

Seasonal forecasting of groundwater levels in natural aquifers in the United Kingdom

J.D. Mackay^a, C.R. Jackson^a, M. Pachocka^a, A. Brookshaw^b, A. Scaife^b.

¹British Geological Survey, Environmental Science Centre, Keyworth, Nottingham, NG12 5GG, UK.

²Met Office, FitzRoy Road, Exeter, EX1 3PB, UK.

Thursday 1st May 2014, EGU, Vienna.

Background

Benefits of forecasting groundwater levels

- Societal
- Environmental
- Economic

Past research

- 'Black-box' hydrological modelling approaches
- Exploit memory (response time) of system
- Deterministic

•A new approach...

- Seasonal weather forecasts (GloSea5)
- Conceptual groundwater models (AquiMod)
- Ensemble groundwater level forecasts

http://www.hydoutuk.net/

Met Office Global Seasonal forecast System (GloSea5)

- Climate model core HadGEM3
- Ensemble forecasts
 - •Historical period = 24 members
 - •Real time = 42 members
- Monthly, up to 3 months ahead

•Correlation coefficient = **0.62** at 99% confidence level

(Scaife et al. 2014)

BGS lumped conceptual groundwater model (AquiMod)

Forecasting Sequence

Groundwater level hindcasts: Setup

- •Groundwater models calibrated to pre-1996 data
- •14 years of 3-monthly GloSea5 hindcasts (March 1996 to February 2010)
- •Percentile thresholds for high (72) and low (28) groundwater levels

	Spring S (MAM)	Summer (JJA)	Autumn (SON)	Winter (DJF)
Low	10	10	10	7
Normal	14	15	13	12
High	6	6	5	9

- •Overall hit frequency = 70%
- •Comparison to persistence forecast: RPSS = **0.14**

- •Significant **negative** bias
- •Greatest bias seen in November

GloSea5 rainfall forecasts

Downscalling of rainfall

Summary

- •Seasonal weather forecasts can be used in conjunction with simple conceptual groundwater models to forecast groundwater levels up to 3-months ahead with some skill.
- •The forecasting system correctly differentiates between future low, normal and high events 70% of the time.
- •The system shows least skill during periods of rapid transition where groundwater levels rise or fall rapidly.
- •There is currently a systematic negative bias in the forecasts, especially at the start of the recharge season.
- •Future work will include:
 - •Bias correction techniques for GloSea5 rainfall forecasts.
 - •More suitable non-linear downscaling approaches.
 - Continued development of AquiMod
 - Incorporation of model parameter/structure uncertainty

