains of the same species;
52,53,54

 and Brown et al reported 360 

differences in growth and sexual development between inbred and outbred zebrafish,
55

 which 361 

can impact on interpretation of data obtained from substance-exposure trials. It is also important 362 

to consider the relevance of the species selected in relation to the overall aim of the study.
7
 363 

In vitro studies may appear to be more reproducible, but they are certainly not immune from 364 

variability. For example, the response of different cell lines to the same genotoxic agent can vary 365 

widely within and between laboratories. Therefore, the selection of the cell line to be used needs 366 

careful consideration;
56

 also, even within the scope of analysing a single protein, different 367 

antibody preparations can elicit very different responses.
57

 It is important that researchers are 368 

aware of these factors and are able to adequately define the reagents used.  369 

Knowledge of the test substance is equally important. A confirmation of this knowledge should 370 

be communicated to the reader by simple means such as stating its purity and CAS number. A 371 

discussion of the impact of impurities on the interpretation of data obtained in an in vitro 372 

estrogen assay was presented by Beresford et al,
58

 and has also been recognised by Harris et al,
59

 373 

who found that two different preparations of a phthalate presented very different estrogenic 374 

profiles as a result of one of these preparations having been supplemented with BPA. Some 375 

substances consist of different isomers which can have very different biological activities. For 376 

example, branched chain isomers of alkylphenolic compounds (such as 4-NP and 4-OP) induce 377 

estrogenic effects in fish, mammals and in vitro assays, in contrast to the straight chain isomer of 378 

the corresponding compound (4-n-NP and 4-n-OP) which are not estrogenic.
60,61

 Hence the 379 

inadvertent use of the linear isomer of this substance in an ecotoxicology study could lead to 380 

erroneous conclusions of inactivity (as was the case, for example in Moore et al).
62

 381 

Principle 7: Think about statistical analysis of the results when designing an 382 

experiment 383 

The importance of appropriate statistical analysis cannot be overemphasised.
4
 It is crucial that 384 

we are able to draw robust conclusions, and that we are able to justify them. In the case of an 385 

inappropriate statistical approach being used, an entire study can be undermined and, at worst, 386 
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misleading conclusions can be drawn. It may be necessary, particularly in some of the more 387 

complex analyses required, to enlist the help of professional statisticians. Different statistical 388 

approaches exist, the use of which are dependent on the aims of the study in question. These 389 

approaches range from testing methods to identify significant effect responses (e.g. to establish a 390 

no observable effect concentration [NOEC]); through empirical regression modelling (e.g. to 391 

estimate effect or benchmark concentrations); to complex biological modelling (e.g. DEBTOX). 392 

Although criticised by many statisticians,
63

 the NOEC (i.e. the tested concentration just below 393 

the LOEC (lowest concentration that produced a significant response)) is still the most 394 

commonly used toxicity descriptor. This is derived by statistical testing approaches which 395 

assume ‘no effect’ (null hypothesis) and estimate the likelihood that an observed effect happened 396 

by chance alone (i.e. not statistically significant) or that it was unlikely to be due to chance alone 397 

(statistically significant).  398 

Power analysis can be conducted to determine the size of a sample needed to reject a null 399 

hypothesis at given error rates, or it can be used to estimate, at given data variation and sample 400 

size, the minimal effect size that can be detected as statistically significant. This effect size 401 

defines the statistical detection limit which is always present in the data (also called ‘minimal 402 

detectable significant difference’). Thus, an a priori power analysis can enable the scientist to 403 

design a study such that the sample size is high enough to provide reliable answers to the 404 

question posed, whilst not being so high that valuable resources are wasted. Nowadays, software 405 

packages exist which allow power and sample size calculation without the need to contact a 406 

professional statistician, at least for simple study designs. Recommended maximal error rates are 407 

usually α=5% and β=20%,
64

 meaning that the minimal power is 80%, i.e. we would identify an 408 

effect above the detection limit in 4 out of 5 studies. Another parameter needed for the power 409 

calculation is an estimate about the most likely data variation, which can be derived either from 410 

previous studies or other historical data sources that are considered comparable to the 411 

researchers’ own testing environment. So called ‘range-finding’ studies are often key to 412 

providing initial basic information. 413 

An example of power analysis is given in table 2. This illustrates the issues involved with 414 

assessing the number of individuals required to produce an experiment which will offer a 415 

reasonable degree of power in the analysis. Two types of data have been assessed (the data used 416 

here are not real, but are derived from real exposure scenarios). The first is where the endpoint 417 

assessed is plasma E2 concentration in fish. The response of this parameter can be extremely low 418 
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(the maximum difference in mean plasma E2 concentration shown here was 2.2 ng ml
-1

). The 419 

second scenario is where the response can be in several orders of magnitude (e.g. plasma 420 

vitellogenin concentration). In both cases a high and an intermediate effect detection limit are 421 

shown; in the case of plasma vitellogenin a ‘low’ response is also shown. The standard deviation 422 

(relative to the mean) is usually lower across individuals exposed to a high level of treatment 423 

than it is in the intermediate treatment group. What the information provided in Table 2 424 

illustrates is that where the effect size is (or is expected to be) lower, more individuals are 425 

required to detect this size as significant at given error rates. Consequently, if the degree of 426 

change in a given endpoint is very small, providing robust evidence of any change can be 427 

challenging; where the degree of change is far greater, detecting a change in response to a 428 

stressor is much easier. In addition, the higher the variability observed within any treatment 429 

group, the more individuals are required. 430 

Where good baseline (control) data are available, scientists will be able to determine the 431 

variability within control groups and use this to aid the experimental design. For example, 432 

extensive data sets have been published on the variability of a variety of reproductive and 433 

endocrinological parameters in fathead minnows,
18,65

 which are extremely useful to researchers 434 

designing experiments using reproductive endpoints in these fish. Furthermore, Paull and 435 

colleagues considered that the level of inconsistency in reproductive success between breeding 436 

colonies of zebrafish maintained in the laboratory was so high that a minimum of six replicates 437 

per chemical treatment is necessary to discriminate a 40% change in egg output of females and 438 

sperm quality (in terms of motility) in male zebrafish (at α=5%).
19

 439 

To conclude, it is important to remember that (i) error rates (and therefore a (controlled) 440 

uncertainty) are always present in our conclusions; (ii) statistical significance should not be 441 

confused with biological significance; (iii) “no effects” cannot be identified by statistics; and (iv) 442 

if one reaches the conclusion to accept a hypothesis, it does not mean that it is proven, it means 443 

that the hypothesis is supported given current data. 444 

More detailed guidance on statistical approaches used in standard ecotoxicology studies can be 445 

found in the OECD Testing and Assessment guidelines.
63,64

 446 

 447 
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Endpoint Treatment Mean 
Average or worst-case 

scenario standard 
deviation 

Number of 
individuals 

required to give 
80% power 

Plasma E2 
concentration 

(ng ml
-1

) 

Control 3.84     

Low 2.7 
average 17 

worst-case 53 

High 1.62 
average 4 

worst-case 7 

Plasma vitellogenin 
concentration 

(ng ml
-1

) 

Control 54   

  

Low 85 
average 16 

worst-case 30 

Medium 40000 
average 3 

worst-case 5 

High 350000 
average 2 

worst-case 2 

 448 

Table 2. The number of individuals required to provide data with a power of 0.8 and an α 449 

(probability of error) value of 0.05 in particular exposure scenarios. These a priori analyses, 450 

using log10 values of hypothetical data, were conducted using the statistical package ‘G*Power’. 451 

A ‘low’ response example is not given for the endpoint of plasma E2 because the overall range 452 

of response is far smaller here than it is for the vitellogenin response. 453 

Principle 8: Consider the dose-response 454 

In order to be able to deduce the dose-response of a substance (and hence put the results into any 455 

kind of environmental context), at least three concentrations need to be tested. A recent example 456 

of a study which does not report a full dose-response was published in Science,
66

 where only two 457 

concentrations of the drug (oxazepam) were tested. Data from just one or two concentrations 458 

alone will be of little use in the regulatory field.  459 
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Secondly, we think that, in almost all cases, the relationship between dose and response should 460 

be regularly incremental (or decremental) – i.e. for each increase in dose, there should be a 461 

graded increase (or decrease) in response. This produces a ‘monotonic’ dose-response curve. 462 

Good examples of monotonic curves are those involving estrogen stimulation of vitellogenin 463 

production in fish and androgen stimulation of spiggin production in the stickleback 464 

(Gasterosteus aculeatus).
67,68

 A key outcome of bioassays with monotonic curves (providing 465 

they can be consistently repeated) is that it is possible to accurately calculate the LOEC and the 466 

NOEC (or NOAEL) of compounds. These are very important for accurate ecological risk 467 

assessments.  468 

There are numerous examples (many hundreds) of published dose-response curves in the field of 469 

ecotoxicology that are ‘non-monotonic’.
69

 These cover a whole range of shapes such as flat, U-470 

shaped, J-shaped and inverted U, as well as many that are irregular (or ‘multinodal’). When it 471 

comes to the interpretation of non-monotonic dose-response curves, a rift has developed between 472 

ecotoxicologists. In the view of Vandenberg and co-workers, non-monotonic curves form 473 

compelling evidence that low doses of compounds (in many cases well below the current 474 

NOAEL) are able to trigger effects that regulators do not currently take into account.
69

 However, 475 

there are others who, while conceding that non-monotonic (especially inverted-U-shaped) curves 476 

are not unlikely to occur in some circumstances, are of the opinion that many of the non-477 

monotonic relationships that have been reported can equally be ascribed to either poor 478 

experimental design and/or technique, or to the action of confounding factors. The gold test of 479 

whether a non-monotonic dose-relationship is a real phenomenon (as with other scientific 480 

endeavours) should be whether it can be reproduced consistently. Vandenberg et al appear, 481 

surprisingly, to argue that this is an unfair requirement in the field of low-dose effects, due to 482 

such effects tending to be more dependent on factors such as place, time, operators, strain of 483 

animal etc. than high dose effects. This view is obviously one that is open to debate. 484 

We do accept that a dose-response relationship may, after further research, turn out to be 485 

genuinely non-sigmoidal (especially one that has a regular U or inverted-U shape). In such cases 486 

the burden of proof is on the researchers who report such data to, firstly, show that the 487 

phenomenon is repeatable and secondly, at some stage in the research process, to explain and, if 488 

possible, prove the underlying mechanism that causes the effect. Even if these two objectives 489 

can be achieved, there is still a major problem with using results from bioassays that have 490 

generated non-sigmoidal dose-response curves to guide environmental safety thresholds. 491 
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Principle 9: Repeat the experiment 492 

a) Repeat the experiment in own laboratory in the first instance 493 

With budgets tight and with scientists who undertake in vivo studies always looking to reduce 494 

the numbers of animals used, it is understandable that on many occasions a single experiment is 495 

cited as producing a particular and significant response pattern. This is especially true the closer 496 

the research is to fieldwork (for example, full life-cycle studies and/or mesocosm studies are, for 497 

some researchers, too expensive to undertake once, let alone twice). It is also a result of 498 

necessary legislation that exists to protect vertebrates used in experimental procedures, which 499 

means that researchers have to keep the number of animals used to a minimum. Hence a priori 500 

power analysis (see Principle 7) is an important tool to inform researchers of the minimum 501 

number of animals required to give a sound result in a given study. Furthermore, repeat studies 502 

must be justifiable to legislative bodies, and in some cases should include refinements (which 503 

aim to improve the robustness of the results obtained). However, all researchers must be aware 504 

that it is imperative that where the results are surprising, or especially hard-hitting (for example, 505 

a significant response to a very low dose of substance, or a response which contradicts previous 506 

studies), the onus is on the researchers concerned to repeat the experiment, in order to verify 507 

their conclusions. As is often quoted in the literature, ‘extraordinary claims require extraordinary 508 

evidence’.  509 

b) The importance of independent validation 510 

Politicians or risk assessors must take great care when making decisions on the basis of 511 

observations that have not been independently confirmed. Unfortunately science funding is 512 

usually limited and, also, most scientists and funding bodies prefer to do ‘original research’ 513 

rather than confirm someone else’s findings. Because of the consequent lack of independently 514 

validated studies, people who seek to make decisions on the basis of the scientific literature 515 

(such as risk assessors) instead rely heavily on the ‘weight of evidence’ (WoE) approach (i.e. 516 

where plausible evidence is built up from fragmented observations from a diverse range of 517 

species and approaches); see Principle 11. For example, the majority of us are agreed that in an 518 

ideal world we would like to be able to use invertebrates instead of vertebrate organisms in 519 

ecotoxicology. In the field of endocrine disruption, for example, molluscs might appear to be the 520 

ideal solution. There are at least 200 papers that suggest that the reproductive hormones of 521 

molluscs are the same as those of humans. However, as pointed out by Scott,
70

 very few of these 522 
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studies have ever been properly independently validated (i.e. they have been on different species, 523 

with different endpoints, and different experimental designs). 524 

Another important reason why one should wait for findings to be independently validated is that 525 

‘to err is human’. It should be safe to assume that any trained scientist (especially one with a 526 

good track record in research) should not make mistakes when, for example, working out 527 

dilutions and concentrations, making up solutions with defined molarities, or analysing data. 528 

However, it is not safe to assume this at all. In fact, the propensity of scientists to make errors 529 

appears to be rather high. It was the recognition that mistakes are easily made that was behind 530 

the issuance in 2003 of the Joint Code of Practice for Research by the main UK biological 531 

research funding bodies.
71

 Its major requirement is that scientists should keep accurate and 532 

detailed records of all their actions in order that any such errors, if they occur, can be traced and 533 

corrected (even post-publication). It is also good practice to have other colleagues cross-534 

checking calculations and/or data analysis, as a form of quality control. 535 

The importance of reproducibility was discussed in a recent Nature World View article, in which 536 

the author asserts that “reproducibility separates science from mere anecdote”.
72

 537 

Principle 10: Consider confounding factors 538 

Confounding factors are those ‘conditions’ present in the test environment which may influence 539 

the experimental result in addition to the specific parameter that is being assessed. These may 540 

include factors such as variations in temperature, disease and the presence of unexpected 541 

substances, amongst others. Although it is not always straightforward, or even possible, to 542 

actually quantify the confounding factors present, we must always be aware of their potential 543 

influence and be cautious in our interpretation of the results, especially when such factors are 544 

known to be present. Fieldwork scenarios, in particular, present a challenging and complex array 545 

of confounding factors which may enhance or mask the adverse effects of a chemical or mixture 546 

of chemicals. At the very least these must be acknowledged by the authors, and when known, 547 

accounted for in the analysis and interpretation of data arising from such studies. 548 

As an example of good practice in relation to interpretation of field trials, we point to a study by 549 

Burkhardt-Holm et al that dealt with the issue of why fish catches (mainly of trout) have 550 

declined very significantly in Switzerland in the last few decades.
73

 Instead of automatically 551 

linking the decline to the existence of estrogens in the aquatic environment (the fashionable 552 
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explanation at the time), the authors offered eight potential causes, ranging from poor water 553 

quality, increased predation (by birds), insufficient food, as well as changes in fisheries 554 

management. Each potential cause was discussed, in a very balanced manner, in order to rule 555 

them in or out. In the end, the researchers concluded that it is unlikely that the decline in fish 556 

stocks has a single cause; instead it is most likely due to a combination of factors (stressors).  557 

As an example of bad practice in relation to interpretation of field trial data, we point to a study 558 

by Ginebrada et al that implies, in both its title “Environmental risk assessment of 559 

pharmaceuticals in rivers: relationships between hazard indexes and aquatic macroinvertebrate 560 

diversity indexes in the Llobregat River (NE Spain)” and abstract, that the reason for reduced 561 

macroinvertebrate diversity in the studied locations (namely, rivers receiving effluent inputs), is 562 

the presence of pharmaceuticals in the effluent discharge.
74

 However, although the 563 

concentrations of the selected drugs were found to be correlated to both the density and biomass 564 

of macroinvertebrates, it seems inevitable that other properties of the effluents (such as other 565 

chemicals that are present in effluents, or the physico-chemical characteristics of the effluents 566 

concerned) would also have contributed to this reduction in diversity, and would probably also 567 

have shown a correlation. The authors did actually raise this point in the discussion section of 568 

the paper, but it should not (in our opinion) have been omitted from the title and the abstract. 569 

One final example of a significant confounding factor is parasitic infection (see Principle 6 for 570 

further discussion on the impact of parasites on endpoints associated with endocrine disruption). 571 

As mentioned above, it is important to acknowledge the potential impact of such phenomena on 572 

the outcome of a study, even if the precise relationships are not clear-cut. 573 

Principle 11: Consider the weight of evidence 574 

The general principle behind assessing the weight of evidence (WoE) concerning the 575 

environmental risk posed by a particular substance involves taking all the available information, 576 

from whatever source (e.g. field and laboratory; in vitro and in vivo; ecological and 577 

physiological), and judging how well it does, or does not, tell a consistent story.  578 

Many papers, especially reviews, refer to the ‘WoE’ for a particular theory, and this is what is 579 

used by regulators to determine the risk posed by a particular substance. However, according to 580 

Weed,
75

 this term has not been scientifically defined and has been used in the majority of cases 581 

in a metaphorical sense (e.g. ‘nine out of ten papers report a positive effect of compound X, 582 



23 
 

therefore surely, reader, you have to accept that compound X is an endocrine disruptor’). 583 

However, realising that this usage takes no account of the quality of the papers – and is, in all 584 

probability, just a reflection of the prevailing bias in that particular field,
76

 several people in 585 

recent years have attempted to develop more focussed methods for quantifying WoE.
9,77

 586 

However, whether this entails ‘weighting’ the studies on the basis of dataset size, or even simply 587 

tabulating all the data points (where known) in the literature in an unbiased manner and allowing 588 

the reader to make his/her own judgement,
39,78

 all approaches suffer from the same inherent 589 

weakness – namely that studies where no effects were observed are very often not published (see 590 

Principle 12) and such studies cannot therefore be taken into account. 591 

With regards to whether or not the research fits with existing literature, pharmaceuticals provide 592 

an excellent example. They have an extremely well defined mechanism of action (at least as far 593 

as their activity in humans is concerned). This information can be of immense value both in the 594 

design of studies to assess ecotoxicity of pharmaceutical substances, and also in the 595 

interpretation of results obtained from such studies, and should be taken into account when 596 

assessing the weight of evidence for pharmaceutical substances for which the MOA (and also, in 597 

many cases, their potential side effects) is well defined. 598 

Despite some potentially difficult areas to negotiate, the WoE approach remains the only way 599 

that scientists and policy makers can move forward in the uncertain world of science. A major 600 

argument in the philosophy of science is that we can never prove a hypothesis, no matter how 601 

many examples are provided, but only falsify it.
79

 At first sight this would appear to keep science 602 

in a prison of uncertainty, with nothing able to be proved. However, both Popper
80

 and Hill
8
 603 

allowed that where sufficient independently validated supporting evidence existed, the 604 

hypothesis could be considered a working hypothesis and a basis for action. 605 

Principle 12: Report findings in an unbiased manner 606 

Researchers these days are under a great deal of pressure to attract research funding, to deliver a 607 

positive outcome to their paymasters and to publish as many papers as possible in high impact 608 

journals. We believe that these pressures are behind the increase in papers in which the title and 609 

abstract tell one story (often with dramatic claims), while the methods and results tell another 610 

(often containing weaknesses in design and/or mundane findings). Aside from the fact that the 611 

publication of such papers is an indictment of the peer-review process, we believe that such use 612 
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of ‘spin’ is confusing for policy makers, a bad example for young researchers and ultimately 613 

gives the profession a bad name. The problems occur when the researchers fail to acknowledge 614 

or discuss the weaknesses and/or when they employ hyperbole (‘hype’) to exaggerate the 615 

significance of their findings. A recent example of hype is the paper entitled ‘Antidepressants 616 

make amphipods see the light’ in which the data purporting to show that the organisms 617 

concerned move towards the light in response to exposure to fluoxetine is, in our opinion, 618 

inconclusive (because although the data from one study show a significant effect, data from the 619 

other study reported in the same paper show no such effect).
43

 620 

One of the many reasons why such controversies arise, as proposed by Goldacre,
81

 is the 621 

‘suppression of negative results’, a topic also addressed by Knight.
82

 This is the (mostly passive) 622 

tendency of researchers to publish only positive results (as negative results do not, except in a 623 

few cases, attract research funding or ensure career progression). Goldacre argues, however, that 624 

many scientists do not just tend to shy away from negative results, but actually have a bias 625 

towards positive evidence, and points to a study that examined the outcome of FDA (Federal 626 

Drug Administration) registered clinical trials on a class of antidepressant drugs.
83

 Thirty seven 627 

studies showed a positive effect, of which thirty six were published in peer-reviewed literature. 628 

However, there were a nearly equal number of studies (thirty three) that gave negative results; of 629 

these, twenty two were not published at all and another eleven were written up and published in 630 

a way that implied they had a positive outcome. In the context of endocrine disruption, this 631 

tendency for bias towards positive evidence probably explains why scientists, when including 632 

negative (i.e. no effect) as well as positive data in their papers, tend to assume that the 633 

experiments with the positive results are the ‘correct’ result, and any negative outcomes are due 634 

to unforeseen circumstances – e.g. the experiments with negative outcomes have been variously 635 

explained away on the basis that: ‘the experiment was not carried out at the right time of year’; 636 

‘the animals were not at the right stage of maturation’; ‘the experiment was done at the wrong 637 

temperature’; or ‘the animals were not of the correct origin’. Although it cannot be denied that 638 

there may be a valid explanation for a negative result, we suggest that, without actual hard 639 

evidence, there is no a priori reason, in any study, to reject the experiments that give negative 640 

results and only accept the ones that give positive results. Another reason that controversies 641 

often arise in the reporting of ecotoxicological data is that there is no clear definition of what 642 

constitutes an ‘adverse’ effect. Although it is not within the scope of this manuscript to address 643 

this issue fully here, the authors recognise that this lack of definition can lead to subjective 644 

presentation of data, depending on the personal opinion of the scientist concerned. For example, 645 
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some think that any alteration in the physiology of organisms, which has been induced by a 646 

substance to which that organism would not naturally be exposed, could be considered an 647 

adverse effect. On the other hand, others consider that it only becomes an adverse effect once 648 

there is an effect on population- or health-related endpoints. Still more may even believe that a 649 

reduction in the numbers of an over-crowded population would not necessarily be considered 650 

‘adverse’. This is perhaps an ethical issue that would be best discussed in another forum. 651 

Causes and consequences of poor ecotoxicological research 652 

Undoubtedly the most compelling reason for the rush to publish (and never mind the quality), is 653 

the fact that scientific research has become increasingly competitive over recent years. This has 654 

led to the need for scientists to publish prolifically in order to be able to secure both jobs and 655 

further funding. In many cases, quantity appears to rule over quality. The issue of the tendency 656 

not to publish ‘negative’ (no-effect) results may also be a factor here (scientists think that 657 

funders and future employers will be less interested in their work if they have not shown a newly 658 

discovered sensational effect of substance x on species y); although journal editors also have a 659 

duty to encourage the publication of no-effect data arising from well designed and executed 660 

studies. There is also evidence that there has been a proliferation of journal output over recent 661 

decades,
84

 which may well have led to a dilution of good science with poor (although there are 662 

no studies that we know of that have investigated the change in number of ecotoxicological 663 

journals in particular over this time). We do agree with the sentiments expressed in a recent 664 

‘Nature’ editorial that the frequently irreproducible data that are published these days are not 665 

usually a result of fraud, but of insufficient thoroughness in the analysis and presentation of 666 

data.
2
 667 

The potential consequences of unsound ecotoxicology research can be profound. 668 

Ecotoxicologists presumably conduct their research because they want to protect wildlife from 669 

adverse effects of chemicals that already are, or could in the future be, present in the 670 

environment. In other words, they want to improve the environment (or prevent it deteriorating), 671 

by researching potentially hazardous chemicals and subsequently reducing chemical pollution in 672 

the environment. However, many ecotoxicologists have little or no contact with the people 673 

(regulators) who have to act on the results that they publish. Regulators have to assess the degree 674 

of risk posed by a substance (based primarily on the published research of ecotoxicologists) and, 675 

if necessary, take steps to reduce that risk to an acceptable level. The process of assessing the 676 
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degree of risk and taking any necessary risk reduction steps (such as setting environmental 677 

quality standards, or restricting or even banning the use of a chemical) can often be a very 678 

detailed and lengthy one. It often takes a decade or more and, these days, usually occurs at both 679 

national and international levels. Hence it costs a great deal of money! Moreover, the funding 680 

available for fundamental science to support the data produced by (eco)toxicologists is limited, 681 

further hindering progress made by the regulators. In cases where data are published indicating 682 

that a particular substance is likely to cause adverse effects to wildlife, it is naturally difficult to 683 

change the negative public opinion towards this substance, even when the data concerned 684 

emanated from just a single study. The cost of confirming or refuting the results of a poorly 685 

designed study can be extremely high; and for fish chronic studies could amount to several 686 

hundred thousand US dollars. The cause of protecting the environment itself may suffer as funds 687 

are drawn away from studying other more harmful chemicals. In addition, the calculation of 688 

Environmental Quality Standards (EQS) involves the evaluation of all studies published on the 689 

particular chemical concerned. However, the existence of even one study that shows, for 690 

example, that a 100-fold lower EQS should be applied, must be acknowledged by regulators 691 

even if the vast majority of studies suggest otherwise. Any inadequacies in study design or 692 

inaccuracies in the measurements made could have profound implications for regulators, for the 693 

water industry, and ultimately for us as taxpayers, if they lead to a significantly lower acceptable 694 

environmental concentration. Furthermore, there are undoubtedly environmental contaminants 695 

upon which the regulator should be focussing their attention, and inaccurate data on other (less 696 

harmful) substances may mean that their attention is not focussed on the chemicals that really 697 

are of environmental concern. 698 

In conclusion, ecotoxicologists need to think about the consequences of their research before 699 

they publish it, and they need to take responsibility for it. This does not mean that results 700 

suggesting a substance is of concern should be suppressed, or their publication significantly 701 

delayed. Indeed, we embrace the process of publication as a major part of scientific discourse, 702 

and its role in facilitating discussion around the subject in hand. But it does mean that scientists 703 

have a duty to ensure that their research is sound, and therefore likely to be repeatable, before 704 

publishing it. Likewise, readers should be aware that they should always critically appraise the 705 

work contained therein, and not take it simply on trust. Scientists also need to give serious 706 

consideration to making their raw data publically available, the benefits of which cannot be 707 

overstated. Many high quality journals require that such data are deposited in a database prior to 708 

publication; those that do not specifically require this do at least encourage authors to share their 709 
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data on request. Adhering to these guidelines will greatly enhance the trust afforded to individual 710 

scientists, and between scientists and policy makers. Transparency and robustness are key 711 

elements to a successful scientific outcome. 712 
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