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Sustained observations (SOs) have provided
invaluable information on the ocean’s biology
and biogeochemistry for over 50 years. They continue
to play a vital role in elucidating the functioning
of the marine ecosystem, particularly in the light
of ongoing climate change. Repeated, consistent
observations have provided the opportunity to
resolve temporal and/or spatial variability in ocean
biogeochemistry, which has driven exploration
of the factors controlling biological parameters
and processes. Here, I highlight some of the key
breakthroughs in biological oceanography that have
been enabled by SOs, which include areas such
as trophic dynamics, understanding variability,
improved biogeochemical models and the role of
ocean biology in the global carbon cycle. In the
near future, SOs are poised to make progress on
several fronts, including detecting climate change
effects on ocean biogeochemistry, high-resolution
observations of physical–biological interactions
and greater observational capability in both the
mesopelagic zone and harsh environments, such
as the Arctic. We are now entering a new era for
biological SOs, one in which our motivations have
evolved from the need to acquire basic understanding
of the ocean’s state and variability, to a need to
understand ocean biogeochemistry in the context of
increasing pressure in the form of climate change,
overfishing and eutrophication.

1. Introduction
Sustained observations (SOs) of ocean biogeochemistry
have a rich history extending back over 50 years [1,2].
Increased pressure on funding agencies in recent times
has led to enhanced scrutiny of the role for SOs within
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the panoply of ocean biogeochemical research. At the same time, an increasing recognition of
the need to understand the impacts on ocean biogeochemistry of current and future climate
change brings with it the obligation to adequately monitor the Earth system. Thus, this Theme
Issue on a ‘Prospectus for UK Marine Sustained Observations’ is timely. This article was solicited
by the Challenger Society for Marine Science and the UK Scientific Committee on Oceanic
Research and represents my personal perspective on the value and future development of SOs
for biogeochemical research.

Biological SOs date back to the early days of routine monitoring, when the original platforms
were weather ships, typically deployed in far-flung parts of the world ocean to gather data
designed to improve weather forecasts. For example, in 1949 Harald Sverdrup collected biological
and physical data over the course of a year from Weather Ship M in the Norwegian Sea, which led
to his seminal work on the conditions necessary to initiate a spring bloom [3]. The establishment
in the 1950s of time-series stations dedicated specifically to the study of oceanography, e.g.
Hydrostation S in the Sargasso Sea and Ocean Station PAPA in the Northeast Pacific, heralded
the next stage in the history of open-ocean SOs. Although these time-series stations, regularly
sampled by research vessels, were originally established to understand how meteorological
forcing affects seasonal and interannual variability in hydrography, the value of regular, repeated
sampling soon became evident to a broader range of scientists. This encompassed an emerging
interest in fisheries management and the recognition that regular monitoring could assist in
improved management of stocks. Complementary programmes were soon added to investigate,
for example, the flux of sinking material, nutrient cycling and the interactions between trophic
levels. At about the same time, an early pioneer in the field of biological SOs, the Continuous
Plankton Recorder (CPR) survey, was established, providing spatially and temporally resolved
information on plankton abundance.

Numerous additional SOs have been established in the intervening 50 years, many of which
have been able to maintain near-continuous observations. The advent of new technologies for
autonomous and remote ocean sampling have always driven SOs forward, so that time-series
stations are now joined by a veritable arsenal of observing systems: satellite ocean colour,
moorings, automated Ferrybox and Ship of Opportunity systems, gliders and profiling floats.
The motivation for SOs has also changed since their inception, although more subtly than the
technology has, from a desire to acquire basic understanding of the ocean’s state and variability,
to a more nuanced need to understand this variability in the context of increasing pressure on our
oceans in the form of climate change, overfishing and eutrophication.

Carbon dioxide (CO2) emissions continue to rise at a rate of approximately 2.5–3% year on
year [4], which is at the upper end of projected emissions in Intergovernmental Panel on Climate
Change (IPCC) scenarios [5]. Details of the ocean’s role in modulating the atmospheric inventory
of CO2 and feedback effects on marine biota remain uncertain. The predicted effects of climate
change include an increase in stratification, which would further limit the vertical supply of
nutrients, which in subtropical regions could result in decreased primary production [6]. The
oligotrophic gyres are thus expected to expand, further reducing global productivity. In subpolar
regions, increased stratification may result in an earlier alleviation of light limitation, extending
the phytoplankton growth season to earlier in the year [6]. Changing temperatures also directly
affect many physiological processes, and metabolic rates generally increase with increasing
temperature [7]. Phytoplankton community structure is expected to shift towards dominance by
smaller functional types that thrive in warm, relatively nutrient-poor waters [8]. This could have
knock-on effects for nutrition and food availability for higher trophic levels, including fish stocks.
Additionally, smaller phytoplankton are less efficient at exporting carbon from the surface to the
deep ocean [9], thus altering food supply to the mesopelagic and benthic fauna. However, there
is some evidence that the range of N2-fixing organisms may increase with enhanced stratification
[10] and can contribute significantly to sinking organic carbon flux [11]. Rising temperatures
would also increase remineralization in the mesopelagic zone, further reducing the amount of
carbon transferred to the deep ocean and resulting in a positive feedback loop with atmospheric
CO2 concentration [12].
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The increase in atmospheric CO2 also leads directly to ocean acidification, by increasing the
concentration of dissolved CO2 (a weak acid) in seawater. Ocean pH is currently approximately
0.1 units lower than in the pre-industrial era and is forecast to decrease by a further 0.2–0.3 units
by 2100 [13]. Many organisms with a carbonate substrate, e.g. coccolithophores, foraminifera and
corals, have shown a reduction in calcification rates under experimental high-CO2 conditions,
although there have also been several laboratory studies that showed no response or a positive
response to artificial ocean acidification [14]. Laboratory and field experiments also demonstrate
that the photosynthetic rates of non-calcifying organisms do not respond to increased CO2
conditions and N2-fixing organisms may exhibit increased rates of carbon and nitrogen fixation
under elevated CO2 [14].

An additional effect of climate change on ocean biology is deoxygenation, which is driven by
the decreased solubility of gas in warmer water and a reduction in ventilation due to increased
stratification. Model predictions indicate a reduction in the ocean’s dissolved oxygen content of
approximately 1–7% by 2100 [7], and, although the global mean oxygen concentration remains
above anoxic levels, some regions become hypoxic or suboxic. For some periods and locations,
predicted oxygen concentration drops below 20 µmol kg−1, which is lethal for most higher marine
organisms [15].

These predictions for the response of ocean biology to climate change are based on predictive
models, themselves developed from our conceptual understanding of the interactions between
atmospheric and oceanic forcing and the marine ecosystem. This understanding owes its
existence, in part, to SOs, which provided the multi-year measurements of seasonal and
interannual variability necessary to pick apart the roles of forcing and response. Many of our
predictions about the response of ocean biogeochemistry to climate change are based on using
the observations of contemporary variability as an analogue for future responses. For example,
we may observe that, over several years, warmer-than-average summers lead to lower-than-
average phytoplankton abundance, and we may extrapolate from that observation to suggest
that climate change will result in reduced phytoplankton populations. SOs have provided the
means by which we can first develop such hypotheses and then test them (provided of course
that time series of observations are maintained). These observations of forcing and response, and
repeat measurements of biological processes and parameters, have enabled the development and
validation of biogeochemical models, including global coupled models run under climate change
scenarios, which are included in the IPCC assessment for the first time in 2014 (to be published
on www.ipcc.ch). Maintaining SOs into the future is critical for monitoring ocean biology and
biogeochemistry, and detecting future changes in response to climate warming, in addition to
continuing to provide fundamental insights into the functioning of ocean biogeochemistry.

In this paper, I focus on open-ocean SOs with a substantial biogeochemistry component.
Companion papers in this Theme Issue cover the UK and Ireland’s coastal SOs [16] and
open-ocean physical oceanography-centred SOs [17].

2. The unique perspective offered by sustained observations
The persistence of many SOs over multiple decades, despite constant threats from funding
squeezes, pays testament to the value of the data obtained from them. The unique perspective that
SOs offer centre principally around one theme: variability. SOs provide invaluable information on
the temporal (and, in some cases, spatial) variability in ocean biogeochemistry on a wide range of
time scales, from the sub-seasonal to the decadal. Quantifying the characteristics of this variability
is crucial for several reasons: firstly, to elucidate the controls on a particular parameter or process
(i.e. if we do not know how it changes, we cannot figure out what is affecting it, or what effect it
has); secondly, to understand the typical range of variability (i.e. a handful of observations cannot
tell us what is ‘normal’); and finally, to identify more readily an anomalous event or long-term
trend (i.e. without a baseline, we have no way of identifying what is ‘unusual’). A final benefit
of many SOs is that they provide a focal point for concerted community effort, often on multi-
disciplinary topics. The ‘build it and they will come’ philosophy [1,18] has borne fruit, owing to
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the clear benefits of exploiting pre-existing infrastructure where core measurements are reliably
sampled. The resulting reduced costs, combined with the accumulation of data and knowledge
of the oceanography and biogeochemical functioning of a region, have facilitated many studies
(specific examples of ancillary studies that used SO as a platform are detailed in later sections).

Variability is ubiquitous in the biological properties of the ocean, which makes the
interpretation of data from a single cruise or small set of observations extremely tricky. Have
we captured a true representation of the process of interest? Or were the measurements affected
by some unusual event? And how would we know anyway? Variability is sometimes perceived
as a problem in interpreting oceanographic data, and indeed it can be if only a handful of
observations are available. However, thanks to the time series supplied by SOs, variability
becomes a ‘window’ into understanding what controls a particular parameter or process. By
making repeat observations over the course of a year, or over several years, the relationships
between forcing and response may be revealed.

Because ocean biogeochemistry is highly variable on a multitude of time scales, establishing
what is ‘normal’ for a particular location would be nigh on impossible without repeated,
sustained observations. Multiple years of data are required to characterize the typical range in
seasonal amplitude and timing of events. It seems obvious to modern oceanographers with the
benefit of hindsight that just 1 or 2 years of data are insufficient to determine a typical seasonal
cycle or characterize interannual variability. However, it is worth reminding ourselves here of
how this understanding arose: through SOs, which, by providing long time series, permitted us
initially to comprehend, and finally to quantify, the large variability in ocean biogeochemistry.

The ability to establish a baseline of what is ‘normal’ is also critical to our ability to recognize
an unusual event or long-term trend, e.g. to separate natural variability from anthropogenic
forcing. This requires long time series—many years to decades, depending on the process of
interest. For example, to identify a particular year as ‘normal’ or ‘anomalous’, a decade or more of
observations is needed, covering a large range of possible forcing conditions (e.g. warm years and
cool years). If the response to a decadal climate oscillation, such as the North Atlantic Oscillation
(NAO) or Pacific Decadal Oscillation (PDO), is of interest, then 20–40 years of data may be
necessary to characterize the conditions of a positive and a negative phase [19,20]. For detecting
climate change-driven trends in primary production, 30–40 years of data (or more) are needed to
distinguish the natural variability on interannual to decadal time scales from the long-term trend
[21]. Although the length of time series needed to define the baseline, and thus identify anomalies,
depends strongly on location (because some regions have strong natural variability, others weak),
it is clear that SOs maintained over multiple decades are absolutely key to understanding the
operation of the ocean’s biogeochemistry and its susceptibility to change.

3. Key breakthroughs from sustained observations
In the past 30 years or so, SOs have wrought a revolution in biological oceanography. To
put this into perspective, I present an example based on chlorophyll concentration. Between
1773 and 1997, chlorophyll was measured in situ at a total of approximately 300 000 stations
(as reported in the World Ocean Database). Although this is a huge number of data points,
inspection of the data distribution in figure 1a shows that large parts of the ocean have less than
five measurements and some have none at all. Vast tracts of the Southern Ocean, for example,
have zero or only one data point in the database. It would be difficult to ascertain even the
broad-scale distribution of chlorophyll concentration from this dataset, and one would struggle
to deduce any information on temporal variability on the large scale. The advent of regular
sampling at SO locations began to reveal detailed information about the seasonal (and eventually
interannual) variability in chlorophyll concentration, as shown in the example for the Hawaii
Ocean Time-series site (HOT; figure 1b). Information on the temporal variability of chlorophyll
allowed significant advances in our understanding of the range of variability and the physical
and biological factors that control chlorophyll concentrations. However, time-series station data
cannot provide any information on the spatial variability in chlorophyll, except at the largest
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Figure 1. (a) Density of in situ surface chlorophyll concentration measurements collected between 1773 and 1997,
extracted from the World Ocean Database at http://www.nodc.noaa.gov/OC5/SELECT/dbsearch/dbsearch.html; data collected
from time-series stations, shipboard profiles and under-way systems, and gliders. (b) In situ chlorophyll concentration
from the top 10 m collected at the Hawaii Ocean Time-series site every two to four weeks between 1989 and 2012;
acquired from http://hahana.soest.hawaii.edu/hot/hot-dogs/. (c) Global chlorophyll concentration (mg m−3) at 9 km
spatial resolution averaged between April and June 1998 acquired by the SeaWiFS satellite; data downloaded from
http://oceancolor.gsfc.nasa.gov/. (Online version in colour.)
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scales (e.g. the differences between ocean basins through a comparison of HOT and the Bermuda
Atlantic Time-series Study site; BATS). The arrival of satellite-derived chlorophyll data in the late
1970s prompted another revolution in biological oceanography as the dramatic spatial variability
in chlorophyll on mesoscales was revealed (figure 1c) and the provision of high-resolution, global
images of chlorophyll on a daily basis led to step changes in our understanding of, for example,
physical–biological interactions, mesoscale processes and the effect of climate oscillations, such as
El Niño–La Niña (see [22] for a review). Each of these daily satellite chlorophyll images contains
approximately 3 million non-cloudy pixels, i.e. we are now acquiring 10 times more chlorophyll
measurements every day than were obtained in the entire 200 years prior to the advent of ocean
colour satellites.

Although satellite-derived chlorophyll data occasioned an order-of-magnitude increase in
the quantity of data, they have not negated the need for in situ SOs, firstly to provide the
calibration and validation data to ensure the quality of satellite algorithms, and secondly
because there are many properties that cannot be derived from satellite or other remotely
sensed observations. Indeed, there is a growing appreciation of how the synthesis of
remotely sensed data, in situ observations and model studies can elucidate key processes in
biological oceanography.

This rapid increase in the amount of data available from SOs has enabled some significant
breakthroughs in biological oceanography. Here, I highlight four areas where I believe that SOs
have made the key contributions to our current understanding. For each highlighted area, space
constraints allow only a handful of results from many possible examples to be described, but
hopefully these serve to illustrate the diversity of science being generated by SOs, both from UK
programmes and worldwide.

(a) Variability
The widespread introduction of SOs allowed the first glimpses into the extraordinarily large
seasonal and interannual variability in ocean biogeochemistry. The issue of variability in SO
datasets has in turn vexed and benefited users, who on the one hand face issues such as separating
temporal from spatial variability, and on the other can take the opportunity to investigate
interactions between ocean physics and biology.

The fundamental role of SOs in driving our understanding of variability is illustrated by
the example of the El Niño phenomenon. El Niño events in 1972 and 1976 prompted the
establishment in 1982 of an SO programme of tri-weekly sampling at shore stations off Peru
and the Galapagos Islands and quarterly shipboard transects. This proved to be prescient,
as a large El Niño developed in 1982/1983. The repeated physical, chemical and biological
measurements allowed aspects of the earlier conceptual models of El Niño effects to be tested
with observations for the first time. In the case of ocean biogeochemistry, increased sea surface
temperature resulted in nitrate concentrations and primary production that were lower than
‘presumably normal’ [23]. Note the need to preface this observation with ‘presumably’; a lack
of quantitative time-series data made it difficult to define ‘normal’, emphasizing again one of
the key benefits of SOs. The anomalous nature of the biological situation and link to decreased
populations of seabirds, mammals and commercial fish species was difficult to establish owing
to the lack of phytoplankton time-series data prior to 1982. The Tropical Atmosphere Ocean
array was then established in 1994, although biological sensors were not added until 1997, at
the same time that the ocean colour instrument, SeaWiFS, was launched. This again proved to
be fortuitous, as a very strong El Niño followed by a La Niña occurred almost immediately. The
basin-scale satellite data provided for the first time an insight into the Pacific-wide biological
response to El Niño events. It was immediately recognized that ‘the description and explanation
of these dynamic changes would not have been possible without an observing system that
combines biological, chemical and physical sensors . . . with remote sensing of chlorophyll’ [24,
p. 2126].
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The same sentiment holds true for our understanding of biology’s response on sub-seasonal to
decadal time scales to many other forcings—whether a local-scale response to mesoscale features
[25] or changes in wind mixing or heating [26], or a basin-scale response to a shift in the phase
of a major climate oscillation [27,28]. In UK waters and across the North Atlantic, the CPR
dataset has led the way in defining the basin-scale response of lower trophic levels to interannual
and decadal variability [29]. The NAO and Atlantic Multidecadal Oscillation have been linked
to multi-decadal variability in phytoplankton and zooplankton abundance through changes in
ocean physics [29–31], with corresponding knock-on effects up the food chain to fish larvae [32].
At BATS, the relationship between NAO phase and zooplankton biomass, via the intermediary
steps of changing temperature, stratification and primary production, has been clarified thanks to
decades of repeat observations [33]. In the Pacific, SOs have established that the phase of the PDO
is linked to the timing of the phytoplankton bloom [34] and changes in both the phytoplankton
and zooplankton community structure via changes in ocean circulation [35]. The links between
changes in stratification, nutrient fluxes, primary production and plankton assemblages driven by
climatic variability, including El Niño events, have been elucidated by studies at HOT [36,37]. In
short, SOs have enabled tremendous progress in elucidating physical–biological interactions [38],
basin-wide differences in response to similar basin-wide forcing [39] and long-term variability in
ecosystem structure [40].

A multitude of additional examples from throughout the world’s oceans could be included
here, but hopefully this small subset of results illustrates the revolution in our knowledge of
the biological response to natural variability that SOs have enabled. Without long time series of
repeated measurements, we simply would not know what is normal and what is not.

(b) Trophic dynamics
One of the most influential studies in biological oceanography stems from the earliest days of
SOs based at weather ships. Harald Sverdrup’s observations during the spring of 1949 of water
column properties and the phytoplankton population led to his seminal ‘critical depth hypothesis’
to explain the conditions leading to the onset of the spring bloom [3]. Refinement of Sverdrup’s
theory has continued since, including the use of years of data from a coastal station (L4 in coastal
waters close to Plymouth Sound, UK) to suggest that some phytoplankton species can bloom by
escaping control by microzooplankton through predator avoidance strategies [41]. Argo floats
equipped with bio-optical sensors have also been used to address the concurrent changes in
physics and chlorophyll concentrations in the transition to bloom conditions [42]. The ability to
make repeated observations through an entire seasonal cycle is one of the primary advantages of
an SO and which continues to be exploited to provide insights into the interactions within and
between different trophic levels of the marine ecosystem.

Another classic conceptual model that SOs were central in developing and testing is the
‘match–mismatch’ hypothesis [43], which states that prey availability during critical periods
of predator development controls their survival, so that mismatches in the timing of the
phytoplankton bloom and larval spawning can later affect adult populations. Studies combining
SOs of satellite chlorophyll concentration and fishery surveys have found that delayed
phytoplankton blooms can affect the survival of haddock juveniles [44] and the timing of shrimp
egg hatch [45]. In the North Sea, decades of data from the CPR survey revealed that the timing of
the peak abundance of different functional groups of phyto- and zooplankton changed at different
rates so that a mismatch in trophic linkages occurred [46].

Multiple years of SO data enable the full range of trophic links to be investigated; for example,
at BATS the relationships spanning the size range from bacterioplankton to zooplankton have
been established [47]. Similarly, at HOT, the repeated sampling has allowed the interactions
between nano- and picoplankton populations, and the coupling to mesozooplankton, to be
investigated [48]. SOs at Long Term Ecological Research stations in the West Antarctic Peninsula
found that the dominant grazer in the food web switched between salps and krill on interannual
time scales [49]. This kind of detailed information on trophic interactions and food web structure
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would be difficult to capture without repeated observations over many seasons and years, only
possible from SO platforms.

SO programmes are often a focal point for the oceanographic community, and so process
studies are frequently based around them that do not necessarily require the repeated nature
of SOs, but nevertheless lead to key discoveries. For example, the Atlantic Meridional Transect
(AMT) programme has played host to many ‘visiting scientists’ on its cruises, resulting in
improved understanding of the role of the ocean’s smallest denizens. Small phytoplankton had
been thought to provide a constant background level of primary production, but data collected
on AMT cruises demonstrated that much of the variability in low-productivity regions is driven
by nanoplankton [50], and indeed nanoplankton can contribute 30–50% of carbon fixation [51].
Additionally, the depth-integrated biomass of bacteria is now understood to be equivalent to
the picoplankton [52], and control of the bacterial population is by grazing by nanoplankton,
themselves less abundant than picoplankton although their productivity is comparable [53].
The discovery that unicellular cyanobacteria are able to fix nitrogen and are abundant enough
to play a significant role in the global nitrogen cycle also came from a project ‘piggy-backing’
on an SO’s core programme, this time at HOT [54]. This handful of examples hopefully
serves to illustrate the enormous breadth of understanding gained of various aspects of the
marine food web through SOs, such as the importance of unicellular nitrogen fixers to nitrogen
biogeochemistry, the heterotrophic nature of nanoplankton and insights into the mechanisms
underlying phytoplankton bloom phenology.

(c) Ocean biology’s role in the global carbon cycle
SOs have played a central part in elucidating the role of ocean biology in the carbon cycle,
from air–sea CO2 fluxes to deep-ocean carbon sequestration. Even small changes in the
remineralization of organic carbon in the ocean can have large consequences for atmospheric CO2
concentrations [12], so understanding the magnitude and variability of the biological contribution
to the oceanic carbon sink, and the processes that control it, is critical to assessing the current and
future fate of atmospheric CO2.

Ships of opportunity that regularly cross the Atlantic equipped with pCO2 sensors have
quantified the seasonal air–sea flux of CO2 and documented a reduction in the North Atlantic
CO2 sink [55,56]. The biological drawdown of CO2 is driven by primary production, specifically
net community production (the balance between primary production and respiration). Primary
production can be estimated for the surface ocean using satellite data, although perhaps with
limited reliability, at least in subtropical regions [57]. These synoptic estimates of global primary
production over multiple years have revealed substantial interannual variability in global
production, potentially driven by stratification changes on the large scale [58], although a recent
reassessment suggests that this direct link does not hold on the local scale [59]. Variability in
upper-ocean productivity has long been assumed to drive variability in carbon export into the
interior; however, a paucity of time-series data of upper-ocean export makes the causal linkages
hard to discern. An exception is at BATS, where repeated ship-based observations of carbon
export have been used to link changes in the phytoplankton population to variability in the
particulate organic carbon (POC) flux from the surface to the deep ocean [60].

The next stage of the transfer of carbon to the deep ocean, i.e. the journey of sinking
particles through the mesopelagic zone, is almost entirely unsampled by SO platforms owing
to technological difficulties, although promising new developments in autonomous sampling
will undoubtedly eventually be able to address this data gap [61,62]. There is, however,
substantial information on the quantity and quality of the organic material arriving in the
deep (more than 2000 m) ocean and to the seafloor thanks to SOs. Prior to the mid-1980s,
the deep ocean was considered to be a fairly unchanging environment, without significant
seasonal or interannual variability. However, the discovery of bursts of sinking material arriving
on the seafloor dispelled that myth [63]. Moored sediment traps also revealed a striking
degree of temporal variability in deep carbon flux [64,65]. The material collected by deep
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traps has allowed investigation of the changing freshness, composition and organic matter
content of material reaching the deep ocean, which has been linked to the efficiency of the
biological carbon pump [66,67] and the biodiversity and size structure of benthic fauna [68,69].
Although some studies have made the link between variability in carbon sequestration fluxes
and upper-ocean processes [11,70,71], consistent causal relationships remain elusive. Hence, our
understanding of ocean biology’s role in the carbon cycle, while advanced significantly by SOs,
remains incomplete.

(d) Biogeochemical modelling
Since the earliest days of biological modelling, SOs have been critical to both the development and
validation of models. A series of surveys carried out at Georges Bank (off Nova Scotia) provided a
handful of measurements from which in 1946 Gordon Riley was able to develop a simple model of
phytoplankton biomass [72]. However, applying the same model to data from Woods Hole proved
less successful [73], emphasizing the need to make repeat observations at multiple locations in
order to develop robust models.

Fast forward 50 years and the data collected from SOs during the Joint Global Ocean Flux
Study (JGOFS) era plus the advent of ocean colour satellites spurred on the development of
sophisticated biogeochemical models that included representations of phytoplankton community
structure, zooplankton grazing, carbon export and remineralization [74]. Models were able to
move beyond the simple NPZD (nitrogen–phytoplankton–zooplankton–detritus) formulation,
pioneered by Mike Fasham based on SO measurements [75], and include explicit representations
of phytoplankton size and/or community structure [76,77], including nitrogen fixers [78] and
calcifying phytoplankton [79]. As an example, data on zooplankton production and grazing rates
from BATS and HOT enabled the development of more explicit phytoplankton loss terms [80].
The controls on, and fate of, organic matter exported from the upper ocean and sinking through
the mesopelagic zone are still not well understood from a mechanistic standpoint, but SOs have
nevertheless provided sufficient data to parametrize some of these processes [81,82].

SOs have a key role to play, not only in model development, but also in model validation.
The availability of synoptic, high-resolution data from ocean colour satellites has allowed the
spatial and temporal variability in global biogeochemical models to be validated [83]. In situ
data from time-series stations are also a rich source of validation data and have led to model
intercomparison studies, where the abilities and shortcomings of different parametrizations can
be tested [57]. The data from the CPR survey have also been used to assess the decadal variability
simulated by models and the links to climate oscillations [84].

In the past approximately 5 years, increased computing power has permitted increasingly
complex models to be run at global scales. For example, a model that represents 10 specific
plankton functional groups is available [85]. Trait-based models that include many tens of
phytoplankton ‘ecotypes’, which are randomly assigned nutrient and light affinities from a
defined range, allow studies of emergent ecosystem structure [86]. Results from these models
have been validated using multiple sources of SO data, particularly from the AMT programme.
Global models run in hindcast mode simulate the ocean over the past approximately 50 years
and so allow exploration of observed physical–biological interactions and an extension of time-
series data into the recent past. Hindcast runs have been used to investigate the response of
phytoplankton productivity and bloom timing to the NAO via its influence on mixed layer
depth and wind stress, thus elucidating patterns observed in the relatively short satellite ocean
colour time series [87,88]. These global models have also been run under future global warming
scenarios, and in 2014 biogeochemical model output will be included for the first time in the
IPCC assessment (to be published at www.ipcc.ch). Multi-model ensembles of pre-industrial and
future states of the ocean will permit the assessment of the response of ocean biogeochemistry to
climate change.

The field of biogeochemical modelling has been immensely enriched and enabled by
SOs. Without the repeated observations to define the seasonal and interannual variability in
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biogeochemistry, the wealth of data necessary to investigate forcing and response mechanisms,
and the targeted study of specific processes at SO sites, the field of biological modelling would be
very much the weaker.

4. What is the future of sustained observations in biogeochemical
oceanography?

SOs have clearly already enabled significant advances in biological oceanography. However,
there remain important future areas of investigation where SOs will be crucial. These principally
centre on the response of ocean biology and biogeochemistry to ongoing climate change and its
manifestations in warming, acidification and deoxygenation. In order to identify climate change-
driven responses, we need to quantify the natural variability so it can be separated from any
long-term trend. This necessarily requires long time series of data that adequately resolve the
principal components of the natural variability (i.e. seasonal, interannual and/or decadal). For
ocean primary productivity, a ‘long’ time series means of the order of 30–40 years of monthly
data to distinguish a climate change trend from natural variability [21,89]. Many SO programmes
are now nearing (or have exceeded) this length, implying that the time is right to begin exploiting
SOs for evidence of climate change effects.

In parallel, advances in technology are enabling new processes and parameters to be measured
from SO platforms. New sensors, combined with an increase in lifespan, robustness and accuracy
and a decrease in size and power consumption, are permitting an ever broader range of biological
variables to be used for SOs. Some existing platforms are starting to be exploited for biological
SOs and need to be integrated with existing SOs, such as gliders and bio-Argo floats, and new
platforms are being developed, e.g. the Carbon Flux Explorer [90] and Wave Gliders [91]. These
developments go hand-in-hand with new approaches to analyse, visualize and interpret the
ever-increasing quantities of data being generated by SOs.

(a) Detecting climate change
In the Introduction, I summarized some of the predicted responses of ocean biology to climate
change, including ocean warming, acidification and deoxygenation. There is now a need to
determine and detect, where possible, the ongoing effects of climate warming, not only to
satisfy our basic curiosity, but also to test model predictions of future change (and so refine
and improve them, where necessary). The only way to address this is through analysis of the
long time series of data provided by SOs. We need to assess the effect of climate change on
basic biogeochemical properties (such as chlorophyll concentration, primary production, oxygen
and nutrient concentrations), ecosystem indicators (phytoplankton and zooplankton community
structure) and components of the global carbon cycle (air–sea CO2 flux, sinking flux of carbon
from the surface ocean and sequestration efficiency). For some of these properties, some SOs
already provide the repeated, sustained monitoring required for climate change detection, while
for others the technology is still in development (see next subsection).

For all these parameters, an assessment of climate change effects requires first a quantitative
understanding of the range in natural variability (and forcing factors) on time scales from seasonal
to decadal (to include, for example, the response to NAO phase). Without this, it is not possible to
determine whether a signal is related to natural variability or attributable to climate change. The
shorter the time series available for analysis, the more acute this problem becomes. In addition,
gaps in time series or changes in instrumentation, sample collection or analysis protocols can
adversely affect the timely detection of climate change signals [92].

In order to advance our understanding of climate change effects on ocean biology,
we need to characterize, quantify and understand contemporary seasonal, interannual and
decadal variability and the biophysical interactions that drive it. This is essential to rule
out misinterpreting a response to natural variability as a climate change signal. Greater
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understanding of forcing and response will also aid in improving model representation of ocean
biology, which feeds back into helping us understand how variability arises [87,93].

The timely detection of climate change effects also requires long, consistent and gap-free time
series of data, as a long time series is needed to distinguish the effects of natural variability
from a long-term trend. Ideally, the time series would be sufficiently long to encompass multiple
phases of any oscillatory natural variability that is experienced at a location, e.g. long enough to
cover multiple El Niño–La Niña cycles or positive and negative phases of the NAO. A consistent
time series is required to ensure that apparent trends or regime shifts are not due to changes
in instrumentation, sampling design or analysis protocols. Either these factors must remain the
same for the duration of the time series (as is the case for the CPR survey) or the effect of changing
these factors on the mean and variance must be fully characterized and taken into account when
investigating trends [94]. Gaps in a dataset introduce a related issue—how can one determine
whether an observed change either side of a data gap is due to a long-term trend or the effect of
some unobserved process? The problem is particularly acute when the gap is associated with a
change in instrumentation and no cross-calibration is possible, as was the case for breaks between
successive satellite ocean colour missions in the 1980s and 1990s. Any kind of discontinuity (from
a statistical standpoint this is any event that results in a change in the mean and/or variance
of a time series) dramatically increases the length of time series needed to detect a long-term
trend [92].

Analysis of biological SO data for long-term trends has thus far been relatively rudimentary
compared to the statistical techniques that have been applied to other geophysical time series.
For example, change point analysis for detecting regime shifts have been only sparsely applied to
biological SO data [95,96]. Another approach, optimal fingerprinting, is widely used in physical
atmospheric and oceanographic applications [97–99], but putative long-term trends in biological
SO data have not been tested using this methodology, or many of the others developed in
climatology studies [100–102]. The slow uptake of statistical approaches is probably due in part
to the aforementioned issues with the brevity of, and gaps and inconsistencies in, the time
series, which seem to be more acute in biological than in physical SO datasets. Nevertheless,
ideally a formal attribution study should be carried out before an observed trend is attributed
to anthropogenic climate change, to exclude the possibility of mistaking a response to natural
variability as a long-term trend.

The role for SOs here is clear: long-term, consistent, frequent observations of ocean
biogeochemistry are required to make progress in understanding one of the primary challenges
affecting the social and economic conditions of the human population—the impact of climate
change on our oceans and its feedback into the whole Earth system.

(b) New process understanding and new technology
Our ability to observe specific processes with SO platforms is developing hand-in-hand with
new technology. Innovations in automated sampling technology are opening up new research
avenues, thanks to the ever-increasing range of parameters that can be measured autonomously
and improvements in the lifespan and reliability of the sensors.

Sustained monitoring of phytoplankton and zooplankton species information, including
genetic information, is now possible [103–105]. A few examples illustrate the diversity of research
already under way with this technology, such as: real-time monitoring of coastal waters for
harmful algal blooms [106]; investigation of the seasonal dynamics of Synechococcus in relation to
nitrogen supply [107]; examination of high spatial variability in zooplankton around upwelling
fronts [108]; and genetic analysis of material from the CPR [109]. Future research topics exploiting
this technology could potentially centre on the seasonal dynamics and species succession of
the phytoplankton and zooplankton community at open-ocean time-series stations. At sites,
such as the Porcupine Abyssal Plain, that include sediment traps and an upper-ocean mooring,
community succession data could be explored in the context of variability in upper-ocean physics
and links to deep carbon flux. In parallel, satellite-derived estimates of phytoplankton community
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structure have been developed that, although no consensus yet exists about the ‘best’ approach
[110], may mature to the point that they could be used routinely (as is satellite chlorophyll or
primary production data) to investigate large-scale variability. A recent modelling study suggests
that climate change effects will be more pronounced at the phytoplankton population level
(within functional groups) than in bulk primary production [111]. Therefore, monitoring species
or ecotype composition may be an effective route to detecting long-term change in ocean biology.

Autonomous vehicles that sample with high vertical and/or temporal resolution, such as
gliders and bio-Argo floats, have the potential to revolutionize our understanding of subsurface
and (in the case of gliders) small-scale biophysical interactions. Gliders and bio-Argo floats
may be equipped with temperature, salinity, chlorophyll fluorescence, oxygen, backscatter and
light sensors and sample at vertical resolutions of up to approximately 0.5 m. In the case of
gliders, approximately four dives (i.e. eight profiles) to 1000 m depth can be completed per
day. While satellite ocean colour data have enhanced our understanding of daily variability
in surface chlorophyll, gliders and floats have the potential to extend this knowledge by
observing the subsurface phytoplankton populations and their evolution over sub-daily time
scales. The lifespan of gliders and floats makes them suitable for studying seasonal variability
in biophysical interactions in unprecedented detail, e.g. the processes surrounding the initiation
of the phytoplankton spring bloom, a subject that is back in the spotlight and the subject of much
debate (e.g. [112–114]). The high vertical resolution of sampling will also permit investigation
into, for example, phytoplankton thin layers (e.g. [115]) and the evolution and erosion of the
deep chlorophyll maximum. There is also great potential for continued improvements to optical
nutrient sensors [116], in addition to future development of new microfluidic sensors, e.g.
nutrients [117] or genetic analysis [118], suitable for long-term deployment on gliders, floats or
fixed moorings.

New technology for SO platforms may also help us to address a currently large gap in
our understanding of the ocean’s carbon cycle: the remineralization of sinking organic carbon.
Currently, we are unable to make direct autonomous measurements of most rate processes,
including upper-ocean export and mesopelagic remineralization of organic carbon, leaving a large
gap in our observing capabilities between primary production by phytoplankton at the surface
and the carbon flux captured by deep sediment traps. However, this is a crucial issue for the
global carbon cycle, as even small changes in the characteristics of mesopelagic remineralization
can have a substantial influence on atmospheric CO2 concentrations [12]. Recently developed
technology based on Argo floats that provides estimates of POC flux and information on the
characteristics of sinking particles [62,90] has the potential to supply time series of data over
many months on variability in carbon flux on sub-daily to seasonal time scales, frequent estimates
of remineralization and high-resolution images of the sinking particles. Oxygen and nutrient
sensors on floats and gliders can also be used to estimate net community production, which is
equivalent to export under steady-state conditions [119,120]. Currently, we have very limited
information on the temporal variability of upper-ocean carbon flux (except from the few ship-
serviced time-series stations, such as BATS and HOT), which restricts our understanding of the
coupling between surface productivity and export events. We also lack adequate data on the
spatial and temporal variability in mesopelagic remineralization to the point that we have a
relatively poor grasp of even the magnitude of variability [121], severely limiting our ability
to define the important processes controlling remineralization rates. Knowledge of the type of
sinking particles is also relevant to understanding controls on remineralization, as different kinds
of aggregates, whole organisms and faecal pellets all have different carbon content, sinking
speed and remineralization potential [122–124]. Thus, an improved ability to monitor carbon flux
would lead to a step change in our understanding of a fundamental part of the global carbon
cycle, which would also lead to more realistic parametrizations of remineralization in global
biogeochemical models.

Improvements in the robustness of sensors and platforms will also allow us to expand SOs
into harsh environments, such as polar regions. The Arctic is currently one of the most rapidly
changing regions of the global ocean, with increasing temperatures driving rapid loss of sea ice.
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How this will affect the biology and biogeochemistry of the Arctic region is largely unknown.
Sustained monitoring is restricted by the difficulties of operating in the Arctic, namely the
harsh environment, remoteness and sea ice. However, developments that allow gliders and
other autonomous vehicles to operate for sustained periods under ice or in ice melt conditions
could overcome some of these issues. Despite the challenging conditions, intriguing biological
phenomena have been observed in the Arctic, such as large phytoplankton blooms occurring
along the seasonally retreating ice edge, beneath melt-ponded sea ice and in melt holes in
perennial ice [125–127]. Future research priorities in the Arctic should centre on understanding
whether these blooms are ubiquitous, their physical controls, e.g. the interaction between
light and haline stratification, the marine ecosystem structure and how it changes seasonally
as conditions progress from ice-covered to ice edge to open ocean. Importantly, we need to
understand to what extent these blooms contribute to carbon export in the region and the
potential of the Arctic to sequester carbon given its relatively shallow bathymetry. A particular
issue with characterizing the Arctic’s response to climate change is the lack of a baseline against
which to compare observed variability. For example, we will be unable to determine whether
a particular biological phenomenon has newly emerged, or how increased melting may alter
an observed process. However, the combination of new technology that can reliably operate in
difficult conditions and the pressing need to improve our understanding of even the basics of
Arctic biology and biogeochemistry functioning, and therefore improve predictions of how it may
continue to change in the future, should drive forward SOs of this vulnerable region.

(c) Advances in analysis
The next breakthroughs in SOs will be enabled by advances in technology, but will also require
advances in analysis techniques. SO programmes have, in the past, rarely been faced with dealing
with large quantities of data, with the exception of satellite ocean colour data. However, with the
advent of gliders and other autonomous systems that can sample quasi-continuously for weeks to
months, the quantity of data will rapidly increase, bringing with it new challenges in analysing,
visualizing and interpreting the data.

Some SO platforms, such as gliders or autonomous underwater vehicles, provide data that
represent a mixture of spatial and temporal information. Disentangling the spatial from the
temporal variability will require careful analysis and potentially input from other data sources,
such as satellites. For example, a glider patrolling a fixed-point observatory may actually travel
several kilometres in a day and therefore may unwittingly sample a mesoscale feature. If these
data were to be interpreted as purely a time series, spurious conclusions could be drawn about
the appearance and disappearance of intermittent features. A similar problem faces interpretation
of data from any fixed-point observatory. Analyses such as the spatial decorrelation length scale,
assessment of changing water mass characteristics and comparison with satellite data to provide
spatial context will be necessary to distinguish spatial from temporal variability. Combining data
streams, e.g. satellites, gliders and moorings, has the potential to be ‘greater than the sum of its
parts’, providing a four-dimensional dataset; however, analysis and interpretation of the data will
clearly be a challenge.

One area ripe for substantial advances is the combination of SO data with biogeochemical
models. Physical–biological and trophic-level interactions deduced from an SO dataset can be
investigated in a modelling framework, either by running a one-dimensional model in which
forcing factors can be altered and the corresponding response assessed [128,129], or through
exploration of a three-dimensional hindcast model run [87,88]. Provided a model reproduces the
process or phenomenon of interest sufficiently well, its output could be used to plug gaps in the
dataset, e.g. by supplying information on carbon export if that was not (or was not regularly)
measured. Hindcast models can also be used as an extension of the SO dataset to investigate, for
example, responses on decadal timescales. Finally, models can be used to make predictions of
future climate change impacts. These can be used to separate the potential changes occurring due

 on August 26, 2014rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


14

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A372:20130334

.........................................................

to climate change from those due to natural variability, and to provide a means of testing how
different observational strategies may affect the detection of climate change effects.

Some SOs may soon enter the realm of ‘big data’, which will require advanced analytical
techniques. The need for researchers skilled in programming and quantitative or statistical
analysis is not unique to biological SOs, but is worth flagging here as a potential future obstacle to
maximizing the novel results from SOs. Another route to maximizing exploitation of SO data is
rapid open publication of datasets online, permitting meta-analyses of datasets from multiple
SOs and greater uptake of the data by the wider community. Indeed, if an SO programme
wishes to demonstrate the utility of its data, and so justify continued funding, it is in their
best interests to ensure that data are readily available. This also requires specific support for
data management, which is essential to ensuring long-term stewardship and easy access to
quality-controlled datasets.

5. Limitations and challenges
SOs have made substantial contributions to our understanding of ocean biology and
biogeochemistry and will continue to do so through maintenance of existing SOs and
development of new platforms and sensors. There are, however, some challenges and limitations
to SOs, many of which may be overcome with new technology, advances in analysis methods or,
frankly, more investment.

There are many biological parameters and processes that are key to our knowledge of
the marine ecosystem and its role in the Earth system that we cannot currently measure
autonomously. Although ship-serviced time-series stations, such as BATS and HOT, can be
a platform for these observations, the ability to make the measurements remotely from
an autonomous platform would enable the coverage required to understand the large-scale
distribution or variability. Undertaking SOs in remote or harsh environments also poses
problems, including access to and servicing platforms, and poor operating conditions, such
as rough seas, sea ice or heavy marine traffic, including fishing vessels. The development of
new sensors with increased lifespan, reliability and accuracy, combined with the development
of new SO platforms and integration with existing SOs, will, in time, address some of these
limitations, although the future discovery of as yet unknown processes will undoubtedly continue
to add to the list of parameters we would like to measure autonomously!

A persistent challenge for interpreting much SO data (with the exception of satellite ocean
colour in some respects) is the convolution of spatial and temporal variability. As stated in
§2, variability can be a blessing (in that it helps determine the controls on the process under
investigation), but it can also be a curse. Prior to ocean colour satellites, the interpretation of time-
series SO data in the light of a continually evolving mesoscale field proved difficult. Even with
the benefit of satellite data to provide the spatial context, interpreting data from high-resolution
samplers that move through both space and time (e.g. gliders) is extremely challenging. The
temptation is to think of the SO data as a time series, but in many cases the data are actually a
complex interplay of spatial and temporal variability [26,130,131]. Another concern, particularly
with time-series stations, is evaluating to what extent the observations at that location are
representative of a larger region. For example, are the observations made at BATS representative
of the entire North Atlantic subtropical gyre, or only of the Sargasso Sea, or possibly even just a
small corner of the Sargasso Sea? Repeat transects, such as the AMT programme, capture large-
scale spatial patterns but can themselves suffer from a seasonal bias, e.g. cruises may only occur
in spring. This brings with it two issues: first, our understanding of biological processes is limited
to only one period, which may not be typical of the situation in the rest of the year; and second,
multiple years of a repeat transect cannot necessarily be interpreted as a time series. Even though
a series of cruises may occur at the same time each year, it is unlikely that the same point in the
seasonal cycle is captured in each cruise, as temporal variability in ocean biogeochemistry is so
large. In other words, a cruise on 1st April may encounter pre-bloom conditions in one year, the
peak of the bloom in the following year, and post-bloom conditions in the year after that. Satellite
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ocean colour data can help to set the context in these situations by providing information on the
broader spatial and temporal milieu.

An emerging issue with regard to detecting the influence of climate change on ocean
biology is the longevity, consistency and completeness of SO data. Model analyses suggest that
approximately 30–40 years of continuous data are needed to distinguish a climate change trend
in primary production from the background natural variability [21,89]. Some SO programmes are
now reaching (or have exceeded) this length; however, gaps or inconsistencies in the time series
significantly increase the number of years of data needed to detect a climate change signal [92].
Gaps in a time series may arise due to technical failure of an instrument or platform, or due to the
mothballing of an SO programme. Inconsistencies are caused by changes to sampling or analysis
protocols, or a change in instrumentation without adequate cross-calibration. The advantages
of maintaining a consistent time series are clear in, for example, the CPR survey, which has
implemented the same protocols since 1948, providing a hugely valuable dataset. By contrast,
the long gap and change in instrumentation in ocean colour satellites between the demise of the
Coastal Zone Color Scanner (CZCS) in 1986 and the launch of SeaWiFS in 1997 makes direct
comparison of the datasets fraught with difficulties [132,133]. The current threat of another gap
in the ocean colour time series due to the demise of MERIS in 2012 and the now-aging MODIS
instruments raises the possibility of a break in the dataset at a crucial juncture for the detection of
climate change effects on ocean biology.

Finally, an ever-present challenge to SOs is securing long-term funding [134]. Sustained
observing is slow science; it can take years or even decades before the full value and potential of
the data is realized. There is also no doubt that SOs can be expensive, although when considering
costs, the enormous quantity of data obtained by SOs should be borne in mind. For example,
ocean colour satellites come with eye-wateringly large price tags; however, by the end of its
mission, chlorophyll data from SeaWiFS had cost just 0.1 p per pixel. Long-term support of SOs
should not just entail covering the basic maintenance and infrastructure costs. To fully exploit
the rich datasets produced by SOs, considerable resources must also be put into the analysis,
interpretation and dissemination of results, although this aspect of SOs can too easily fall by
the wayside when resources get tight. There seems to be a perception among some funding
agencies that we continue to maintain SOs out of inertia. This attitude must be guarded against by
demonstrating the importance of the observations through rapid, community-wide exploitation
and publication of the results.

6. Conclusion
Slow science, the kind that takes many, many years of consistent data collection, produces ground-
breaking, deeply insightful and immensely valuable science. SO programmes have enabled some
of the seminal hypotheses in biological oceanography to be first developed and then thoroughly
tested. This illustrious history will undoubtedly lead in the future to more innovative results.
The value of SOs to biological oceanography is hard to overstate: without them we would not
understand even the basics of the spatial distribution of ocean productivity, the seasonal evolution
of phytoplankton blooms, how the interactions from physics through to fish lead to variability in
the ecosystem, or the magnitude of organic carbon reaching the deep ocean, to name just a few
examples.

In the near future, SOs will be critical for our ability to detect climate change-driven trends
in the marine ecosystem and as such their enormous value should be evident. However, with
decreasing science budgets, we must remain vigilant to the perception that we maintain SOs out
of inertia. We need to build the recognition that science originating from SOs is of high quality
and increasingly relevant in a changing climate. Open access to rapidly calibrated and quality-
controlled datasets will ensure exploitation by the broadest possible user community and rapid
dissemination of results.

Development of new technologies is opening up new frontiers for biological SOs and with
that comes the need to answer some potentially tough questions, such as: What are the scientific
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questions that we want our SOs to answer? Are our current SOs fit for that purpose? Are they
measuring the right parameters in the right place at the right frequency to address the questions
we want them to answer?

In a time of increasing pressures on the marine environment, SOs are central to understanding
past, current and future changes in ocean biology and to monitoring future responses to climate
change. With many SOs having now accumulated sufficiently long time series to quantify
variability and trends, it would be frankly foolish to allow reductions in sampling or long gaps to
occur. A primary concern for many (including the author) is the looming possibility of a gap in the
satellite ocean colour record, which would introduce a break in a global, daily, spatially resolved,
16+ year time series. If the next global ocean colour sensor (OCLI on Sentinel-3) is not launched
before MODIS-Aqua expires (currently 11 years old, 5 years older than its design lifetime), the gap
could have serious consequences. The same is true of other SOs—if our dedication to maintaining
them falters now, we could well be letting the opportunity to assess climate change effects on
ocean biogeochemistry slip through our fingers.
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