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Abstract. We present ice-penetrating radar evidence for ancient (pre-glacial) and extensive erosion surfaces

preserved beneath the upstream Institute and Möller ice streams, West Antarctica. Radar data reveal a smooth,

laterally continuous, gently sloping topographic block, comprising two surfaces separated by a distinct break in

slope. The erosion surfaces are preserved in this location due to the collective action of the Pirrit and Martin–

Nash hills on ice sheet flow, resulting in a region of slow flowing, cold-based ice downstream of these major

topographic barriers. Our analysis reveals that smooth, flat subglacial topography does not always correspond to

regions of either present or former fast ice flow, as has previously been assumed. We discuss the potential origins

of the erosion surfaces. Erosion rates across the surfaces are currently low, precluding formation via present-day

glacial erosion. We suggest that fluvial or marine processes are most likely to have resulted in the formation of

these surfaces, but we acknowledge that distinguishing between these processes with certainty requires further

data.

1 Introduction

The Institute and Möller ice streams (IMIS) drain around

20 % of the area of the West Antarctic Ice Sheet (WAIS)

(Fig. 1). Despite their significance as fast-flowing outlet

glaciers within an ice sheet that is regarded as potentially

unstable (Joughin et al., 2014), until recently relatively little

was known about the glacial history of this region (Bingham

and Siegert, 2007). In order to address this issue, an aero-

geophysical survey was undertaken across the ice streams

and surrounding locations (Ross et al., 2012). Mapping ice

sheet boundary conditions in these little-explored regions is

of great importance, as subglacial topography can exert a

strong control on ice dynamics (Joughin et al., 2009) and may

retain a long-term record of geomorphic processes and ice

sheet evolution (Young et al., 2011). Analysis of bed topog-

raphy can therefore be used to make inferences about the na-

ture and evolution of palaeo-landscapes in Antarctica (Rose

et al., 2013).

The IMIS survey has provided a wealth of new informa-

tion, elucidating the tectonic, topographic and hydrological

settings of this region (Ross et al., 2012; Jordan et al., 2013;

Le Brocq et al., 2013; Siegert et al., 2014). These, in turn,

have contributed to our understanding of early ice inception

(Ross et al., 2014) and ice sheet sensitivity in the Weddell

Sea sector (Siegert et al., 2013; Wright et al., 2014). The

macro-scale geomorphology of the IMIS sector, however,

has yet to be considered. In particular, the region between
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Figure 1. (a) Subglacial topography of the Weddell Sea sector, West Antarctica (Fretwell et al., 2013). The white line marks the grounding

line, black line marks the outer ice shelf edge, solid grey lines mark islands, (derived from MODIS MOA imagery; Haran et al., 2005,

updated 2013), and light-grey gridded lines mark flight lines from a high-resolution modern airborne survey (Ross et al., 2012). The inset

with the red box shows the location of (a) in West Antarctica. (b) Subglacial topography of the Institute and Möller ice streams, derived

from IMIS survey (Ross et al., 2012), and overlain on semi-transparent Bedmap2 topography (Fretwell et al., 2013). The 50 m a−1 ice sheet

surface velocity contour is also shown (Rignot et al., 2011). Annotations: B – Berkner Island; BIR – Bungenstock Ice Rise; EM – Ellsworth

Mountains; ESH – Ellsworth Subglacial Highlands; ET – Ellsworth Trough; Fl – Fletcher Promontory; Fw – Fowler Peninsula; H – Henry

Ice Rise; IIS – Institute Ice Stream; K – Korff Ice Rise; MB – Marginal Basins; MIS – Möller Ice Stream; MNH – Martin–Nash Hills; PH –

Pirrit Hills; RSB – Robin Subglacial Basin; S – Skytrain Ice Rise; TB – Transitional Basins; TT – Thiel Trough (southerly margin).

the Robin Subglacial Basin and the mountain ranges of the

Ellsworth–Whitmore Mountains block has received little at-

tention (Fig. 1). Here, we focus on this striking region, where

a zone of apparently flat and smooth topography, located be-

tween the deeper elongate troughs and basins that underlie

the fast-flowing tributaries of the Institute Ice Stream (IIS), is

imaged and mapped. We inspect and analyse the morphology

of this sector in order to interpret this feature. We discuss dif-

ferent erosion regimes associated with erosion surfaces and

favour a fluvial or marine mechanism of formation. Differen-

tiating between these two processes would require further in-

vestigation and additional data (e.g. apatite fission track anal-

ysis, offshore seismic and sedimentary records, regional rock

outcrop analysis, glacial isostatic adjustment reconstruction).

Our findings do, however, provide the foundation from which

the evolution of this landscape and its relationship with long-

term glacial history may be deciphered.

2 Regional topographic and geological setting

The Weddell Sea sector of the WAIS (Fig. 1), in which the

IMIS are contained, is characterised by a broad, marine (be-

low sea level) embayment (Ross et al., 2012). The IMIS drain

into the Filchner–Ronne Ice Shelf and their lower trunks (0–

130 km upstream of the grounding line) are separated by the

Bungenstock Ice Rise (Fig. 1b). The area immediately inland

of the Bungenstock Ice Rise is dominated by the ∼ 1.5 km

deep Robin Subglacial Basin. Two primary tributaries feed

the fast ice flow (> 50 m a−1) of the IIS (Fig. 1b). One is un-

derlain by the linear Ellsworth Trough and the other by the

Transitional Basins – a series of major topographic depres-

sions (40–80 km long, 10–20 km wide, ∼ 1.8–1.9 km deep)

which likely have a tectonic origin and are dispersed in a

more complex right-stepping, en échelon pattern (Jordan et

al., 2013). In contrast, the onset of fast flow of the Möller Ice

Stream (MIS) initiates closer to the grounding line, in prox-

imity to the Robin Subglacial Basin and the northern mar-

gin of the Transitional Basins (Fig. 1b). Along the eastern

edge of the IMIS survey area, and south-east of the Transi-

tional Basins, lies a series of elongate Marginal Basins (Jor-

dan et al., 2013; Rose et al., 2014). The IMIS are bordered

by numerous uplands, including the Ellsworth, Whitmore

and Thiel mountains and the Ellsworth Subglacial Highlands

(Fig. 1a). The main focus of this paper is the inter-tributary

area of the IIS, between the Robin Subglacial Basin and the

Pirrit and Martin–Nash hills further inland.

In terms of their geological setting, the upper parts of the

IMIS flow over the Ellsworth–Whitmore Mountains block

(Fig. 2a), one of four distinct tectonic blocks or micro-plates

that make up the West Antarctic crust (Dalziel and Elliot,

1982). The other tectonic blocks include the Antarctic Penin-

sula, Thurston Island and Marie Byrd Land (Fig. 2a). To

the north of the IMIS, the Filchner–Ronne Ice Shelf is un-

derlain by the Weddell Sea Embayment, which separates

the Antarctic Peninsula and Ellsworth–Whitmore Mountains

blocks from the more tectonically stable East Antarctic Cra-

ton (Studinger and Miller, 1999). The Weddell Sea Embay-

ment lies in a key position between West and East Antarctica
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Figure 2. (a) Subglacial topography (Fretwell et al., 2013) overlain by the main tectonic features (Jordan et al., 2013) inferred for the

Weddell Sea sector, West Antarctica. (b) Subglacial topography of the Institute and Möller ice streams overlain by inferred geological

features and sediments. The lines denoting the Transitional and Marginal Basins mark their structural boundaries. The line between West

and East Antarctica is inferred (Jordan et al., 2013). Annotations: AP – Antarctic Peninsula block; B – Berkner Island; EWM – Ellsworth–

Whitmore Mountains block; H – Henry Ice Rise; K – Korff Ice Rise; MBL – Marie Byrd Land block; MIS – Möller Ice Stream; MNH –

Martin–Nash Hills; PH – Pirrit Hills; PN – Pagano Nunatak; PSZ – Pagano Shear Zone; TI – Thurston Island block.

in the region where Gondwana break-up initiated ∼ 180 Myr

ago (Storey et al., 2001; Dalziel et al., 2013). It is charac-

terised by a region of thinned crust which extends∼ 1200 km

south from the foot of the continental slope to the Ellsworth–

Whitmore Mountains block (Studinger and Miller, 1999; Jor-

dan et al., 2013). In addition, a major strike-slip bound-

ary (the Pagano Shear Zone) is inferred between the south-

eastern edge of the Ellsworth–Whitmore Mountains block

and East Antarctica, in the region of the Transitional and

Marginal Basins (Fig. 2). This boundary parallels (and likely

dictates) the eastern shear margin of the MIS, and may extend

along the Thiel Trough, defining the south-eastern edge of

the Weddell Sea Embayment (Jordan et al., 2013). The tim-

ing of movement along the Pagano Shear Zone is uncertain,

but plate reconstructions based on palaeomagnetic data sug-

gest that the Ellsworth–Whitmore Mountains block reached

its current position, relative to the Antarctic Peninsula and

East Antarctica, by ∼ 175 Ma (Dalziel et al., 2013).

Geological and geophysical surveys suggest that the

bedrock underlying the IMIS is predominantly folded

Palaeozoic metasediments and volcanic rocks (512–250 Ma),

overlying more deeply buried Mesoproterozoic basement

(> 1000 Ma) (Garrett et al., 1987; Storey and Dalziel, 1987;

Curtis, 2001; Jordan et al., 2013) (Fig. 2b). The Palaeozoic

bedrock has a dominant NW–SE structural trend, approx-

imately parallel to the Ellsworth Mountains and adjacent

Ellsworth Trough (Storey and Dalziel, 1987; Jordan et al.,

2013), which developed during the ∼ 250 Ma Gondwanide

orogeny (Curtis, 2001). Several large Jurassic (∼ 175 Ma)

granite intrusions crosscut older sediments forming isolated

nunataks, such as the Pirrit Hills and the Martin–Nash Hills

(Fig. 2b), which protrude above the ice surface within the

IMIS catchment (Storey et al., 1988). Geophysical data show

the subglacial extent and shape of these intrusions. The Pirrit

and Martin–Nash hills, for example, appear roughly circular

in shape, whilst other structurally controlled intrusions that

flank the Transitional Basins and underlying Pagano Shear

Zone are more linear in form (Fig. 2b). The latter runs at an

approximately 30◦ angle to the structural trend of the Palaeo-

zoic metasediments (Garrett et al., 1988; Jordan et al., 2013).

In this region, the Pagano intrusion also forms the northern

flank of the elongate Marginal Basins (Fig. 2b), which lie at

the boundary between West and East Antarctica at the edge

of the IMIS survey area (Jordan et al., 2013).

3 Approach

3.1 Data collection

In the austral summer of 2010/2011 an airborne geophysi-

cal survey was carried out across the IMIS. A central sur-

vey grid, with flight line spacing of 7.5 km and tie lines of

25 km, was established over the ice streams, covering an area

of ∼ 350× 400 km (Fig. 1a, light-grey gridded lines). Addi-

tional exploratory lines, with 50 km spacing, were also flown

to link with previous regional surveys (Ross et al., 2012).

Approximately 25 000 line kilometres of radio-echo sound-

ing (RES), gravity and magnetic data were collected (Jor-

dan et al., 2013). Here, we discuss only the RES data. These

were acquired using a coherent system with a 12 MHz band-

width and 150 MHz carrier frequency (Corr et al., 2007), pro-

viding an approximate 10 m along-track sampling interval.

Differential GPS, with a horizontal accuracy of ∼ 5 cm, was
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used for positioning. Doppler processing was applied to mi-

grate radar-scattering hyperbolae in the along-track direction

(Hélière et al., 2007). The seismic processing software PRO-

MAX was then used to carry out a semi-automated picking

sequence that identifies the onset of the received bed echo.

Ice thickness was determined from the two-way travel

time of the bed pick using a velocity of 0.168 m ns−1 cou-

pled with a firn layer correction of 10 m (Ross et al., 2012).

Bed elevations were then calculated by subtracting ice thick-

ness measurements from ice surface elevations. The latter

were determined from measurements of terrain clearance de-

rived from radar/laser altimeter measurements, relative to the

WGS84 ellipsoid. Cross-over rms errors are ∼ 18 m (Ross et

al., 2012). These data have since contributed to the Bedmap2

depiction of Antarctic subglacial bed elevation (Fretwell et

al., 2013).

3.2 DEM, radar echograms and satellite imagery

A digital elevation model (DEM) of subglacial topography

was produced by rendering RES-derived bed elevations onto

a 1 km grid mesh, using the “Topo to Raster” iterative fi-

nite difference interpolation function in ArcGIS. This algo-

rithm employs a nested grid strategy to calculate succes-

sively finer grids until the user-specified resolution is ob-

tained (Hutchinson, 1988, 1989), and it has been shown to

be particularly effective in rendering glacial terrain (Fretwell

et al., 2013). In addition, an isostatic correction was applied

to the DEM to account for the removal of the modern ice

sheet load. This comprised a simple Airy-type compensa-

tion, with an ice density of 915 kg m−3 and a mantle den-

sity of 3330 kg m−3. Whilst we acknowledge that this ap-

proach does not take into account the full complexity as-

sociated with glacio-tectonic interactions, it does provide a

general indication of pre-glacial elevations across the region,

offering insight into the landscape setting prior to glaciation.

Radar echograms were also studied in order to assess detailed

(along-track) basal topography and englacial structure. These

images offer an immediate regional-scale perspective on the

nature of the sub-ice landscape and add specific context to the

DEM. Furthermore, the Moderate Resolution Imaging Spec-

troradiometer (MODIS) Mosaic of Antarctica (MOA) (Haran

et al., 2005, updated 2013) was used to understand the mor-

phology of the ice sheet surface (Scambos et al., 2007), as

this can provide detailed insight into the nature of the under-

lying subglacial terrain (Ross et al., 2014).

3.3 Geomorphometry

The DEM was analysed in order to identify, map and quan-

tify subglacial morphology and the spatial variability of ge-

omorphic features. In particular, bed slope and hypsometry

(area–elevation distribution) were quantified, as outlined be-

low. Geomorphic features were also compared with maps of

spectral bed roughness, derived from the IMIS survey radar

transects (from Rippin et al., 2014). From the DEM, bed

slope represents the gradient (rate of maximum change in z

value) from each grid cell to its neighbours and is measured

in degrees (Burrough and McDonell, 1998). Abrupt changes

in slope can reveal distinct changes in landscapes and spe-

cific topographic features, as well as providing an overview

of general surface texture.

Hypsometric analysis quantifies the distribution of land

surface area with altitude (Strahler, 1952). It is commonly

used to understand the relationship between local and re-

gional tectonics and the spatial variability in fluvial and

glacial surface processes (Montgomery et al., 2001; Peder-

sen et al., 2010). Hypsometry identifies the dominant sig-

nal of landscape erosion, but is generally scale-dependent

(Brocklehurst and Whipple, 2004). In order to assess hyp-

sometry, therefore, the topographic drainage basin encom-

passing the IMIS was delineated. While this represents an

artificial drainage divide boundary, as topography is predom-

inantly below sea level within the survey area, it is a well-

defined region that reflects the upslope area that contributes

flow (normally water) to a common outlet (topographic low

point along the basin boundary). Although it does not neces-

sarily relate to a viable hydrological system (because rivers

grade to sea level), the drainage region provides a discrete

scale at which to calculate hypsometry (i.e. at basin scale).

Basal roughness is a measure of vertical variation with

horizontal distance (e.g. Taylor et al., 2004; Li et al., 2010;

Rippin et al., 2011). Low roughness records little vertical

variation with horizontal distance, resulting in a surface with

a smooth texture, whilst high roughness reflects significant

vertical variation with horizontal distance, resulting in a sur-

face with a rough texture. As the nature of basal topogra-

phy exerts a control on ice flow, quantifying roughness at

the ice–bed interface can be used to make inferences about

ice-dynamic regimes (Hubbard et al., 2000; Siegert et al.,

2005; Bingham et al., 2007; Bingham and Siegert, 2007,

2009). Previously, “smooth” (low-roughness) regions have

been associated with fast-flowing ice, the presence of glacial

sediments and/or significant glacial landscape modification,

whilst “rough” topography is often associated with slow-

flowing ice and minimal glacial modification (Bingham and

Siegert, 2007). Rippin et al. (2014) used a two-parameter

fast Fourier transform to determine total roughness and the

standard deviation of along-track bed topography to assess

roughness directionality across the IMIS. Total basal rough-

ness represents the amplitude (vertical irregularity) of bed

roughness at all wavelengths and can perhaps be viewed as

the “net” roughness determined for a given location. Direc-

tional roughness takes into account erosion relative to the

ice-flow field by determining roughness variations both or-

thogonal and parallel to ice flow (Rippin et al., 2014; see

detailed methods therein). Directional roughness may there-

fore highlight regions where substantial erosion parallel to

ice flow has resulted in the formation of streamlined land-

forms, such as mega-scale glacial lineations (e.g. Graham et

Earth Surf. Dynam., 3, 139–152, 2015 www.earth-surf-dynam.net/3/139/2015/
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Figure 3. Radar echograms showing the gently sloping surfaces identified in subglacial topography. Inset shows the location of transects

overlain on subglacial topography. (a) Cross-profile transect A–A’, located proximal to the Robin Subglacial Basin, between the main

tributaries of the Institute Ice Stream. (b) Cross-profile transect B–B’, located further inland, extending between the Pirrit Hills (panel left)

and the Marginal Basins (panel right), crossing the easternmost tributary of the Institute Ice Stream, which is underlain by the Transitional

Basins. Cross-profiles show ice flow going into the page. Dashed lines (red and green) highlight regions of consistent summit elevation.

(c) Long-profile transect C–C’, running from the inland edge of the survey grid (panel left) to southern edge of the Bungenstock Ice Rise

(panel right). Ice flow is roughly from left to right, but changes orientation across the Robin Subglacial Basin. Elevations are relative;

topography in all transects is located below sea level (see inset). Annotations: BIR – Bungenstock Ice Rise; ET – Ellsworth Trough; MB –

Marginal Basin; MNH – Martin–Nash Hills; PH – Pirrit Hills; RSB – Robin Subglacial Basin; TB – Transitional Basins.

al., 2007; King et al., 2009). Here, we further develop the

study by Rippin et al. (2014) by comparing regional-scale

roughness characteristics and landscape geometry.

4 Results

4.1 Subglacial topography

4.1.1 Radar echograms

Figure 3 displays a series of radar echograms representing

two cross-profiles and a single long-profile across the central

IMIS survey area. The cross-profile radar echograms illus-

trate a smooth, gently sloping bed in the region between the

Robin Subglacial Basin and the Pirrit and Martin–Nash hills

(Fig. 3a and b). Proximal to the Robin Subglacial Basin, the

lateral extent of this smooth bed is truncated on either side

by the Ellsworth Trough and Transitional Basins (Fig. 3a).

Further inland, the smooth bed is still evident but is less ob-

viously continuous, being dissected by a number of typically

U-shaped valleys (Fig. 3b, red dashed lines; lines show re-

gions of summit elevation consistency). This radar echogram

also shows evidence of similar (but more dissected) near-

level surfaces in the region of the Marginal Basins, east of the

Transitional Basins (Fig. 3b, green dashed lines). The long-

profile radar echogram (Fig. 3c) shows that the surface is di-

vided into two discrete topographic elements, which form a

lower and an upper surface. These are separated by two pro-

nounced breaks in slope, approximately 80 and 110 km in-

land from the edge of the Robin Subglacial Basin (Fig. 3c,

vertical white dashed lines). The lower surface appears to dip

towards the Robin Subglacial Basin, whilst the upper surface

shows a distinct tilt inland.

4.1.2 DEM

The DEM shows the full extent of the surfaces identified

in the radar echograms, revealing a smooth, gently slop-

www.earth-surf-dynam.net/3/139/2015/ Earth Surf. Dynam., 3, 139–152, 2015
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Figure 4. (a) Subglacial topography between the main Institute Ice Stream tributaries. Colour and distance scales for subglacial topography

remain consistent for each panel. (b) Present-day bed elevations overlain with elevation contours (500 m intervals) derived from the isostat-

ically adjusted topography. (c) Surface slope (semi-transparent) overlain on subglacial topography. Grey dotted lines mark regions of steep

slopes (> 7◦). (d) Ice sheet surface velocity (semi-transparent) and velocity contours (Rignot et al., 2011) overlain on subglacial topography.

(e) MODIS MOA imagery of the ice sheet surface. (f) MODIS MOA imagery (semi-transparent) overlain on subglacial topography and

annotated to show the dominant morphological features observed (see Sect. 4.2). Extent of panels shown by rectangular dashed black box in

Fig. 1b. Annotations: ET – Ellsworth Trough; MNH – Martin–Nash Hills; PH – Pirrit Hills; RSB – Robin Subglacial Basin; TB – Transitional

Basins.

ing, roughly rectangular topographic block, located in the re-

gion between the Robin Subglacial Basin and the Pirrit and

Martin–Nash hills (Fig. 1b, dashed black box, and Fig. 4a,

black dot-dash line). The main block is ∼ 200× 150 km in

size and is located between the Ellsworth Trough and the

Transitional Basins. Slope analysis highlights five geomor-

phic features in the topography (Fig. 4c). First, steep slopes

(> 7◦) are associated with the flanks of the Pirrit and Martin–

Nash hills. They are also found at the lateral boundaries of

the block, along the margins of the Ellsworth Trough and

Transitional Basins. Second, these troughs and basins are

characterised by steep-sided valley sides and flat-bottomed

floors, indicative of U-shaped cross-profiles. Third, the block

itself has generally low slope gradients (< 4◦), reflecting a

gently dipping surface profile. Fourth, the middle of the block

is dissected by a linear zone of higher slope values (6–8◦),

transverse to ice flow, which divides it into two sections

(Fig. 4c). This break in slope is in keeping with observations

from radar echograms at the ice surface and bed (Fig. 3c), and

we note that it is also visible in DEMs of the ice sheet surface

(e.g. Bamber et al., 2009; Fretwell et al., 2013). Fifth, under

present-day ice cover, the elevation of the topographic block

is predominantly below sea level (within a range of 200 to

−1500 m, mean of −656 m). When a generalised isostatic

correction is applied (Fig. 4b, contours), the elevation of the

block rises (within a range of 600 to −1100 m), but mean

elevation remains below sea level (mean of approximately

−270 m). It is also noted that the estimated sea-level contour

(0 m) (Fig. 4b) corresponds to the break in slope (∼ 80 km

from the Robin Subglacial Basin) identified across the centre

of the block (Fig. 3c, white dashed line, and Fig. 4c).

4.1.3 Hypsometry

The hypsometry of the IMIS drainage basin (Fig. 5) displays

two area–elevation maxima that are skewed downward (Hmax

values of −900 and −400 m), demonstrating that the ma-

jority of the basin lies below sea level (within a range of

1591 to −1971 m, mean of −643 m; Fig. 5b). The style of
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Figure 5. (a) Drainage basin determined for subglacial topogra-

phy in the region of the Institute and Möller ice streams (IMIS).

(b) Hypsometry (area–elevation distribution) determined for the

IMIS drainage basin, in comparison with the lower (red) and up-

per (blue) erosion surfaces. The inset shows characteristic hypso-

metric distributions for fluvial (black) and glacial (grey) landscapes

(Egholm et al., 2009).

hypsometry is consistent with glacial, rather than fluvial, en-

vironments (Egholm et al., 2009; Fig. 5b, inset). The area–

elevation distribution of the gently sloping topographic block

(Fig. 4a, black dot-dash line) was also determined in order to

assess its setting within the context of the IMIS basin hyp-

sometry (Fig. 5a). Because the radar data (Fig. 3c), in con-

junction with slope analyses (Fig. 4c), reveal the block is di-

vided into two surfaces, its hypsometry was also sub-divided

into a lower surface proximal to the Robin Subglacial Basin

(Fig. 5a, red dashed line) and an upper surface located further

inland (Fig. 5a, blue dashed line).

The hypsometric distributions of the two surfaces fall

within the central elevation range of the IMIS drainage basin

bed (within a range of−100 to−1100 m) (Fig. 5b). Both the

lower and upper surfaces show hypsometric maxima that are

in line with the lower and upper Hmax peaks recorded in the

IMIS basin (lower Hmax=−800 m, upper Hmax=−500 m;

Fig. 5b). This highlights that the majority (almost 60 %) of

the drainage basin corresponds to the gently sloping block.

The two surfaces that comprise the block lie almost com-

pletely below sea level (< 1 % area above 0 m), in keeping

with their broad sea embayment setting. For each surface,

a large proportion of the area lies within an elevation range

of 200 m, highlighting the low relief of this block. Specifi-

cally, 50 % of the lower surface area lies between elevations

of −800 and −1000 m and 40 % of the upper surface area

lies between elevations of −400 and −600 m.

4.1.4 Roughness

A thorough analysis of spectral basal roughness across the

IMIS was carried out by Rippin et al. (2014). Here, we

discuss the total basal roughness and roughness direction-

ality derived from that work (Fig. 6), and its relation to

the morphological analyses presented above. Generally the

block is characterised by low roughness (≤ 0.1) at all wave-

lengths (total roughness) (Fig. 6b). A band of slightly higher

total roughness (0.1–0.2) is also evident in the centre of

this region, corresponding with the break in slope in the

topography (Figs. 3c and 4c). Low total roughness values

are also found across the sediment-filled Robin Subglacial

Basin and the Bungenstock Ice Rise. Higher total roughness

values (> 0.2) are typically associated with the surround-

ing Ellsworth Mountains and Pirrit and Martin–Nash hills

(Fig. 6b). Similarly, when examining the directionality of

roughness relative to present-day ice flow, the lowest values

are associated with the Robin Subglacial Basin and Bungen-

stock Ice Rise, whilst the highest values generally correlate

with subglacial mountains. In other regions, such as the Tran-

sitional Basins, we find that roughness orthogonal to flow is

typically higher than that parallel to flow (Fig. 6c and d).

In contrast, however, the block shows a different pattern,

whereby roughness is lower (0.24) orthogonal to ice flow

(Fig. 6c) but higher (0.35) parallel to flow (Fig. 6d). These

patterns reveal that the block has generally low basal rough-

ness, dominated by shorter wavelength variations (typically

parallel to ice flow), which gives it a distinct roughness char-

acter within the IMIS basin (Rippin et al., 2014). Similarly,

the Robin Subglacial Basin is also defined by its own distinct

(extremely smooth) roughness character that is particularly

evident in the patterns of roughness directionality (Fig. 6c

and d).

4.2 Ice sheet surface imagery

MODIS MOA imagery highlights four key morphological

features in the ice sheet surface that reflect distinct changes in

the nature (e.g. roughness, elevation) of the underlying sub-

glacial topography (Fig. 4e). First, the isolated granite intru-

sions of the Pirrit and Martin–Nash hills are characterised by

a rough surface texture (Fig. 4f, blue lines), forming clustered

“corrugated” features, orientated transverse to ice flow. Sec-

ond, downstream of each hill is a linear feature, aligned with

ice flow in the direction of the grounding line (Fig. 4f, black

lines). Third, located between these are a series of linear to

curved features that lie transverse to ice flow (Fig. 4f, white
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Figure 6. (a) Subglacial topography of the Institute and Möller ice streams overlain on semi-transparent Bedmap2 topography. Annotations:

BIR – Bungenstock Ice Rise; EM – Ellsworth Mountains; ET – Ellsworth Trough; IIS – Institute Ice Stream; MB – Marginal Basins; MIS

– Möller Ice Stream; MNH – Martin–Nash Hills; PH – Pirrit Hills; RSB – Robin Subglacial Basin; TB – Transitional Basins. (b) Total

basal roughness determined from bed elevation data along IMIS survey flight lines. (c) Basal roughness determined using the standard

deviation of along-track bed topography orthogonal to ice flow. (d) Basal roughness determined using the standard deviation of along-track

bed topography parallel to ice to flow. Adapted from Rippin et al. (2014).

lines). The most distinct and laterally continuous curved sur-

face feature runs across the middle of this region. These fea-

tures, respectively, correspond to the lateral boundaries of the

block and the break in slope identified (80 km inland from the

Robin Subglacial Basin) in radar echograms (Fig. 3c) and the

DEM (Fig. 4c). Fourth, we also note a series of surface fea-

tures perpendicular to ice flow in the region of the most east-

erly main tributary of the IIS (Fig. 4f, pink lines). These are

clearly associated with ice flow across the basal topography

of the Transitional Basins.

5 Interpretation

5.1 Erosion surfaces

Geomorphic analyses of the DEM and supporting evidence

from radar echograms and satellite imagery have enabled us

to identify a gently sloping, low-relief topographic block,

with associated low basal roughness, in the region between

the Robin Subglacial Basin and the Pirrit and Martin–Nash

hills, located further inland. We interpret this region as two

large-scale erosion surfaces separated by a marked break in

slope (Fig. 3c, white dashed line).

We consider that these surfaces represent erosional rather

than depositional topographic features for three reasons.

First, they are located inland of the grounding line where

the movement of grounded ice and subglacial water is more

likely to result in erosion. In particular, in the past (e.g. the

LGM), when the ice sheet margin was located at the con-

tinental shelf, the erosion surfaces would have been located

even further into the ice sheet interior, demonstrating that this

is not an obvious position for major glacial–sedimentary de-

position. Second, landscape relief points to the region hav-

ing been subject to erosional processes (Fig. 1). For exam-

ple, Jurassic granites that comprise the Pirrit and Martin–

Nash hills, which protrude above the present-day ice sheet

surface, were emplaced between ∼ 175 and 165 Ma (Storey

et al., 1988; Lee et al., 2012) and have since been exposed
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by erosion. The relief today between the mountain peaks

and the upper erosion surface demonstrates that a signif-

icant amount of rock (at least 2 km) has been removed

since the Jurassic. Furthermore, the presence of troughs and

basins below sea level, particularly the Ellsworth Trough, in-

dicates significant removal of material by glacial processes.

Third, radar echograms show that the gently sloping ero-

sion surfaces display small-scale undulations and intermit-

tent valleys (Fig. 3a), giving this region a different (short-

wavelength) roughness (Fig. 6a) that distinguishes it from the

likely sediment-filled Robin Subglacial Basin (Rippin et al.,

2014). Although we cannot rule out that there may be pock-

ets of sediments or even a thin sedimentary drape in places

across the surface, there is no evidence from radar or grav-

ity data for a saturated or thick sedimentary deposit in this

region. The surfaces are, therefore, more in keeping with an

extensive erosional bedrock landscape setting.

5.2 Preservation

Glaciological conditions now and in the past (i.e. since ice

sheet glaciation of West Antarctica) are conducive to land-

scape preservation between the IIS tributaries. MODIS MOA

imagery reveals two linear surface features in the lee of the

Pirrit and Martin–Nash hills (Fig. 4e and f), which corre-

spond to the lateral boundaries of the block (Fig. 4a). Clearly,

these mountains significantly modulate regional ice flow, re-

ducing ice velocities immediately downstream and focusing

flow along the adjacent troughs and basins that now host the

fast-flowing (> 50 m a−1) tributaries of the IIS (Fig. 4d).

The region was also unlikely to have been a fast flow

zone during full glacial conditions during the Quaternary, as

there would be slow, interior ice-sheet-type flow (i.e. by in-

ternal ice deformation only) across this region when ice was

at the shelf edge. In addition, the erosion surfaces display

their own distinct roughness signal, with comparatively high

values parallel to ice flow, versus those orthogonal to flow

(Fig. 6c and d). This indicates that the landscape has not ex-

perienced significant streamlining by ice but rather retains

a signal of pre-glacial geomorphic processes (Rippin et al.,

2014).

5.3 Selective glacial erosion

Radar echograms reveal that the block has been subject to

a degree of selective glacial erosion following formation. A

few valleys (often U-shaped) are visible in cross-profile A,

particularly in proximity to the Ellsworth Trough (Fig. 3a),

whilst further inland cross-profile B has been more signifi-

cantly dissected by broader U-shaped valleys (Fig. 3b). The

scale and style of these intermittent, U-shaped valleys are

suggestive of selective linear erosion by small- to regional-

scale, warm-based ice masses (Sugden and John, 1976; Hi-

rano and Aniya, 1988). Given the broad preservation of the

topographic block, the ice sheet likely comprised polyther-

mal basal conditions, with spatially restricted zones of warm-

based ice focused along valleys to form deep troughs, and

cold-based ice associated with low erosion rates located in

the lee of the Jurassic intrusions. The locations of the valleys

are likely to reflect lines of structural tectonic weaknesses

(Jordan et al., 2013) or pre-existing fluvial networks that have

been exploited (e.g. Baroni et al., 2005; Rose et al., 2013;

Ross et al., 2014).

We propose that incision of the erosion surfaces occurred

during periods of intermediate ice sheet cover (cf. Young et

al., 2011) when corridors of warm-based ice, subject to topo-

graphic steering, flowed around the Pirrit and Martin–Nash

hills. Ross et al. (2012) use the location of troughs and ele-

vated bars to infer the position of a former grounding line up-

stream of the Robin Subglacial Basin. Their findings indicate

that, even under a smaller-scale, restricted ice sheet config-

uration, the majority of ice drainage would likely follow the

linear topographic valleys that flank this block (cf. Rose et

al., 2014). This would minimise the degree of glacial incision

between the valleys (i.e. where there may have been cold-

based ice), helping to retain pre-glacial landscape signals

across the erosion surfaces. Subsequently, once the ice sheet

expanded to a continental scale, buttressing of ice sheet flow

by the Pirrit and Martin–Nash hills would also restrict exten-

sive landscape modification by glacial erosion downstream

of these major mountain massifs. The existence of an exten-

sive, although incised, erosion surface demonstrates that it is

possible to preserve ancient surfaces beneath an ice sheet at

low elevations, and not just at high elevations associated with

thin, cold-based ice (Rose et al., 2013; Ross et al., 2014). It

is also interesting to note that whilst regions of smooth and

flat topography are typically associated with relatively fast

ice flow and often inferred marine sediments (Joughin et al.,

2006; Peters et al., 2006; Bingham and Siegert, 2007), we

do not find that relationship here. Instead, the fastest ice flow

exploits the deeply incised troughs and basins that flank the

low-roughness erosion surfaces.

5.4 Regional extent

We also find additional evidence indicating that the surfaces

may have been more extensive in the past. Radar echograms,

for example, hint at the existence of a more laterally con-

tinuous erosion surface extending across to the Transitional

and Marginal Basins (Fig. 3b, green dashed lines). This is

indicated by the presence of a few, isolated, flat-topped hills

between the basins (Figs. 1b and 3b). These basins are tec-

tonically controlled (Jordan et al., 2013), and it is likely

that they developed (overdeepened) due to glacial erosion

(down-cutting) exploiting these pre-existing tectonic struc-

tures. Low roughness values parallel to ice flow highlight

that glacial erosion has been particularly effective along these

basins (Fig. 6d). As a result, only remnants of this sur-

face, between basins, have remained (Burbank and Ander-

son, 2012). Without such structural controls driving erosion
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in these locations, a greater proportion and a more continu-

ous surface may have been retained. These smaller, localised

remnants of the erosion surface are harder to identify from

the DEM (because it is derived from an aerogeophysical sur-

vey with a line spacing of 7.5 km), but their existence is re-

flected in the cumulative proportion of area–elevation shown

in the hypsometry. We find that 60 % of area–elevation dis-

tribution in the IMIS drainage basin corresponds to the el-

evations of the block, but the block only accounts for 15 %

of the area of the IMIS drainage basin (Fig. 5b). This gives

support to the idea that the ancient erosion surface once oc-

cupied a much larger proportion of the embayment but that it

has since been dissected by glacial (and likely other) erosion

processes.

Indeed, if we examine the landscape at a regional scale,

it is easy to see how a larger-scale, more continuous erosion

surface may have existed across the Weddell Sea Embayment

in the past. In particular, Berkner Island and the Henry and

Korff ice rises stand out as regions of gently dipping, smooth

topography now encompassed by the Filchner–Ronne Ice

Shelf (Fig. 1a). Closer to the present-day grounding line, the

Skytrain Ice Rise, Fletcher Promontory and Fowler Penin-

sula also provide evidence for low-gradient, low-relief sur-

faces (Doake et al., 1983). The geometry of these features is

comparable to the form of the topographic block we identify

between the primary IIS tributaries. From this we may infer

that, coupled with the block, they may once have formed part

of a more continuous erosion surface that occupied a signifi-

cant proportion of the embayment. If such a surface existed,

then it also seems likely that the same dominant process(es)

of landscape development acted at a regional scale across the

Weddell Sea Embayment and not just at a local scale in the

region of the block.

6 Discussion

We have mapped a distinct topographic block within the

IMIS survey area and characterised it as two ancient pre-

served erosion surfaces. It is, however, much more difficult

to attribute the mode of formation of the erosion surfaces to a

particular mechanism. This is largely because the processes

involved in the formation of geometrically flat bedrock sur-

faces are subject to long-standing debates and uncertainty.

Globally, erosion surfaces have been described in a number

of settings and, although it may not be possible to determine

with certainty the exact origin of the erosion surfaces identi-

fied, here we briefly discuss a few of the settings and erosion

regimes that are commonly associated with erosion surfaces

cut into basement rocks.

We have two favoured models and associated processes re-

sponsible for the formation of the erosion surfaces: the first is

marine erosion, the second fluvial erosion. Both are consis-

tent with our evidence for a gently sloping, low-relief topo-

graphic block characterised by a low surface roughness and

an elevation near to isostatically rebounded sea level.

6.1 Marine erosion model

Marine erosion is concentrated at the interface between land

and sea through the constant action of waves impacting a

shoreline, often during a period of tectonic (and sea level)

quiescence (Burbank and Anderson, 2012). A marine origin

for large-scale erosion surfaces is possible and large-scale

marine erosion surfaces are often linked with polar glacial

environments. In the Northern Hemisphere, shore platforms,

known as strandflats, are found along almost the whole west

coast of Norway (Klemsdal, 1982), as well as in Greenland

(Bonow et al., 2007), Alaska and Scotland (Dawson et al.,

2013). These examples demonstrate that erosion surfaces of-

ten extend for many hundreds of kilometres (around coast-

lines) and may be tens of kilometres wide. They are thought

to result primarily from marine abrasion, with contributions

from subsequent weathering and glacial erosion processes

(Fredin et al., 2013). In Norway, strandflats are found both

above and below sea level. Typically, they lie in front of

higher land or coastal mountains and form either level or gen-

tly dipping bedrock surfaces from the coast (Klemsdal, 1982;

Fredin et al., 2013). We find some analogy between the Nor-

wegian strandflats and the setting of the IMIS drainage basin,

where the Ellsworth Subglacial Highlands and other moun-

tains are found inland of the erosion surfaces (Fig. 1a), and a

gentle coastal dip is evident in the lower surface (Fig. 3c).

In West Antarctica, a sequence of palaeo-erosion surfaces

has also been identified in the Ross Sea sector, located be-

tween −100 and −350 m (Wilson and Luyendyk, 2006a, b).

These surfaces are laterally continuous, averaging the same

elevation over large distances. They are 100s km wide and

discontinuous, separated by troughs that are occupied by

the ice streams of the Siple Coast. Using additional evi-

dence from gravity and marine seismic data sets, Wilson and

Luyendyk (2006a, b) interpreted these surfaces as the rem-

nants of a former, continuous wave-cut shore platform.

If we apply a marine erosion model for the erosion sur-

faces we identify beneath the IIS, we suggest that the surfaces

were cut at, or just below, sea level by wave action prior to

Antarctic glaciation or during periods when the ice sheet was

significantly smaller than today. Such a model is consistent

with the isostatically rebounded average elevation of the sur-

face (−270 m), its geomorphic context (i.e. at the head of the

Weddell Sea Embayment) and its proximity to the mountain

ranges of the Ellsworth–Whitmore Mountains block, in a set-

ting analogous to that of the strandflat features of the Arctic.

Although we accept that the width of the erosion surfaces

is unusually large (∼ 150 km in total,∼ 80 km lower surface,

∼ 70 km upper surface) for it to have been cut by processes of

marine erosion alone, we note that the Norwegian strandflat

is 60 km wide in places (Porter, 1989) and that many Antarc-

tic glacial landforms (e.g. glacial troughs, cirques) are often
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considerably larger in scale than similar features elsewhere

on Earth (Haynes, 1998; Young et al., 2011).

6.2 Fluvial erosion model

Fluvial erosion processes are also capable of generating

large-scale, low-gradient bedrock surfaces. Rivers work to

reduce surface elevations to a base level, typically at sea

level, through the erosion, transportation and deposition of

material (Burbank and Anderson, 2012). This often occurs in

passive continental margin settings (Beaumont et al., 2000),

where fluvial erosion cuts a new base level following rifting.

This results in a coastal plain which is then backed by es-

carpments, the number of which depends on lithology and

geological structure.

An alternative model for the formation of the erosion sur-

faces beneath the IIS, therefore, is that it was the result of

fluvial peneplain erosion during, and after, the rifting and

break-up of Gondwanaland around ∼ 180 Ma. A constraint

on the maximum age of the surface is provided by the 175 Ma

granitic intrusions of the Pirrit and Martin–Nash hills, which

demonstrate that the surface cannot be older than this. As a

consequence of the rifting of Gondwanaland, fluvial systems

on the passive margins of the rifts incised into the landscape

in response to the subsequent downward shift in base level

(Beaumont et al., 2000). This incisional phase resulted in the

formation of the broad extensive coastal surfaces, backed by

erosional escarpments and characterised by occasional insel-

bergs, mapped in southern Africa (e.g. Namibia) and South

America (Brown et al., 2000). The same processes (i.e. flu-

vial erosional processes operating in a passive continental

margin setting) may also have been responsible for the devel-

opment of the surfaces we have identified. In the case of the

Antarctic features, however, the surfaces were later incised

and fragmented by tectonic processes (e.g. major strike-slip

faulting) (Jordan et al., 2013) and by selective linear glacial

erosion (Ross et al., 2012) (Fig. 3b). Despite the action of

these surface processes, large parts of the ancient erosion sur-

faces remain little modified. They have been preserved by

their situation in the interior of the ice sheet, where rates of

subglacial erosion are low (Jamieson et al., 2010), and be-

cause of the long-term protection offered by the Pirrit and

Martin–Nash hills, which have buttressed downstream ice,

limiting glacial erosional capacity (see Sect. 5.2). Assuming

the fluvial model to be correct, one interesting possibility is

that the prominent break in slope that we identify (Figs. 3c

and 4c, e, f) may be analogous to the escarpments that back

the coastal plains of southern Africa (Brown et al., 2000).

One line of evidence that could be seen as inconsistent

with the fluvial model proposed is that the mean elevation

of the isostatically rebounded surface is −270 m. However,

given the potential age of the surfaces (i.e. they may have

formed long before extensive ice-sheet glaciation in Antarc-

tica), uncertainties over the tectonic structure and history of

this area, and the simplicity of the calculation of the isostatic

correction applied here, it may simply be that the isostati-

cally rebounded elevation of the surface is unrepresentative

of the elevation at which the surface originally formed. In the

Transantarctic Mountains in East Antarctica, ancient relict

surfaces are found at elevations far above present-day, or ice-

free, sea level conditions (Sugden et al., 1995; Kerr et al.,

2000).

If the fluvial model is correct, however, it opens up the

possibility of using detailed investigations of Antarctic sub-

glacial topography to improve our understanding of the na-

ture of Gondwanaland rifting and, from this, the forma-

tion of the Antarctic continent. We note that several studies

(e.g. Sugden et al., 1995; Kerr et al., 2000; Näslund, 2001;

Jamieson and Sugden, 2008) have also proposed the preser-

vation of other ancient (e.g. Gondwanaland) surfaces in East

Antarctica. It may be that the flat-lying surfaces identified

elsewhere in the Weddell Sea sector of West Antarctica, as

well as those in the Ross Sea, previously interpreted as wave-

cut shore platforms (Wilson and Ludendyk, 2006a, b), may

also be remnants of extensive ancient fluvial surfaces.

7 Conclusions

A new DEM, built from an extensive and high-resolution

modern airborne radar survey, provides a detailed view of

subglacial topography across the IMIS, where previously

only sparse data were available (Bingham and Siegert, 2007).

We have examined radar echograms and MODIS MOA im-

agery and applied morphometric analyses to the DEM in

order to characterise the landscape. In doing so, we have

(1) identified a smooth, laterally continuous, gently slop-

ing topographic block in the region between the Robin Sub-

glacial Basin and the Pirrit and Martin–Nash hills; (2) char-

acterised this block as two surfaces separated by a distinct

break in slope; (3) shown that erosion rates across the sur-

faces are currently low, precluding formation via present-day

glacial erosion; and (4) interpreted these features as erosion

surfaces.

Our findings show that it is possible for ancient erosion

surfaces to be preserved at low elevations beneath ice sheets.

We have also identified the Pirrit and Martin–Nash hills as

having played a key role in the long-term landscape evolu-

tion of this region. By buttressing upstream ice and reduc-

ing downstream ice velocities, they have limited glacial ero-

sion rates in their lee, thus enabling long-term preservation

of the erosion surfaces. By modulating ice dynamics, these

mountain massifs have facilitated a region where smooth,

low-geometry basal topography does not correspond to the

fast ice flow typically associated with ice streams. Whilst

we have characterised the topographic block, we have not

been able to constrain the dominant mechanism of forma-

tion for the erosion surfaces based on the current data avail-

able. Instead, we have presented a number of different ero-

sion regimes (namely fluvial and marine) that are associated
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with the formation of erosion surfaces in order to inspire fur-

ther investigation in this region so that the origin of these

surfaces may be deciphered with greater certainty in the fu-

ture.
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