
Saturn’s dynamic magnetotail: A comprehensive
magnetic field and plasma survey of plasmoids
and traveling compression regions and their
role in global magnetospheric dynamics
C. M. Jackman1,2,3, J. A. Slavin4, M. G. Kivelson4,5, D. J. Southwood6, N. Achilleos1,2, M. F. Thomsen7,
G. A. DiBraccio4, J. P. Eastwood6, M. P. Freeman8, M. K. Dougherty6, and M. F. Vogt9,10

1Department of Physics and Astronomy, University College London, London, UK, 2Centre for Planetary Sciences, UCL/Birkbeck,
London, UK, 3Now at Department of Physics and Astronomy, University of Southampton, Southampton, UK, 4Department of
Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, Michigan, USA, 5Department of Earth, Planetary,
and Space Sciences, University of California, Los Angeles, California, USA, 6Department of Physics, Imperial College London,
London, UK, 7Planetary Science Institute, Tucson, Arizona, USA, 8British Antarctic Survey, Cambridge, UK, 9Space Research Centre,
University of Leicester, Leicester, UK, 10Now at Center for Space Physics, Boston University, Boston, Massachusetts, USA

Abstract We present a comprehensive study of the magnetic field and plasma signatures of reconnection
events observedwith the Cassini spacecraft during the tail orbits of 2006. We examine their “local” properties in
terms of magnetic field reconfiguration and changing plasma flows. We also describe the “global” impact of
reconnection in terms of the contribution to mass loss, flux closure, and large-scale tail structure. The signatures
of 69 plasmoids, 17 traveling compression regions (TCRs), and 13 planetward moving structures have been
found. The direction of motion is inferred from the sign of the change in the Bθ component of the magnetic
field in the first instance and confirmed through plasma flow data where available. The plasmoids are
interpreted as detached structures, observed by the spacecraft tailward of the reconnection site, and the TCRs
are interpreted as the effects of the draping and compression of lobe magnetic field lines around passing
plasmoids. We focus on the analysis and interpretation of the tailward moving (south-to-north field change)
plasmoids and TCRs in this work, considering the planetward moving signatures only from the point of view of
understanding the reconnection x-line position and recurrence rates. We discuss the location spread of the
observations, showing that where spacecraft coverage is symmetric about midnight, reconnection signatures
are observedmore frequently on the dawn flank than on the dusk flank. We show an example of a chain of two
plasmoids and two TCRs over 3 hours and suggest that such a scenario is associated with a single-reconnection
event, ejecting multiple successive plasmoids. Plasma data reveal that one of these plasmoids contains H+ at
lower energy and W+ at higher energy, consistent with an inner magnetospheric source, and the total flow
speed inside the plasmoid is estimated with an upper limit of 170 km/s. We probe the interior structure of
plasmoids and find that the vast majority of examples at Saturn show a localized decrease in fieldmagnitude as
the spacecraft passes through the structure. We take the trajectory of Cassini into account, as, during 2006, the
spacecraft’s largely equatorial position beneath the hinged current sheet meant that it rarely traversed the
center of plasmoids. We present an innovative method of optimizing the window size for minimum variance
analysis (MVA) and apply this MVA across several plasmoids to explore their interior morphology in more detail,
finding that Saturn’s tail contains both loop-like and flux rope-like plasmoids. We estimate the mass lost
downtail through reconnection and suggest that the apparent imbalance between mass input and observed
plasmoid ejection may mean that alternative mass loss methods contribute to balancing Saturn’s mass budget.
We also estimate the rate of magnetic flux closure in the tail and find that when open field line closure is active,
it plays a very significant role in flux cycling at Saturn.

1. Introduction

Magnetic reconnection is a process by which stored energy can be explosively released and plasma trapped
in separate magnetic domains can move from one region to the other and intermix. Magnetic reconnection
can be sampled directly and indirectly by observing changes in the topology of the magnetic field near the
reconnection site and by observing the products of reconnection such as magnetotail plasmoids. The
reconnection between the interplanetary and planetary magnetic fields at the dayside magnetopause results
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in the entry of some solar wind plasma, the escape of magnetospheric charged particles, and the transport of
electromagnetic energy to the tail. Reconnection between the open magnetic field lines in the lobes of a
magnetotail causes a reduction in the accumulation of open magnetic field flux [e.g., Dungey, 1961].
Reconnection can also occur between oppositely directed, closed magnetic field lines when they become
strongly stretched. In that case, previously trapped plasma sheet material can be lost downtail into the solar
wind [e.g., Vasyliunas, 1983]. Tail reconnection either of open or closed field lines drives sunward and
antisunward flows, which carry mass and energy toward the dayside magnetosphere and down the tail. The
plasma escaping down the tail as a result of reconnection is on magnetic field lines forming either quasi-
closed magnetic loops, or “islands,” or helical magnetic fields called flux ropes [Schindler, 1974; Hughes and
Sibeck, 1987; Slavin et al., 1989; Birn, 1989]. Collectively, the plasma and magnetic flux making up these
magnetic loops and flux ropes are termed “plasmoids” [Hones, 1976, 1977]. If a spacecraft directly encounters
such structures, the primary signature as measured by a magnetometer will take the form of a deflection
in the north-south component of the field, usually followed by unipolar northward or southward magnetic
field depending upon the location of the spacecraft relative to the flux rope or loop and the x lines that
created it (and on whether the background planetary field is northward, as at Earth, or southward, as at
Jupiter/Saturn) [Slavin et al., 2003a; Eastwood et al., 2005; Li et al., 2013]. The sense of the field deflection tells
us which side of the reconnection x line the spacecraft is on at the time of observation. Tailward moving
events at Saturn are expected to display a southward-to-northward turning of the field (opposite to the Earth
due to the oppositely directed planetary dipole). As we describe later, many plasmoids at Saturn have an
azimuthal/corotational component to their motion in addition to purely radial tailward motion. Plasmoids
have larger north-south dimensions than the surrounding plasma sheet where they form, and this results in
the lobe regions being compressed as the plasmoids move sunward or antisunward [Slavin et al., 1984].
These “traveling compression regions” (TCRs) are readily observable in magnetic field measurements on the
basis of the correlated compression in the total magnetic field and the north-south tilting of the draped
magnetic field [Slavin et al., 1993].

There are two important subcategories of plasmoid signature: flux ropes and loops. Loop-like plasmoids may
be thought of as lossless “magnetic bottles” that transport plasma sheet plasma down the tail. In contrast,
flux ropes are cylindrical magnetic structures of twisted flux tubes with a strong axial magnetic field, peaking
in the center, which must connect either to the lobes of the tail or, if the plasmoid extends across the entire
plasma sheet, to the interplanetary magnetic field (IMF) in the dawn and dusk magnetosheath. These
subcategories of plasmoid structure are important, because they provide clues as to the large-scale structure
of the tail prior to reconnection [e.g., Eastwood and Kiehas, 2014]. For example, at Earth, strong links have
been found between the direction of the IMF By component, large-scale shear in the terrestrial magnetotail,
and the formation of flux ropes there [e.g., Moldwin and Hughes, 1992]. In addition, plasmoids with a helical
flux rope structure lose much of the plasma sheet plasma as they move, with large pitch angle ions and
electrons being lost first. The plasmoid magnetic field can only relax toward its ultimate force-free
configuration as the internal plasma is depleted and the low-beta, strong axial magnetic field region grows
[e.g., Hesse and Kivelson, 1998]. Early studies at Earth [e.g., Sibeck et al., 1984; Moldwin and Hughes, 1992]
noted that most terrestrial plasmoids have a strong “core” field, characteristic of helical magnetic structures.
Later studies went on to successfully model them as “force-free” (i.e., J× B=0) flux ropes, which represent the
minimum energy state of the field [e.g., Lepping et al., 1995]. This flux rope core field has since been shown
to possess up to twice the intensity of the field in the tail lobes [Slavin et al., 1995, 2003b]. Flux ropes have
also been found in the solar wind [Moldwin et al., 1995], the ionosphere and induced magnetotail of Venus
[Russell and Elphic, 1979], and the magnetotail of Mars [Eastwood et al., 2012]. Thus, it would seem that
flux ropes are ubiquitous throughout the solar system. In section 4, we explore whether this is also true of
Saturn’s magnetosphere.

Figure 1 shows a schematic representing the various magnetic field signatures that may arise from spacecraft
traversals through or near plasmoids. Briefly, if the plasmoid is flux rope-like, we would expect to see a
strong increase in the total field strength as the spacecraft passes through (or close to) the center of the
structure. Loop-like plasmoids on the other hand could be identified by a decrease in the total field strength
(which is zero in the exact center of the circular loop-like plasmoid; i.e., it is an O line). However, we note a
strong caveat to this picture, i.e., that the field signature observed is strongly dependent on the trajectory of
the spacecraft through the structure [Slavin et al., 2003b; Borg et al., 2012], as shown in the figure. We discuss
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the implications of this in more detail later (Figure 2). In addition to this, modeling of tail plasmoids by
Kivelson and Khurana [1995] and observation of magnetopause flux transfer events by Zhang et al. [2010,
2012] indicated that it is possible for flux ropes to display a depressed field strength at their center due to the
presence of a significant trapped hot plasma. We have not explored this possibility in this work due to a lack
of continuous plasma data and/or multiple spacecraft passes.

The first in situ hint at reconnection in Saturn’s magnetotail came on the outbound pass of Cassini’s Saturn
orbit insertion maneuver in 2004. Bunce et al. [2005], analyzing magnetic and plasma data, reported evidence
of compression-induced tail reconnection accompanied by hot-plasma injection. The magnetometer
signature at this time was consistent with a dipolarization of the field. Following on from this event, the best
chance to search for evidence of reconnection came in 2006 with Cassini’s tail orbit season. Jackman et al.
[2007] analyzed the magnetometer data for three events, and that work was quickly followed by a
presentation of plasma and energetic particle data for two of those events by Hill et al. [2008]. The events,
interpreted as plasmoid passage, were characterized by small southward followed by sharp northward
turnings of the field, representing tailward traveling structures, and estimates of the speed were on the order
of ~800 km/s. The suggested location of the x line, estimated from plasma velocity data and energetic
neutral atom (ENA) emission suggested to come from the reconnection site, was in the region of ~26.5 RS
(1 RS= 60,268 km), in line with previous estimates by Mitchell et al. [2005], who reported intense energetic
neutral atom (ENA) fluxes emanating from this region. Later, Jackman et al. [2008a] added a further two
events to the catalogue and showed energetic particle information depicting a change of the plasma flow
from the corotation direction to a tailward direction with the passage of a plasmoid. Such deflection of the
plasma flow from azimuthal to radial was also reported by McAndrews et al. [2009], who showed ion velocity
flow measurements from the Cassini plasma spectrometer.

More recently, Jackman et al. [2011] examined the role of plasmoids in flux transport in Saturn’s
magnetosphere. They found evidence of a significant postplasmoid plasma sheet (PPPS), a region where
open flux is being closed following the release of a plasmoid [Richardson et al., 1987]. They estimated that the
average PPPS interval at Saturn closes up to ~3 GWb of flux. From auroral images, it is estimated that
Saturn’s tail contains ~15–50 GWb of flux [e.g., Badman et al., 2005, 2013], and thus, 3 GWb represents a
significant fraction of this. While the calculation of the flux closed in the PPPS is sensitive to the
assumptions about the azimuthal extent of plasmoids, the estimates agree very well with the results of the
global MHD simulation of Jia et al. [2012], who estimated 3.5 GWb of flux closure from a typical
reconnection event at Saturn.

Figure 1. Schematic sketch of spacecraft trajectory through (a) tailward moving loop-like plasmoid, (b) tailward moving
flux rope-like plasmoid, and (c) tailward moving TCR (adapted from Zong et al. [2004]).
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The aim of this paper is to provide a new comprehensive survey of reconnection signatures in Saturn’s
magnetotail, primarily from the perspective of the Cassini magnetometer data but with the addition of
plasma data where appropriate. Since the first observation of a planetward moving dipolarization [Bunce
et al., 2005] and tailward moving plasmoids [Jackman et al., 2007], many questions have arisen regarding the
local properties of the reconnection region (such as magnetic field reconfiguration and plasma flow changes)
and the global impact of reconnection in terms of its role as a flux closure and mass removal method. We
show the statistics of the location of reconnection events and describe the size and properties of plasmoids
and TCRs. For the first time, we probe the interior structure of plasmoids at Saturn to determine the nature of
the magnetic fields inside them. We compare and contrast our observations with those in other planetary
magnetotails and look to the future of exploration of Saturn’s magnetotail. In section 2, we introduce the data
set used in our study. Section 3 includes several case study examples of reconnection events, as well as
superposed epoch analyses showing the average field profiles for reconnection signatures. Section 4
investigates the interior structure of plasmoids, section 5 provides a general discussion, and section 6
summarizes our key results.

2. Data Set and Observations

As introduced above, reconnection events can be identified by changes in the north-south component of the
magnetic field. We have surveyed the data from the Cassini magnetometer [Dougherty et al., 2004] in Saturn’s
tail during 2006, the period where Cassini executed its deepest orbits of the tail, providing us with some of
the best chances to observe the products of reconnection. The coordinate system used throughout this

Figure 2. Schematic of various possible spacecraft trajectories through model tailward moving loop-like and flux rope-like
plasmoids and the field signatures (in KRTP coordinates) that would result. BR is positive above the current sheet, Bθ
is positive southward, and Bϕ is positive in the corotation direction. The various straight line trajectories assume that the
encounters occur in a short time scale compared with the times for dynamical changes of the local magnetosphere.
(After Borg et al. [2012]).

Journal of Geophysical Research: Space Physics 10.1002/2013JA019388

JACKMAN ET AL. ©2014. American Geophysical Union. All Rights Reserved. 5468



paper is the kronocentric radial theta phi (KRTP) system, where the radial component (Br) is positive outward
from Saturn, the theta component (Bθ) is positive southward, and the azimuthal component (Bϕ) is positive in
the direction of planetary corotation. Jackman et al. [2009] discussed the merits of this coordinate system in
detail, particularly emphasizing how it can help to differentiate between plasmoid passage and a wavy
current sheet. This is a Saturn-centric coordinate system, and Jackman and Arridge [2011] showed that the
average Bθ component is small and positive (southward) in the tail during 2006. We are seeking departures
from this “steady state” behavior, and thus, we began by defining a background for the Bθ component by
taking a running average of 1min resolution data over 1 day, similar to the method employed by Vogt et al.
[2010] for Jupiter. From this point, we selected a subset of events for further examination, where the
magnitude of the Bθ component was close to or above background levels and the spacecraft was beyond
15 RS on the nightside. We then selected by eye those events which exhibited clear, unambiguous field
deflections. We additionally required that the Bθ component cross through zero at some point during the
event. The start and end of the event were assigned as the local south/north extrema in Bθ. The sign of the
change in Bθ indicates whether the spacecraft was tailward or planetward of the reconnection x line. As
mentioned in the introduction above, when looking for tailward moving plasmoids or TCRs, we expect a
southward-to-northward turning of the field, as evidenced by a positive-to-negative change in Bθ and vice
versa for planetward moving events.

We used two key methods to differentiate plasmoids from TCRs. First, we inspected the magnetic field
components. Both plasmoids and TCRs yield a change in the Bθ component, although the amplitude of this
change (determined from the local extrema in the north-south component around the central turning) is
expected to be smaller for TCRs than plasmoids (as illustrated in Figure 1). TCRs also display a very
characteristic signature in terms of the total field strength. As illustrated in Figure 1, the smooth tilting in B,
associated with the wrapping of lobe field lines around passing plasmoids, is the key feature which
distinguishes TCRs from plasmoids. Flux ropes also feature an increase in the field magnitude, but for a flux rope,
this increase is very abrupt and is due primarily to the axial field, while the TCR signature is more gradual and
lacks a strong axial field. Second, we took the spacecraft position into account to understand whether the
spacecraft was in the lobes or plasma sheet when observing passing structures. Here the sign and magnitude
of the radial field component can provide clues as to whether the spacecraft is close to the current sheet or is
farther out in the lobes. Additionally, we have supported our analysis with a detailed inspection of data
from the Cassini plasma spectrometer (CAPS), electron spectrometer (ELS), and ion mass spectrometer
(IMS) instruments, where electron and ion populations in the lobes and plasma sheet show characteristic
differences. If the spacecraft is deep in the lobes, we expect to see TCRs rather than plasmoids.

Through our search, we found a total of 69 south-north signatures, which we interpret as tailward moving
plasmoids; 17 TCRs (15 tailward and 2 planetward); and 13 north-south signatures, which we interpret as
planetward moving structures. The “tailward” and “planetward”motion is inferred from the sign of the change
in Bθ. When the CAPS instrument look direction was favorable, we also inspected the plasma flows, and indeed
in the vast majority of plasmoid cases (29/35 for which a flow direction, if not a flow velocity, could be inferred),
there was some tailward component to the flow. However, it was also common for a significant component of
the flow to be in the corotation/azimuthal direction. Nonetheless, for simplicity, we refer to plasmoids with a
south-north field signature as “tailward moving” for the remainder of this paper. There was a single example
(2006 day 261 04:01), where the field displayed a north-south-north turning and the plasma data indicate
an inward flow. We have still classed this example as a plasmoid, because the south-north turning of the field
was dominant (as selected by our automated technique), but such an example warrants further study and
may shed light on the existence of multiple reconnection sites in Saturn’s tail, which may yield such a
combination of field and flow signatures. On average, the amplitude of plasmoids ranged from ~0.61 to 4.2 nT
and the amplitude of the TCRs from ~0.12 to 2.22 nT. All 69 plasmoids had a value of Bθ that exceeded the
background during the event, and 66/69 events had Bθ that exceeded 1.5× the background. Becausewe placed
minimum requirements on the field change associated with our events, it is possible that there are many
smaller-amplitude events in the data that we have not included in our list. Thus, our list represents a select set of
robust events that may represent a lower limit on the occurrence rate of reconnection in Saturn’s tail.

Plasmoid signatures can be somewhat more complicated than TCRs. Sophisticated modeling [e.g., Slavin
et al., 2003a] and multispacecraft data analysis at Earth [e.g., Borg et al., 2012; Henderson et al., 2006] have
revealed the complex topology of the tail post-reconnection and the sensitivity of magnetic field traces to
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the trajectory through plasmoids. Figure 2 illustrates some example
trajectories through model flux ropes and loop-like plasmoids,
along with the corresponding expected magnetic field signatures.
While a bipolar south-north change in Bθ (of varying amplitude) is
common to nearly every encounter with a tailward moving
plasmoid, the sense, magnitude, and duration of the changes in the
radial and azimuthal field components and field magnitude are
highly sensitive to the spacecraft trajectory through the structures.
The Bϕ component in particular is significantly different for loops
and flux ropes.

The date, time, and properties of the plasmoids and TCRs are
provided in Table 1. We have listed the duration and peak-to-peak
amplitude of all events. The duration is defined as the interval
between the local maximum positive (southward) and negative
(northward) excursions in the Bθ component. We note (see
Figure 5c) that the duration as defined from the magnetic field
signature can be shorter than the duration as inferred from the
plasma data, and according to the force-free flux rope model of
Kivelson and Khurana [1995], our definition may underestimate the
plasmoid size by a factor of ~4–8. We note also that occasionally,
the endpoints of the signatures can be uncertain due to either the
presence of multiple local maxima or minima in Bθ or very broad
extrema that smoothly blend into the background tail field.
However, this method of defining the duration by the peak
northward/southward excursions gives a consistent and
reproducible measure of these structures and has also been used in
the analysis of plasmoids at Jupiter [Vogt et al., 2014]. The
amplitude is the total peak-to-trough amplitude in the Bθ
perturbation. Events were also classified in terms of whether they
were observed in isolation, or in pairs or groups, following the
classification employed by Slavin et al. [1993] (hereafter S93) for the
terrestrial tail. “Isolated” events were those observed to be
separated from other events by at least 180min. “Paired” events
were defined as those separated by less than 180min, while
“multiple” events were those in which several TCRs or plasmoids
were observed without a gap of more than 180min between
successive events. We note that this 180min time scale is much
longer than the analogous 30min time scale employed by S93. This
reflects the larger system size and inherently longer time scales for
plasma circulation and reconnection processes at Saturn compared
to Earth. The vast majority of events were observed in isolation.
It is impossible to say with a single spacecraft whether most
reconnection events result in the release of a single plasmoid, or
whether they release many which may, for one reason or another,
be missed by the spacecraft if they travel in relatively narrow
channels downtail. We do however study the paired and multiple
events with particular interest, such as the series of three plasmoids
on day 64 that Jackman et al. [2011] analyzed and the series of four
closely spaced events on day 60 described in section 3.1.

We incorporate both the tailward and planetward moving events
in this section, as the full sample helps toward our understanding
of reconnection recurrence. However, we focus only on tailward
moving plasmoids and TCRs for the subsequent sections. We leaveTa
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the analysis and interpretation of events
planetward of the x line to future work as their
properties and their ultimate fate as they travel
toward the inner magnetosphere warrant a
separate and much more detailed discussion.

The locations of all the events superimposed on
the Cassini’s trajectory during 2006 are shown
in Figures 3a and 3b. As can be seen from
Figure 3a, a view of the equatorial plane from
the north, Cassini’s trajectory over this interval
was largely biased toward dawn, with the
deepest tail passes occurring postmidnight. We
note from Figure 3a that tailward moving
plasmoids are observed at all local times, where
there is spacecraft coverage. A striking point
from Figure 3a is that there is no clear division
in radial distance between the tailward and
planetward observations, other than to say that
planetward moving events are observed within
~50 RS. By analogy with Earth, where a near-
planet x line might be ~30 RE downtail [Imber
et al., 2011], and a distant x line might be
~100 RE downtail [Slavin et al., 1985], we can
scale this (based on the average magnetopause
standoff distances at Earth and Saturn of 10 RE
and 25 RS, respectively) to an expected near-
planet x-line distance of ~75 RS and expected
distant x-line distance of ~250 RS at Saturn. The
latter estimate is far beyond the maximum
downtail distance of 68 RS reached by Cassini in
2006. We interpret all of the examples in this
work as linked to reconnection processes local
to a near-Saturn x line, which we infer from our
observations to be typically significantly closer
to the planet than the scaled estimate of 75 RS.
Based on the work of Vogt et al. [2010] at

Jupiter, for example, we might have expected with a large statistical sample to see a clear separatrix between
tailward moving and planetward moving events. This in turn could indicate the average position of the tail
reconnection x line. However, in our case, there is no such clear demarcation. This may indicate that the
reconnection x-line position at Saturn is highly sensitive to magnetospheric conditions. For example, it could
be strongly linked to the effect of solar wind compression changing the size of the magnetospheric cavity.
The recent modeling work of Jia et al. [2012] indicates that the x line can be present anywhere between ~25
and 40 RS. Their model indicated that for cases when the Dungey cycle is active, reconnection occurs closest
to the planet under the conditions of strong solar wind compression and further from the planet under
expanded magnetospheric conditions.

Figure 3b illustrates the latitudinal coverage of the spacecraft. The trajectory during 2006 was such that most
of the orbits at the start of the interval were in the equatorial plane toward the dawn flank, with the
spacecraft only reaching higher latitudes later in the year. The observation of plasmoids and TCRs is highly
latitude dependent. TCRs are observed at latitudes ranging from �0.03° to +0.44°, while plasmoids are
observed at latitudes ranging from �0.43° to +15.2°. We must interpret this latitude spread in the context of
the southern hemisphere summer conditions during 2006, where low latitudes tended to correspond to
southern lobe and higher positive latitudes corresponded to the nominal hinged current sheet position
(where plasmoids form). We note the strong bias toward plasmoid observation after day 200 of 2006, when

a

b

Figure 3. Cassini trajectory for 2006 day 18–291 in the krono-
centric solar magnetospheric (KSM) coordinate system. KSM is
the kronian analogue of GSM, where the x axis coincides with the
direction to the Sun, the x-z plane contains the planetary dipole
axis, and the y component is azimuthal, positive toward dusk. The
blue, red, and green dots show the location of the tailward and
planetward moving structures and TCRs, respectively. (a)The x-y
KSM view. The Kanani et aln [2010] model magnetopause is
overplotted for the solar wind dynamic pressures of 0.1 and
0.01 nPa. (b) The ρ-z KSM view.
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the Cassini orbits began to move out of the equatorial plane to higher latitudes. No TCRs were observed
beyond day 197 of 2006.

Knowing that reconnection observations are highly trajectory dependent, it is important to understand
not only the nature of the spacecraft trajectory but also how the events are distributed, such that we can
search for specific occurrence trends. Figure 4a shows the amount of the time that the spacecraft spent in
different range and local time sectors, Figure 4b shows the spread of events, and Figure 4c shows the number
of events normalized to the exploration time. Figure 4a illustrates that most coverage was in the postmidnight
sector inside of 40 RS, with reasonably concentrated coverage just premidnight and postmidnight. This
figure again illustrates the disparity of observation between dusk and dawn. Figure 4b shows the distribution
of the events themselves. Grey bins indicate regions where Cassini flew through without observing any
reconnection events. A clustering of events is observed around midnight in the range of 30–50 RS. There is
another noteworthy active region between 40–50 RS and 03–04 LT. Figure 4c allows us to join the information
from Figures 4a and 4b. It shows the occurrence of reconnection events normalized by the time spent by
the spacecraft in each spatial bin. This is key because it helps us to understand whether the distribution of our
events is due to an observational bias or to a genuine increased likelihood of reconnection in particular
portions of Saturn’s tail. Thick yellow lines surround the regions premidnight and postmidnight, where there
has been relatively symmetric coverage by the Cassini spacecraft. Within these regions, there is a significantly
greater incidence of observation of reconnection postmidnight than premidnight; i.e., the likelihood of
observing reconnection increases with local time throughout this region. The implications of this are
discussed in section 5.

3. Individual and Averaged Field Signatures
3.1. Chain of Plasmoids and TCRs: 2006 Day 60 (1 March)

Examples of isolated plasmoids and TCRs in Cassini magnetometer data have been shown in several papers
as detailed in the introduction [e.g., Jackman et al., 2007, 2008a]. More recently, a “chain” of three plasmoids
was observed [Jackman et al., 2011] over 3 h, and it was suggested that these were formed either as a result
of episodic reconnection events closely spaced in time or simultaneous reconnection at multiple, closely
spaced x lines. In Figure 5a, we now show another example of a chain of events. The interval is 2006 day 60
07:00–10:00, during which Cassini observed two plasmoids and two TCRs. The panels in Figure 5a display
the field in KRTP coordinates as defined above. This system allows us to clearly identify reconnection events,
primarily through changes in the north-south (Bθ) component. In addition, the radial and azimuthal
components can be used to elucidate the degree of corotation of the plasma (i.e., whether we are observing
lagging or leading field lines).

Figure 4. Color-coded plots of Saturn’s nightside showing the properties of particular radial distance and local time sectors.
All the plots are equatorial plane views with the Sun to the right. In all panels, the white represents the bins with no
spacecraft coverage, and the grey represents the bins with trajectory coverage but no reconnection events. (a) The number
of minutes the Cassini spacecraft spent on the nightside during 2006, in the bins of 10 RS in radial distance by 1 h in local
time. (b) The number of reconnection events seen in each sector by Cassini. The spacecraft trajectory during 2006 is
overlaid, as are the black points to illustrate the precise locations of tailward moving plasmoids, TCRs, and planetward
moving events. (c) The number of reconnection events normalized to observation time. The thick yellow lines surround the
bins symmetric either side of midnight, where there was spacecraft coverage.
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Figure 5. (a) Cassini magnetic field data in KRTP coordinates for 2006 day 60 07:00–10:00. The positions of two plasmoids
and two TCRs are marked with vertical lines, and the amplitude and duration in minutes of the signatures are listed in the
first panel. (b) Schematic of expected geometry of the magnetotail during the passage of the plasmoids and TCRs. (c)
Plasma and magnetic field observations for two plasmoids and two TCRs identified on 1 March 2006. The fourth panel
reproduces the magnetic field measurements in Figure 6a, while the second and third panels above show the color-coded
count rate in the CAPS ion mass spectrometer (above) and electron spectrometer (below) as a function of energy and time
through the event. The black dashed boxes surround the intervals defined as the “duration” of the events from Figure 6a.
The top row shows the all-sky images of the ion distribution at 2.4 keV (first two) and 4.1 keV (third). In this format, the look
direction toward Saturn is in the center. The radial distance from the center is proportional to the polar angle of the viewing
direction relative to Saturn’s direction. Thus, the entire outer circle corresponds to the anti-Saturnward look direction, and
the dashed circle halfway to the outer boundary indicates look directions that are 90° away from Saturn’s direction. The
azimuth in the plots (indicated by the angle markings around the circumference of the outer circle, given in degrees)
corresponds to the azimuth of the look direction relative to a meridian containing the direction to Saturn and Saturn’s spin
(and magnetic dipole) axis, measured about the axis pointing toward Saturn. Thus, the corotation look direction (indicated
by the filled triangle) lies at a polar angle of 90° and an azimuthal angle of 270°. Particles coming from the direction of
Saturn are seen at look directions interior to the dashed 90° circle, and particles flowing toward Saturn are seen at look
directions exterior to that circle.
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The timings of the plasmoids and TCRs are marked in Figure 5a by vertical dashed lines. The duration of the
events and their total ΔBθ are listed in the first panel. As explained above, the duration is defined as the time
between the local southward and northward extrema in the Bθ component either side of the central field
deflection. The first of the plasmoids at ~07:32 displays the largest field deflection of 2.16 nT. The duration of
the signature based on the southward and northward field extrema is ~5min, but we note the extended
interval of northward field after the plasmoid passage. The plasma data for this signature are presented in
Figure 5c and discussed below. The next plasmoid signature is much smaller, with only a 0.94 nT deflection
but again the same sense of northward turning of the field. Following on from this, there are two TCRs within
45min of one another, evidenced by the northward turnings of the field and the small localized
compressions in the field magnitude. The second TCR has a very small amplitude change in Bθ (0.12 nT), but
does display the smooth tilting of the magnetic field characteristic of TCRs. The first plasmoid is seen by
the spacecraft at a radial distance of 32.33 RS, and from inspection of the sign of the field change, we infer
that Cassini was tailward of its source, observing the structure propagate down the tail. The same holds for
the other three events. We suggest that all of these observations are linked to a common reconnection
episode which produced multiple plasmoids.

With a single spacecraft, we are unable to separate temporal from spatial effects, but we can suggest two
plausible scenarios which could result in this multi-event observation. In the first scenario, the reconnection
episode results in the release of four plasmoids, whose effects are observed sequentially as illustrated in
Figure 5b (similar to a terrestrial morphology suggested by Slavin et al. [1993, 2005]). In this case, Cassini
(which was sampling the tail at approximately constant latitude during this interval) penetrated relatively
deep into the center of the first, largest plasmoid (decrease in |B| to ~1.4 nT, where |B| = 0 would represent the
center of a perfectly loop-like plasmoid). We then suggest that the second plasmoid was smaller, and so
the spacecraft only caught the edge of it. This interpretation is borne out by the smaller northward turning
and the smaller decrease in |B|. The vertical extent of the third and fourth plasmoids was such that they did

c)

Figure 5. (continued)
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not encompass the spacecraft track at all. Rather, we suggest that Cassini passed through the compressed
lobe field lines draped around the passing plasmoid structures and observed TCR signatures of decreasing
amplitude. Again, this tendency for the amplitude of TCRs, and by implication the north-south extent of
plasmoids, to decrease from one TCR to the next in chain events is frequently observed at Earth [Slavin et al.,
1984, 1993, 2005]. A second plausible scenario also involves the ejections of four plasmoids from a common
reconnection episode. However, in this picture, the plasmoids may have all been of similar size. A slow
flapping of Saturn’s tail current sheet over the spacecraft (which was at constant latitude) could result in
Cassini slowly moving north/south relative to the current sheet. Flapping of Saturn’s current sheet is a well-
documented phenomenon [e.g., Arridge et al., 2011; Provan et al., 2012; Volwerk et al., 2013]. The flapping time
scale is on the order of ~10 h, and thus, the 3 h shown in this plot could represent just the southward motion
portion of the flapping. This idea is supported by the radial field component, which displays an increasing
magnitude throughout the interval, indicating that Cassini could have been moving farther away from the
current sheet center. For this case of a slowly moving current sheet, Cassini could hence have crossed near
the middle of the first plasmoid and the edge of the second. As the spacecraft moved farther relative to the
current sheet, it then observed a TCR and finally a weak TCR from its position in the southern lobe. The
positions of the spacecraft in the plasma sheet/lobes are confirmed by inspection of the plasma data below.

Figure 5c shows the measurements from the CAPS instruments for the same interval as Figure 5a. The second
and third panels are the energy-time spectrograms for the ions (above) and electrons (below) observed by
the CAPS IMS and ELS, respectively. The data for the first plasmoid confirm that Cassini was inside the first
plasmoid structure from ~07:20 to ~07:40, longer than the ~5min duration inferred from the southward/
northward field extrema above. This inference is based on the duration of the diamagnetic field signature
and the presence of relatively cool dense plasma (including ions with a clear water group signature). The
double-peaked ion distribution is a characteristic of plasma of inner magnetospheric origin (H+ at low
energy, W+ at higher energy). We note that the field remains northward for some time after this interval,
during the postplasmoid plasma sheet interval (as discussed by Jackman et al. [2011]). The three panels
above the spectrograms are all-sky images of the ion distribution at 2.4 keV (first two) and 4.1 keV (third).
During the first plasmoid event, the peak counts are observed near the corotation direction (black triangle)
but displaced toward the look direction to Saturn, indicating an outward flow component. The energy of the
ions suggests that the total flow speed is ~170 km/s. Based on the angular offset of the peak from the
corotation triangle in the all-sky images, we suggest that the radial component of the flow is on the order of
~90 km s�1. The plasma data for the second plasmoid support the suggestion that Cassini traversed the edge
of this structure (due to the presence of hot magnetospheric electrons near 100 eV) and that the two
identified TCRs were in fact observed, while the spacecraft was in the lobe (due to the absence of
magnetospheric electrons and the higher spacecraft potential).

3.2. Superposed Epoch Analysis of Tailward Propagating Plasmoids and TCRs

Figures 6a and 6b depict the results of superposed epoch analyses for 69 tailward moving plasmoids and 15
tailwardmoving TCRs (separately), where the zero epoch is the central event time, defined as the point where
Bθ changes sign. Jackman et al. [2011] showed a superposed epoch analysis of 34 tailward moving plasmoids,
where they discussed the results in terms of the flux transport through the postplasmoid plasma sheet. Since
then, as discussed in section 2, we have resurveyed the Cassini magnetometer data from 2006 and
uncovered more plasmoid examples, more than doubling the list from 34 to 69. Thus, Figure 6a is an updated
superposed epoch analysis. The basic characteristics of the signature are the same, with slightly amended
amplitude and duration. From Figure 6a, we see that the field signature of an average tailward moving
kronian plasmoid is a distinct northward turning of the field. Some individual examples display a southward
turning prior to the strong northward turning, but once averaged into the superposed epoch analysis, it
becomes somewhat smeared out. However, the northward turning persists. The mean plasmoid duration
taken from the full set of examples listed in Table 1 is 17.71min (with a standard deviation also of 17.7min,
implying a skewed distribution with a long tail), which represents the average duration between the local
southward and northward extrema. In the absence of continuous plasma data (such as that in Figure 5c
which could shed light on longer intervals of plasma energization and local tail disturbance), we interpret the
interval between the southward and northward extrema as the passage of the plasmoid itself. For the case of
the smeared Bθ signature from the superposed epoch analysis, we have marked the “start” of the event at
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T=�5min despite the lack of a clear
southward extremum in the trace. We
obtain this start time by tracking the field
fluctuations preceding the event. The Bθ
component decreases slightly at
T=�6min, before increasing to reach a
local southward maximum at T=�5min,
beyond which it steadily decreases and
then turns northward. We note however
that this local southward maximum is
barely discernible above the statistical
field fluctuations. This time can be
compared to the mean start time (as
determined from the local southward
field extremum) based on 69 individual
events, which is T=�9.2min. The “end”
of the event is marked as T=+3min (the
clear northward extremum). This 8min
duration is considerably shorter than the
17.71 mean duration obtained from the
distribution of events and is the effect of
the smearing due to the superposed
epoch analysis. Similarly, the mean ΔBθ
event amplitude from the event list is
1.39 nT (with a standard deviation of
0.73 nT), while the amplitude of the field
change from T=�5 to T=+3min is
~0.75 nT). Following the northward
extremum (at T=+3min), there is an
interval ~27min long, where the Bθ
component remains northward. We
interpret this as representing an interval
of closure of previously open flux,
analogous to the terrestrial PPPS. We
note that there is another possibility that
such asymmetry may be due to slowing
of the flow as the plasmoid moves
downtail, such as in cases where
plasmoids associated with the Vasyliunas
cycle are blocked from moving downtail
by surrounding closed field lines.
However, we are not in a position to test
this alternative explanation of the
extended northward field, because the
plasma measurements available for the
subset of our events simply yield a single-
bulk flow speed for each event rather
than a detailed time series of velocity
variations throughout the interval of field
change. Exploration of this hypothesis for
a small number of case studies,
particularly those on the dusk side where
Vasyliunas-style reconnection may be
more likely, should be the subject of

(a)

(b)

Figure 6. Superposed epoch analyses of (a) plasmoids. The second panel
is twice the size and range of the other panels, and the colored lines in the
second panel show the individual traces for 69 events to illustrate the
spread. The thick black line shows the average trace from the superposed
epoch analysis. The vertical dotted lines at T=�5min and T=+3min
bracket the central plasmoid passage time as determined from the
superposed epoch analysis. The vertical dot-dashed line marks the end of
the PPPS (27min long). (b) TCRs in the same format as Figure 6a.
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future work. For the purposes of this paper, we take the extended interval of northward field following the
plasmoid to be representative of the PPPS and flux closure, a scenario which is consistent with auroral
observations of flux opening and closing in Saturn’s magnetosphere [Badman et al., 2005, 2013] and
modeling of reconnection and flux closure [e.g., Jia et al., 2012], and we note that by making this assumption,
we are taking an upper bound on flux closure for our events. While the average background Bθ at Saturn has
been shown to be small and positive by Jackman and Arridge [2011], we define the end of the PPPS as the
point where Bθ crosses zero to return from negative to positive for consistency. This point is marked on
Figure 6a by a vertical dot-dashed line. We note that this 27min is shorter than the ~58min PPPS reported by
Jackman et al. [2011]. The primary reason for this is that several of the new events added to the list display
bipolar signatures which are more symmetric, without the extended PPPS interval of northward field after
plasmoid passage. We discuss the implications of these signatures in terms of reconnection on open/closed
magnetic field lines further in section 5.2.

The fact that the average southward-to-northward turning associated with plasmaoid passage is strongly
asymmetric hints at the geometry of the typical pass through a plasmoid, as raised initially in section 2. Due to
the hinged nature of the current sheet during southern hemisphere summer, a spacecraft orbiting in the
equatorial plane (as Cassini did for much of 2006) will be situated in the southern lobe, and any encounters
with plasmoids will be cuts through the lower portion rather than traversals of the central part of the
structures. However, we note, as illustrated in Figure 2, that a spacecraft traveling parallel to the plasmoid
edge can still record a symmetric signature, even if it does not penetrate through to the center. The
asymmetry arises from the spacecraft encountering the plasmoid at an angle. At the time of the field
deflection shown here, there is a small local dip in |B|, implying a simple loop like as opposed to flux rope-like
interior structure. However, this is highly sensitive to the spacecraft trajectory through the structures, and a
more detailed exploration of the interior morphology of plasmoids will be presented in section 4.

The average absolute value of the radial field component during plasmoid encounters is ~1.2 nT, with an
average of ~1.5 nT either side. This shows that the spacecraft did not, on average, encounter plasmoids at the
very center of the current sheet (where BR≈ 0) but rather at some distance away in the outer plasma sheet or
lobe, as we understand from the description of the trajectory above. While the magnitude of the radial
component (as a function of total field strength) cannot be used as a direct measure for vertical distance from
the current sheet center, it can act as a proxy. For example, if a Harris sheet-type geometry is assumed for the
plasma sheet, then fitting of the observed magnetic field to such an assumed structure can yield an estimate
of distance from the center of the plasma sheet [e.g., Runov et al., 2006; Arridge et al., 2008; Jackman and
Arridge, 2011]. Because the magnetic field data indicate the penetration of the spacecraft into a plasmoid
structure, we know that in these examples, a spacecraft sampling a radial field component of magnitude
~1.2–1.5 nTcannot be more than one plasmoid half width from the center of the current sheet. As mentioned
in section 2, events are identified by taking into account not just the Bθ component but the behavior of other
components as well. Cassini can pass through the interior of plasmoids from a position in the outer plasma
sheet but also from a position in the lobes, if the plasmoids are large enough to extend a significant distance
from their formation point at the current sheet center. The azimuthal component of the field is virtually
constant around the time of plasmoid passage, consistent with a loop-like picture as opposed to a flux rope-
type structure as mentioned above, but this will be explored in more detail in section 4.

We can use the range of observed plasmoid durations, along with the range of observed plasmoid velocities
to calculate a range of approximate plasmoid lengths (as done by Kronberg et al. [2008] for Jupiter and S93 for
Earth). The first estimate of the velocity of a plasmoid in Saturn’s tail from in situ CAPS data was presented by
Hill et al. [2008], who reported a value of 800 km/s. Here we significantly expanded the list of events for which
we can extract velocity information. From Table 1, we present a set of velocities for 29 plasmoids, ranging
from 144 to 1240 km/s, with a mean of 299.8 km/s and a standard deviation of 215.5 km/s. These estimates
are obtained from the energy of the peak counts and thus represent upper limits. The case study example in
Figure 5c (with a total bulk velocity of 170 km/s) is at the lower end of this velocity range. We can combine this
range of velocities for 29 events with the range of plasmoid durations listed in Table 1 (2min to 50min for the
subset of 29 events for which plasma data were available). The length of each of these 29 plasmoids has been
calculated individually (duration × velocity) and is found to range from 0.44 to 23.9 RS. The mean plasmoid
length is 4.28 RS with a standard deviation of 5.6 RS. Figure 7 shows the histograms of flow velocity, duration,
length, and mass for these 29 plasmoids which have both magnetometer and plasma data.
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There may be a number of errors in the
determination of these plasmoid
lengths. First, we note, as mentioned
above, that our definition of plasmoid
duration as the time between
southward and northward extrema
may result in an underestimate of
plasmoid size by a factor of ~4–8
[Kivelson and Khurana, 1995]. In
addition, the duration estimates are
based on trajectories which, as
discussed earlier, do not necessarily
represent the full diameter of the
plasmoids. Unless the observing
spacecraft passes through the center of
the plasmoid along a trajectory that is
normal to the long axis of the structure,
the effective length of the plasmoid may
be significantly underestimated or
overestimated. There are also errors
associated with the velocity
measurements. The velocities used to

determine the plasmoid “lengths” are the bulk flow velocities, and from the subset of examples where CAPS
pointing was favorable, we know that in addition to the radial (downtail) component of the velocity there can
also be a significant azimuthal motion. Hence, the bulk flow velocity is an upper limit. We may compare
our estimates of plasmoid length derived here with the output of global models, which suggest that plasmoids
may be up to 30–40 RS long [e.g., Jia et al., 2012; Kidder et al., 2012]. Such estimates are higher than our
quoted range, but we note that the model estimates consider the full plasmoid and not just a cut through a
section, as may be the case for our examples.

In addition to our estimates of plasmoid length, we can use the velocity measurements to estimate the size of
the reconnecting region and in turn estimate the flux closed through reconnection. As mentioned above, the
superposed epoch analysis shows a distinct ~27min after plasmoid passage where the field remains
northward, analogous to the terrestrial PPPS. Jackman et al. [2011] calculated the amount of flux closed
during a ~58min PPPS as obtained from the superposed epoch analysis of 34 events. They assumed a
velocity of 800 km/s [Hill et al., 2008] and took an upper limit of the full tail width (90 RS) for the azimuthal
extent. From this, they calculated a flux closure of ~3GWb per event.

We now have an extended sample of events which yield an ~27min PPPS, the length of which is also subject
the same kind of assumptions made above regarding the orientation of the plasmoid motion relative to the
spacecraft. We also have additional in situ data which allow us to make flux estimates based on a range of
velocities. Like Jackman et al. [2011], we use the full tail width of ~90 RS as the azimuthal extent of the
plasmoid for our calculation, emphasizing that this 90 RS value is an upper limit. In reality, we expect that the
typical width of reconnection-associated flow channels in the tail is much smaller than this, because if
plasmoids took up the full width of the tail, Cassini would observe every one as long as its position was
tailward of the reconnection site. Based on the speeds of 144–1240 km/s, we estimate that 0.26–2.2 GWb of
flux is closed during the 27min PPPS.

The TCR superposed epoch analysis for 15 tailward moving events, shown in Figure 6b, shows the localized
compression associated with the wrapping of field lines around the passing plasmoid(s). This smooth
increase in the total field strength is also mirrored by a smooth increase in the radial field component,
peaking at the center of the TCR. The average amplitude of the southward-to-northward turning from the list
of 15 events is ~0.66 nT (with a standard deviation of 0.54, reflecting the wide spread in amplitude of TCR
signatures). This amplitude is slightly smaller than for the plasmoid encounters as might be expected
(particularly considering that our selection criteria did not require the Bθ component during TCRs to fluctuate
above background levels). The average TCR signature at Saturn displays a mean change in |B| of ~18%. This is

Figure 7. Histograms of plasmoid (a) flow velocity, (b) duration, (c)
length, and (d) mass for the 29 plasmoid for which the magnetometer
and plasma data were available. These represent a subset of the total of
69 plasmoids listed in Table 1. The vertical dotted lines are the mean
values, and the vertical dashed lines are the medians.
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compared to typical compression ratios of 1–10% at Earth [Slavin et al., 1993; Slavin et al., 2005]. Thus,
this is an evidence that plasmoids at Saturn are large enough to significantly distort the magnetotail field
lines in their vicinity and could imply that plasmoids at Saturn occupy a larger vertical portion of the
magnetotail than plasmoids at Earth, although this cannot be confirmed with a single spacecraft. In some
cases at Earth, it is suggested that waves initiated at the center of the plasma sheet during reconnection can
travel through the lobes all the way to the magnetopause, communicating field disturbances such that the
magnetopause may even exhibit a corresponding bulge; however, this behavior is still not fully understood
[Slavin et al., 1993]. The average duration of the 15 observed TCRs, as defined by the time between local
maxima/minima in Bθ either side of the central field deflection, and as calculated from the list in Table 1, is
14.4min (with a standard deviation of 9.35min). As with the plasmoid superposed epoch analysis, the TCR
superposed epoch trace becomes somewhat smeared out, and thus, its amplitude and duration (~0.43 nT
from T=�3 to T=+7min) are considerably smaller than those calculated directly from the distribution.
However, on the inspection of the field magnitude trace, it is clear that |B| undergoes a smooth compression
from background levels over a much longer interval, on the order of ~35min either side of the central epoch
time, 70min in total, as bracketed by the vertical dot-dashed lines in the fourth panel.

4. Morphology of Reconnection Region

While reconnection undoubtedly has dramatic effects on the local structure of the field lines in the vicinity, it
can also affect the global morphology of the magnetotail. As discussed in section 3.2, the passage of large
plasmoids downtail can cause the surrounding lobe field lines to bend significantly as they wrap around the
bulging plasma sheet. In the Introduction, we mentioned that plasmoids may have loop-like or flux rope-like
interior structure, and these structures have implications for the structure of the magnetotail as a whole,
perhaps elucidating the degree of shear within the tail prior to reconnection. In this section we examine the
Cassini magnetic field data in detail to decipher the nature of the field geometry in Saturn’s tail when
reconnection is ongoing.

In order to precisely visualize the geometry of the reconnection region, we apply minimum variance analysis
(MVA) to several events [Sonnerup and Cahill, 1967]. Transforming the magnetic field data into this coordinate
system allows us to visualize the orientation of the structures and the location of their central axis. WhenMVA
is performed on a magnetic field data set, it returns three eigenvectors (corresponding to the minimum,
intermediate, and maximum variance directions) and their associated eigenvalues. The direction which
corresponds to the axis of the structure depends on the type of structure and on the depth of crossing
(known as the impact parameter). For a crossing close to the center of a cylindrically symmetric force-free flux
rope, the intermediate direction is the direction of the axis [e.g., Lundquist, 1950; Lepping et al., 1990]. The
perfectly force-free flux rope is a special case, representing the minimum energy state of a structure. At the
center, the field is purely axial, and this field weakens with increasing distance from the center. In practice,
many magnetotail plasmoids take the form of non-force-free flux ropes, which also have a helical topology
but have not yet evolved to a force-free configuration. In this case the structure has a core field (such as those
studied at Venus by Russell [1990] and Elphic and Russell [1983]), and the axis may be oriented with the
intermediate or maximum directions. A third class of structure is loop-like plasmoids. In reality, it might be
difficult to expect perfect loops to form in three-dimensional space as this requires perfect alignment of
oppositely directed magnetic field lines [e.g., Slavin et al., 2003a]. However, quasi-loop-like structures should
be distinctive in terms of having their axes aligned along the minimum variance direction [Farrugia et al.,
1987; Elphic and Southwood, 1987]. Clearly, the determination of the orientation of the axis of plasmoids is key
to the study of their geometry, structure, and their possible formation process.

The interval over which the MVA is performed is crucial to the success of the analysis. A first criterion for a
good MVA interval is that it encompasses the largest field change associated with the passage of the
plasmoid, TCR, or dipolarization. Second, a large eigenvalue ratio gives confidence in the transformation.
Previous studies have indicated that the ratio of intermediate to minimum eigenvalue should be at least
~8–10 for the analysis to be acceptable [e.g., Paschmann and Daly, 1998; Briggs et al., 2011]. The largest
eigenvalue ratios tend to result from the selection of intervals which bracket the turning points of bipolar
magnetic field signatures, thus encompassing the greatest change of magnetic field strength
and direction.
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4.1. MVA Window Optimization Technique

Throughout this work, we have sought to remove observer biases as much as possible. For example, the
selection of an appropriate MVA window is most often done “by eye,” and while this may be satisfactory for
most cases, we desired to try an automated method to select the interval over which the field changes most
significantly and to then apply the MVA to this interval. This “MVA window optimization” technique is
illustrated in Figure 8.

The first panel shows the field in KRTP coordinates, color coded according to the legend on the right. The
feature of interest is a plasmoid at 16:47:30, identified by the strong northward turning of the field (negative
Bθ in red). MVA was applied to this field data over a sliding window, with start times marked by the vertical
dotted lines. The start times and window sizes are plotted on the axes of the lower three panels, which are
color coded to show the eigenvalue ratios for each MVA start time and window size. The darker colors
represent the lower eigenvalue ratios, as per the color bars on the right of each of the lower three panels. The
striking feature of this plot is that the eigenvalue ratios corresponding to start times and window sizes away
from the main plasmoid observation are low. Meanwhile, the eigenvalue ratios increase significantly in the
vicinity of the northward turning. Indeed, there is a bank of high eigenvalue ratio intervals surrounding the
main northward turning. This gives us confidence that selecting an MVA interval in this region will return
sufficiently high eigenvalue ratios such that we can be satisfied that the analysis interval encompasses the
most significant field change. While the maximum eigenvalue ratio is not a perfect marker of where the MVA

Figure 8. Example of MVA optimization technique applied to magnetometer data from 2006 day 216 16:35–17:10.
The first panel shows the magnetic field data in KRTP coordinates, color coded according to the legend on the top right.
The next three panels show the results of the application of a sliding window for MVA. On the x axis are the various
start times of the MVA windows (also denoted by the vertical dashed lines in the first panel). The y axis shows the window
sizes, applied from each start point. Thus, the plots are composed of a selection of boxes which represent various start
times and window lengths over which MVA was applied. The colors (coded as per the color bars on the right-hand side of
the plots), show the eigenvalue ratios, for e2/e1, e3/e2, and e3/e1, respectively. B1 is the direction of minimum variance,
and B2 and B3 refer to the intermediate and maximum variance directions.

Table 2. List of Eigenvectors and Eigenvalue Ratios for All the MVA Intervals Described in Section 4.2

Eigenvectors B1 (Minimum) B2 (Intermediate) B3 (Maximum) L2/L1 L3/L2

Day 216 plasmoid, 16:47:30 (0.99, 0.08, 0.02) (0.07, �0.70, �0.71) (0.05, �0.71, 0.70) 6.53 42.9
Day 63 plasmoid, 22:07 (�0.89, �0.15, �0.44) (0.35, 0.39, �0.85) (�0.30, 0.91, 0.29) 9.26 15.6
Day 63 plasmoid, 22:59:30 (0.77, �0.27, �0.58) (�0.61, �0.05, �0.80) (�0.18, �0.96, 0.19) 44.7 37.0
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should be applied, it acts as strong guide.
We note that the three eigenvalue ratios
rarely maximize in precisely the same
windows. Nonetheless, the plot indicates
that the eigenvalues maximize in broad
regions surrounding the field change of
interest. This technique then gives us
confidence to apply MVA over the window
bracketing the south-north extrema in Bθ
either side of the primary field deflection.
We also recognize that changing the MVA
window size may alter the orientation of
the axis that we obtain from our analysis.
Thus, MVA has been tested over several
window sizes within this central high
eigenvalue ratio region to ensure the
stability of the orientation.

4.2. MVA Examples

For all the three subsequent examples, we
use the optimization technique outlined
above to guide our choice of MVA analysis
window. The eigenvectors and
eigenvalue ratios are listed in Table 2.
4.2.1. MVA Example 1: Day 216
(4 August) Plasmoid, 16:47:30
Figures 9a and 9b show the results of the
application of MVA over a window
surrounding the plasmoid on day 216 at
16:47:30. Vertical dashed lines on the first
panel of Figure 9a bracket the interval on
which the MVA was performed. The lower
three panels show themagnetic field data
transformed into MVA coordinates and
plotted over the selected interval (less
than 2min long). B1 is the direction of
minimum variance, and B2 and B3 refer to
the intermediate and maximum variance
directions. The spacecraft was 49 RS
downtail and just premidnight at 23:41 LT.
This event was reported first by Jackman
et al. [2007], while Jackman et al. [2008a]
showed that the large-scale
magnetospheric plasma flow rotated

(a)

(b)

Figure 9. (a) Results of minimum variance
analysis on an interval of magnetic field data
from 2006 day 216. The first panel shows the
magnetic field in KRTP coordinates. The vertical
dashed lines denote the interval over which
MVA was applied. The selection of this interval
was guided by the optimization technique
outlined in Figure 9. The lower three panels
show the field minimum, intermediate, and
maximum variance directions (b). Field hodo-
grams for the interval selected in Figure 9a.
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from subcorotation to tailward with the
passage of this plasmoid. The plasma
data from CAPS IMS (not shown) indicate
the presence of outward moving W+ ions
during the passage of this plasmoid.
The field signature is certainly dramatic,
with a total field deflection of 3.39 nT.
The total field strength rises sharply
coincident with plasmoid passage, and
this has been interpreted as pile up of
newly closed field lines behind the
plasmoid after reconnection, accelerating
its downtail. The field in the direction of
minimum variance (B1) is near zero, while
the intermediate variance trace (B2) is
unipolar. The dominant northward
turning of the field associated with
plasmoid passage is reflected in the
maximum variance direction, which
displays a dramatic bipolar signature. The
eigenvectors are (0.996, 0.084, 0.018),
(0.072, �0.697, �0.714), and (0.047,
�0.712, 0.700), indicating that the
direction of minimum variance is strongly
radial, the intermediate variance direction
is split between northward and
corotational, and the maximum variance
direction is split between northward and
corotational. Figure 9b shows the
hodograms of the field variations in three
planes, with most variation in the
intermediate-maximum plane. The near-
constant, nonzero minimum, and
intermediate fields combined with the
predominantly positive maximum
variance argue for Cassini having just
passed through the outer portion of this
plasmoid along a trajectory that began in
the south, but quickly passed into the
northern half of the plasmoid (e.g., see
trajectory path #4 in Figure 2). No flux
rope-line core field was observed, but it
cannot be determined whether this is due
to the plasmoid being loop-like or the off
axis trajectory.
4.2.2. MVA Example 2: Day 63
(4 March) Plasmoid, 22:07
Figure 10 shows the results of MVA on an
interval surrounding a tailward moving
plasmoid at 22:07 on day 63 of 2006. At
this time, the spacecraft was 44.17 RS
downtail and at a local time of 03:10. The
plasmoid is identified by the deflection in
the Bθ component northward, with an

(a)

(b)

Figure 10. (a) Magnetic field in KRTP and MVA coordinates surrounding
a plasmoid observation on 2006 day 63 at 22:07. The figure is in the
same format as Figure 9a. (b) Field hodograms corresponding to the
interval depicted in Figure 10a.
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amplitude of 1.7 nT. The more balanced north-south magnetic field variation shows that the spacecraft
passed much closer to the center of this plasmoid than the previous event. Once again, B1 is approximately
constant near zero and directed largely in the radial direction consistent with a pass not far off the center of
the plasmoid. B2 is mostly azimuthal and unipolar, but it does not display any enhancement near the
inflection point in the north-south field as would be expected if there were a flux rope-type core field. B3 is
closely aligned with the north-south direction and shows a bipolar signature. The eigenvectors are (�0.887,
�0.151, �0.436), (0.350, 0.395, �0.849), and (�0.300, 0.906, 0.298), indicating that the direction of minimum
variance is primarily radial, the intermediate variance direction is in the corotation direction, and the
maximum variance direction is north-south. We suggest that this example could represent a passage through
a loop-like plasmoid, along a trajectory similar to path #2 in Figure 2, although closer to the center of the
structure than the encounter in MVA example 1 on day 216. Figure 10b shows the hodograms of the field
variations in three planes. The B2-B3 hodogram shows a relatively smooth tilting of the field consistent with a
loop-like plasmoid. This can be compared to an example of a rare but well-definedmagnetic loop plasmoid at
Earth reported by Slavin et al. [1989].
4.2.3. MVA Example 3: Day 63 (4 March) Plasmoid, 22:59:30
Figure 11a shows high-resolution Cassini magnetometer data surrounding a plasmoid observation at
22:59:30 on day 63 of 2006. At this time, the spacecraft was 44.17 RS downtail and at a local time of 03:11,
virtually the same location as for the previous example less than an hour before, although in this example, the
magnitude of the BR component is somewhat smaller indicating that the spacecraft was situated closer to the
current sheet center. The plasmoid is identified by the sharp northward turning of the field of amplitude
3.51 nT, and the balance between northward and southward magnetic field. It is followed by an extended
interval of northward field, which we interpret as analogous to a postplasmoid plasma sheet as at Earth. The
field change associated with the plasmoid passage is very rapid, and the MVA is performed over an interval of
<50 s long, using the highest-resolution magnetometer data available. The eigenvectors are (0.772, �0.264,
�0.578), (�0.608,�0.045,�0.792), and (�0.183,�0.963, 0.195). The field in MVA coordinates shows the clear
signature of a plasmoid with flux rope topology. The constant, near-zero B1 (min) directed along the radial
direction is consistent with a very low inclination spacecraft trajectory passing through the center of the
plasmoid similar to the green traces (trajectory path #1) in Figure 2. The B2 (intermediate) component is
unipolar, peaked around the center of the bipolar north-south field variation, and oriented in the azimuthal
direction consistent with a cross-tail oriented flux rope (Figure 2, bottom) [e.g., Slavin et al., 2003a; Borg et al.,
2012] with the core in the B2 (intermediate) direction. The B3 (maximum) direction is largely in the north-
south theta direction and displays the expected clear bipolar trace. The B2-B3 hodogram shows exceptionally
smooth rotation indicative of the core magnetic field of a flux rope-type plasmoid.

5. Discussion

In this paper we have presented a set of reconnection events observed during Cassini’s exploration of
Saturn’s deep tail during 2006. We now discuss the results by placing them in the framework of several
common questions about the nature of reconnection in Saturn’s tail.

5.1. What is the Primary Mass Loss Mechanism at Saturn?

In this study we have revealed 69 south-to-north plasmoids tailward of the x line, 17 TCRs (15 tailward and 2
planetward), and 13 north-to-south events planetward of the x line, which represent the largest and
most significant reconnection signatures from our detailed survey of the 2006 Cassini magnetometer data.
The question remains however as to whether there are mechanisms other than large-scale reconnection,
which may allow material to be lost down the magnetotail. For instance, Zieger et al. [2010] suggested on
the basis of their modeling work that large-scale plasmoids account for less than 8% of the total mass lost
down the tail. Bagenal and Delamere [2011] estimated the average mass of plasmoids at Saturn and
compared this to the suggested mass loading rates from the moon Enceladus of 8–250 kg/s [e.g., Fleshman
et al., 2010; Jurac and Richardson, 2005; Pontius and Hill, 2009; Chen et al., 2010]. They assumed a plasmoid of
volume (10 RS)

3 with a density of 0.01 cm�3 of 18 amu ions. From this, they calculate that plasmoids would
need to be ejected at a rate of 200/d to remove just 100 kg s�1.

We are now in a position to refine the estimates of the plasmoid mass loss rate. We base our calculations on the
29/69 plasmoids which have corresponding plasma data. We calculated the length for each plasmoid as
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duration × velocity and obtained a
range of 0.44–23.9 RS. We note that
these observed speeds sit between
the estimates of average Alfvén
speeds in Saturn’s central plasma
sheet (1–10 km/s) and lobes
(>4000 km/s) as reported by Arridge
et al. [2009]. They also agree
reasonably well with analogy from
Earth, where plasmoids have been
observed to move tailward with
speeds typically 1–3 times that of
the solar wind [Baker et al., 1987;
Richardson et al., 1987; Ieda et al.,
1998; Slavin et al., 2003a]. If we
average all of the plasmoid lengths
obtained in this way, we find a mean
of 4.28 RS (whereas if we multiply the
mean duration of 13.5min by the
mean velocity of 299.8 km/s, we
obtain a mean plasmoid length of
4.03 RS). We take a thickness of 2 RS to
represent the plasma sheet half-
thickness (for a full plasma sheet
width of 4 RS [e.g., Kellett et al., 2009;
Sergis et al., 2011; Arridge et al., 2011;
Szego et al., 2012]), and we take an
upper limit for the azimuthal extent
as the full tail width (90 RS). Because
this estimate is intended to represent
an upper limit, instead of assuming
the same density as Bagenal and
Delamere [2011] (0.01 cm�3 of 18 amu
ions), we take the upper limit from
Thomsen et al. [2014] of 0.1 cm�3

of 16 amu ions. We thus calculate a
range of plasmoid masses from
4.42×104–241.0×104 kg, with a mean
of 43.2×104 kg. We would require
~3.6–196 tail-width plasmoids per day
to remove 100 kg s�1 of added mass.
In order to estimate the total mass
loss for the 99 reconnection events
that we observe, we multiply the
mean plasmoid mass of
43.2 × 104 kg by 99 events. Our
events were observed between days
32 and 264 of 2006. If we calculate
how much time the spacecraft spent
beyond 20 RS on the nightside
during this interval (to give an
approximate likely “viewing region”
for downtail mass loss) and express

(a)

(b)

Figure 11. (a) Magnetic field in KRTP and MVA coordinates surrounding a
plasmoid observation on 2006 day 63 22:59. The figure is in the same for-
mat as Figure 9a. (b) Field hodograms corresponding to the interval depicted
in Figure 11a.
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the total mass loss as a fraction of time, we find an average mass loss rate over our observation interval of
2.59 kg/s.

There are several “active” intervals during 2006, where multiple plasmoids and TCRs are clustered together,
such as: days 60–67 inclusive (18 events), days 193–197 inclusive (13 events), and days 212–219 inclusive
(15 events). Indeed, there are 6 events on day 212 alone (~23:00 h local time and between 43 and 45 RS). Thus,
it appears that during themost active intervals, the observed rate of mass loss can just about match the lower
end of the requirement for removal of 100 kg/s of mass (and easily match the requirement for a lower mass
source rate of 8 kg/s). However, there is a huge range on the mass removal requirements, and during less
active intervals, there is a clear mismatch between the suggested loading rates and observed average
removal rates. Thus, it is plausible that during active intervals, plasmoid ejection at Saturn is the primary mass
loss mechanism. However, we need to explain the significant mismatch in mass addition and loss rates during
the more typical, less active intervals. There may be several reasons for this mismatch. First, we may only
be observing a small fraction of the number of plasmoids that are released in Saturn’s tail. Wemay be missing
examples due to spacecraft trajectory out of the plane of the plasma sheet. Similarly, we may miss a large
number of plasmoids released via the Vasyliunas cycle [Vasyliunas, 1983] down the dusk flank (if, as stated in
section 3.2, the real azimuthal extent of plasmoids is much less than 90 RS). We return to the issue of the
difference between Vasyliunas and Dungey cycle reconnection in the next section. A second reason for the
mismatch may be in the scale of the events. If a steady stream of small-scale plasmoids were to be released,
the cumulative effect could go a long way toward making up the mass deficit. As outlined in section 2, the
events that we identify are the clearest, largest amplitude events from the Cassini magnetometer data in
2006. There may be many smaller-scale events with field signatures close to the level of background
fluctuation that we have not selected here as we did not deem them to be unambiguous. Third, there may be
other mechanisms for mass loss in Saturn’s magnetosphere apart from reconnection. Bagenal and Delamere
[2011] suggested that perhaps cross-field diffusion, “drizzle” from highly stretched dusk field lines, or other
small-scale loss mechanisms may account for much of the mass loss from the tail, particularly down the dusk
flank [e.g., Kivelson and Southwood, 2005]. A final possible reason is that the spacecraft did not sample far
enough downtail to capture major plasmoid ejections from a possible distant x line. The question of how
mass is lost from Saturn’s magnetosphere is certainly one which warrants further investigation. For
comparison, we refer the reader to Vogt et al. [2014] for a discussion of the minor role of plasmoids in mass
loss in the jovian magnetotail.

5.2. What Drives Reconnection at Saturn?

The Dungey and Vasyliunas cycles at Saturn are the primary cycles of magnetospheric convection. The
Dungey cycle is driven by interaction with the solar wind and involves the opening of flux via reconnection at
the dayside and the closing of it on the nightside, with return of empty flux tubes to the dayside primarily via
dawn. The Vasyliunas cycle is an internally driven process, involving the rotation of mass-loaded flux tubes
down the dusk flank and pinch off primarily premidnight. Reconnection and associated plasmoid loss can
complete the cycle of magnetospheric convection at Saturn in both the Dungey and Vasyliunas regimes
[Cowley et al., 2004]. Theory predicts that both processes exist at Saturn [Badman and Cowley, 2007], and
evidence for Vasyliunas cycle return flow from plasma data has been presented [Masters et al., 2011]. Jackman
et al. [2011] posed the question of whether the nature of the reconnection field signatures could help to
distinguish the difference between the reconnection of closed (Vasyliunas-cycle) and open (Dungey-cycle)
field lines. They interpreted the presence of a significant PPPS at Saturn as evidence of a significant closure of
open flux. We note that even if reconnection is initially driven by the Vasyliunas cycle, the reconnection can
proceed from closed field lines to open within a single episode, thus closing previously open flux via
“Dungey-type” reconnection.

Figure 12 includes a cut from the picture presented by Jackman et al. [2011] and shows two contrasting
examples of plasmoids from the newly updated set. The panels show the schematic pictures of textbook
“bipolar” and “PPPS” signatures, while Figures 12b and 12c show real examples of such events from the
magnetometer data. We did not have a large enough number of events such as these to explore any local
time dependence of the features. In this work, we found the vast majority of plasmoids at Saturn displayed
some extended interval of northward field following plasmoid passage. We have interpreted this as
representative of an interval of closure of open flux or a PPPS. However, we note the alternative explanation
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a)

b)

c)

Figure 12. (a) Schematic of the expected field signatures for reconnection on closed and open field lines. (b) Cassini magnetometer data from 2006 day 243 07:00–
10:00. A plasmoid was observed at 09:05. The central event time, (where Bθ goes through zero), is marked by the vertical dashed line, while vertical dotted lines either
side of this mark the start and end points of the event. (c) Cassini magnetometer data from 2006 day 131 13:00–17:00 in the same format as Figure 12b. The vertical
dot-dashed line marks the end of the PPPS.
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for the PPPS field signature given in section 3.2, in which plasma can be slowed due to Vasyliunas-style
reconnection occurring and plasmoids being trapped within outer closed field lines. The exploration of such
a scenario should be the topic of future detailed case study analysis with high-resolution plasma data. For the
purposes of this paper, we base our PPPS interpretation on analogy with Earth, where a PPPS is a common
feature [e.g., Richardson et al., 1987] to explain such a distinctive field signature. In doing so, the flux values we
derive for Saturn can represent an upper limit to the rate of closure of open flux in this process (within the
limit of our assumptions). We also compare with studies of Saturn’s aurora which show changes in the auroral
oval size linked to changing flux content of the polar cap [e.g., Badman et al., 2005, 2013]. These studies
suggest that opening and closing of magnetic flux via dayside and nightside reconnection are significant
processes in Saturn’s magnetosphere. Plasmoid release and subsequent reconnection of open lobe field lines
must play a part in this picture.

Figure 12b shows an example event from 2006 day 243. The interval shown is from 07:00 to 10:00, and the
plasmoid in question is observed at 09:05, when the spacecraft was 47.3 RS downtail at a local time of 00.1 h.
The BR trace indicates that the current sheet moved over the spacecraft just before plasmoid passage such
that Cassini moved from southern lobe to the plasma sheet north of the current sheet and into the northern
lobe during the event. Plasma data (not shown) confirm this picture. The Bθ field signature displays the
textbook bipolar signature, which may be associated with reconnection on closed field lines as depicted
schematically in Figure 12a.

Figure 12c shows a plot of Cassini magnetometer data from 2006 day 131 13:00–17:00. A plasmoid is observed
passing tailward over the spacecraft at 13:55, when the spacecraft was at a radial distance of ~48.3 RS downtail,
at ~02 LT. The duration of the plasmoid itself was 36min, during which there was a total field deflection of
1.35nT. However, this signature was followed by a long interval, where the field remained northward. Indeed, Bθ
only reached zero again at 16:25. This field signature is in sharp contrast to the bipolar signature observed
in Figure 12b.

As mentioned above, plasmoid loss is expected for both the Vasyliunas and Dungey cycles. In some
theoretical pictures of Saturn, Dungey cycle reconnection is predisposed toward the dawn flank [e.g., Cowley
et al., 2004]. Work at Jupiter has suggested a pattern of reconnection in which stretching empties flux tubes
on the evening side, and they snap back and then stretch out again postmidnight [Kivelson and Southwood,
2005]. We clearly require a large sample of magnetic field and plasma data in order to understand the global
patterns of plasma circulation. While the single textbook “Vasyliunas-style” bipolar Bθ signature case study
shown here was observed premidnight, we do not have a sufficient number of “Vasyliunas-type” events to
say whether this is the case on average. A longer-term goal of the study of Saturn’s tail should be to exploit all
the available dusk coverage by Cassini (albeit at smaller radial distances than the 2006 trajectories) to
understand the mass loss in this understudied region.

5.3. Where Does Reconnection Happen and What is the Size of the Affected Region?

In the well-sampled terrestrial magnetosphere, the role of magnetic reconnection in driving magnetospheric
convection is well established [Baker et al., 1996]. However, much remains to be understood regarding the
nature and effectiveness of external triggers for the onset of reconnection [Hsu and McPherron, 2003] and the
factors affecting the number of events and the location of x-line formation [e.g., Imber et al., 2011]. In this
paper we have reported 69 tailward moving plasmoids, 17 TCRs, and 13 planetward moving events. As
mentioned in the introduction, the sign of the change in Bθ over time (north-to-south or south-to-north)
indicates which side of the x line the spacecraft is on. In our case, the vast majority of the events were
observed to be moving tailward. Even with an expanded database of planetward moving events, it has been
impossible to derive a statistical separatrix based on field change or flow patterns in the same sense that
others have employed at Jupiter [e.g., Woch et al., 2002; Vogt et al., 2010].

Estimates from ENA observations place the near-planet x line at radial distances of ~20–30 RS [Mitchell et al.,
2005]. However, we note that ENA emission is stimulated when energetic particles interact with the neutral
torus at Saturn, and thus, the observation of ENA emission from this radial range can simply mean that this is
where excitation took place, rather than pinpointingwhere reconnection originated. Modelers have also sought
to explore the issue of the x-line location. Jia et al. [2012] suggested that the x-line position at Saturn can vary
from 25 to 40 RS depending on solar wind dynamic pressure, with the x line moving toward the planet and
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becoming narrower when the magnetosphere is compressed. Our results would seem to qualitatively agree
with the conclusions of modeling work, suggesting that the position of the x line is highly variable.

The timing of reconnection onset was discussed by Russell et al. [2008], who postulated a relationship
between reconnection onset and the position of the moon Titan in local time based on 6 events. We have
tested this relationship with the much larger data set presented in this paper, and we do not find that the
position of Titan is statistically significant in terms of linking to reconnection event observation.

We noted above that from the subset of plasmoid events with plasma velocity information, we can estimate
the average plasmoid length at ~0.44–23.9 RS. We note however that these numbers are highly sensitive
to trajectory effects, as spacecraft passes through the plasmoids may take the form of “cords” through the
edge as opposed to direct traversals of the central/widest part of the structures. Also, this calculation of
“length” is based on the assumption that plasmoids travel radially downtail after ejection and neglects any
azimuthal motion. The azimuthal extent of the reconnection region is not well constrained. At Earth, the
flow channel widths associated with bursty bulk flows are observed to be ~1–2 RE [Angelopoulos et al., 1996],
just less than 10% of the width of the Earth’s tail. However, this applies to the planetward moving portion,
which will be azimuthally limited. At Jupiter, Vogt et al. [2010] found that the mean flow channel width
associated with reconnection in the jovian tail is 18 RJ, 6.67–10% of the typical tail width, a value which they
suggested to be a lower bound, taking measurement uncertainties into consideration. In the absence of
multiple spacecraft or continuous plasma velocity measurements at Saturn, we are unable to constrain the
corresponding values. However, one must remember that once released, plasmoids are free to expand to
achieve pressure balance with their local surroundings, and thus, we might expect the azimuthal extent to
represent a larger portion of the tail width with increasing distance downtail.

In terms of local time, Figure 4c shows that there are many more observations of reconnection events
postmidnight than premidnight. The theoretical picture put forward by Cowley et al. [2004] suggested that
reconnection on closed field lines occurs predominantly in the dusk sector, with Dungey cycle open field line
reconnection dominating toward dawn. Thomsen et al. [2013] surveyed the dusk orbits of Cassini in 2010 and,
other than strong downtail flows relatively near the magnetopause, found no evidence for outward flow in
this region. They interpreted this to mean that Vasyliunas-style reconnection may have occurred on the dusk
flank but that these plasmoids are still trapped within outer closed field lines and thus not free to escape
downtail until they reach the postmidnight sector. It may also be that Cassini did not sample far enough
downtail in this portion of its orbit to observe reconnection outflow (note that their data set had no
measurements beyond XKSM~�20 Rs in the premidnight sector). In section 3 above, we present new plasma
data showing the composition and velocity of a plasmoid on day 60 of 2006 at a local time of 2.3 h. These
measurements indicated that this plasmoid contained plasma from an inner magnetospheric source and was
traveling with a total velocity of ~170 km/s, of which ~90 km/s was in the radial direction.

5.4. What is the Morphology of the Reconnection Region?

In section 4, we explored the morphology of the reconnection regions, applying MVA to three tailward
moving plasmoids to ascertain the direction of motion and to search for evidence of loop-like or flux rope-like
structures. We saw a mix of examples: one with a loop-like geometry, one with a flux rope-like geometry, and
one where the trajectory of the spacecraft through the outer portions of the plasmoid precludes a determination
of a flux-rope-like or loop-like central structure. What yields these particular geometries in the first place?

A possible reason quoted in the literature for the production of flux rope-type plasmoids is simultaneous or
sequential multiple x-line reconnection associated with substorms [e.g., Elphic et al., 1986; Slavin et al., 2003a;
Deng et al., 2004]. However, the single-spacecraft Cassini measurements do not allow us to observe multiple
reconnection sites in the tail at once, and to date, no measurements of the x-line region itself have been made
at Saturn. We note that the idea of a near-planet x line and a distant-tail x line is a popular picture in the
terrestrial magnetosphere. However, this is one which again we are unable to directly infer from Cassini data.
We suggest that the reconnection events shown in this paper are all associated with a near-Saturn reconnection
site. All are within 68 RS of the planet, which, by a simple scaling, is analogous to the region inside 30 RE at
Earth. The distant-tail x line at Earth is thought to be situated beyond ~100 RE. Thus, we cannot know, based on
our current data set, whether multiple x lines exist at different radial distances in Saturn’s tail, and hence, we
cannot conclude anything regarding their potential influence on interior plasmoid structure.
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The presence of a cross-tail magnetic field has been shown to be an important factor in the formation of flux
rope-like plasmoids [Liu et al., 2013], and suggestion made that this can come about via penetration of
the azimuthal component of the interplanetary magnetic field (IMF) into the magnetosphere [e.g., Moldwin
and Hughes, 1992]. Magnetic shear in the magnetotail can arise due to solar wind-magnetosphere coupling
via magnetic reconnection at the dayside magnetopause. Due to the combination of frozen-in-flux and
solar rotation, the IMF becomes increasingly tightly wound with increasing radial distance from the Sun. At
1 AU, this “Parker spiral angle” is ~45°, but by the time the solar wind reaches ~9 AU, the field is strongly
azimuthal, with an average angle of ~83° [Jackman et al., 2008b]. However, the strength of the IMF at Saturn’s
orbit is considerably weakened compared to that at Venus, Earth, and Mars. Perhaps the IMF at Saturn is not
always sufficiently strong to impose a significant By component on the entire magnetosphere, especially
given that it is competing against internal rotational dynamics for magnetospheric influence. In the case
where Saturn’s magnetotail lobes are not sheared to the degree that they are at other planets, flux rope-like
plasmoids would be much less likely to be formed.

A second aspect to consider is whether the plasmoids that Cassini observes are the result of reconnection
involving open field lines. Early theoretical work at Earth explored the differences in magnetic topology
introduced by reconnection on closed versus open field lines [e.g., Schindler, 1974; Hones, 1977]. Magnetic
loops were achievable, at least in two dimensions, from reconnection of antiparallel field lines from opposite
lobes at a single x line [e.g., Slavin et al., 2003a]. Evidence for reconnection of open lobe field lines at Saturn
was presented by Jackman et al. [2011]. However, we note that if the lobemagnetic field lines are significantly
sheared relative to one another, this may make flux ropes more likely than loops.

Overall, our results on the interior morphology of plasmoids at Saturn are mixed. It is clear that during 2006,
the hinging of the current sheet combined with the largely near-equatorial trajectory of the spacecraft has
meant that Cassini typically passed through the bottom portion of plasmoids. This would, for example,
reduce the duration of the encounters relative to the duration of a pass through the center of the structure
and make it likely that the measurements failed to capture the actual core of the structures encountered.
Thus, any conclusions we may draw regarding plasmoid-like or flux rope-like structures must be tempered
with the knowledge that the field signatures are highly sensitive to the spacecraft trajectory through the
structures. Future work will focus on fitting the field signatures using sophisticated flux rope fitting methods
such as those employed by Slavin et al. [2003a] and Kivelson and Khurana [1995] to discern the impact
parameter and explore the statistical trends in plasmoid axis orientation.

6. Summary

The aim of this study was to provide a comprehensive description of the local effects of magnetic
reconnection in Saturn’s magnetotail (e.g., changing magnetic topology and energization of electrons) and
the “global” effects (e.g., mass loss and flux closure). In order to achieve this aim, we have surveyed the Cassini
magnetometer and plasma spectrometer data from the deep tail orbits of 2006 and found 69 tailward
moving plasmoids, 17 TCRs, and 13 planetward moving events. Events can occur in isolation, as previously
reported, but can also be found in chains, likely linked to single-reconnection episodes. The vast majority of
events observed were tailward of the x line, and those planetward of the x line were observed over a wide
range of radial distances, making it impossible to derive a statistical separatrix and indicating that the x line at
Saturn is highly mobile. The average plasmoid observed at Saturn has a duration of ~17.71min, followed by
an extended interval of northward field, interpreted as analogous to the terrestrial postplasmoid plasma
sheet, representing a period of flux closure. The average TCR at Saturn is evidenced by a broad compression
of the field and a small deflection in the north-south component of the field. The average TCR compression
ratio is 18%. Several important case studies have been shown, including an example of two plasmoids and
two TCRs in quick succession, suggested to be linked to a single-reconnection episode. Plasma data for one of
these plasmoids indicate that it has a composition commensurate with an inner magnetospheric source, and
it is traveling with a total velocity of 170 km/s. Plasma data from 29 of the plasmoids have been used to
estimate a range in their length from 0.44–23.9 RS, and we estimate that reconnection episodes in Saturn’s tail
can close between 0.26 and 2.2 GWb of flux. The refinement of the assumptions that are involved in these
calculations will be the subject of future work. Themorphology of the reconnection region has been explored
using MVA, with both loop-like and flux rope-like topologies present, but with results highly sensitive to the
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trajectory of the spacecraft through the structures. We suggest that the observations presented here likely
represent the largest events, and we are not ruling out steadier, smaller-scale mass release, perhaps on the
dusk flank where observations thus far have been relatively scarce. The study of mass release at Saturn is key
to our understanding of global magnetospheric dynamics, and we hope that future orbits of the Cassini
spacecraft will afford us more chances to look in detail at the fascinating kronian magnetotail.
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