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Abstract. The resonances of Hudson Bay, Foxe Basin and
Hudson Strait are investigated using a linear shallow water
numerical model. The region is of particular interest because
it is the most important region of the world ocean for dissi-
pating tidal energy.

The model shows that the semi-diurnal tides of the re-
gion are dominated by four nearby overlapping resonances.
It shows that these not only affect Ungava Bay, a region of
extreme tidal range, but they also extend far into Foxe Basin
and Hudson Bay and appear to be affected by the geometry
of those regions. The results also indicate that it is the four
resonances acting together which make the region such an
important area for dissipating tidal energy.

1 Introduction

In his study of tidal dissipation on the world ocean,Miller
(1966) estimated that Hudson Bay and the Labrador Sea dis-
sipated 140 GW of M2 tidal energy. This made it the fifth
most important region of tidal dissipation, the first four being
the Bering Sea, the Sea of Okhotsk, the Northwest Australian
Shelf and the European Shelf.

More recent studies have completely changed this picture.
Le Provost and Rougier(1997), using a numerical model,
found that the M2 tide dissipated 313 GW in the Hudson Bay
region. This made it their most important region for tidal dis-
sipation.

Egbert and Ray(2001) assimilated satellite altimeter data
into an ocean model and again found the Hudson Bay
region to be the most important, the M2 tide dissipat-
ing 261 GW. Next in importance was the European Shelf
(∼ 208 GW), followed by the Northwest Australian Shelf
(∼ 158 GW), the Yellow Sea (∼ 149 GW) and the Patagonian
Shelf (∼ 112 GW).

The importance of the Hudson Bay complex is also em-
phasised if one plots the M2 energy flux vectors for the North
Atlantic. This has been done in Fig.1, making use of the
satellite-derived tidal fields ofEgbert and Erofeeva(2002). In
the eastern North Atlantic the figure shows a northward flux
of tidal energy associated with a propagating Kelvin wave.
Part of the energy is lost to the European Shelf but a large
amount continues north. It then turns westwards and passes
south of Greenland before converging on Hudson Strait.

If the fluxes of Fig.1 are integrated along lines between
44◦ W, 42◦ N and the coasts of Spain and Greenland, the
results show that the M2 tide fluxes 490 GW northwards
into the northeast Atlantic and that 220 GW passes south of
Greenland towards Hudson Strait. At the entrance to Hudson
Strait the flux of energy is 250 GW – the increase being due
to a small northward flow of tidal energy on the western side
of the Atlantic.

Thus not only is the Hudson Bay complex the major tidal
dissipation region of the global ocean, it is also so effective
that no energy-transporting Kelvin wave continues south-
wards along the coast of Labrador and Newfoundland. This
is in marked contrast to the behaviour on the eastern side of
the ocean where a large fraction of the energy flux continues
past the resonant European continental shelves. Even though
the entrance to Hudson Strait is only 70 km wide, it transmits
much more energy than the Celtic Sea, at the entrance to the
English Channel and Irish Sea, which is over 400 km wide.

Continental shelf regions with large amounts of tidal dis-
sipation are usually associated with resonances of the shelf.
Examples are the Bristol Channel (Fong and Heaps, 1978;
Webb, 2013a), the Patagonian Shelf (Huthnance, 1980) and
the Northwest Australian Shelf. Such regions are usually as-
sociated with high tides, so one possible reason why Hud-
son Bay was overlooked is that it is only recently that Leaf
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Figure 1. Energy flux vectors for the M2 tide in the north Atlantic, based on from data from OTIS2 (Egbert and Erofeeva, 2002). Energy
flux in units of MW m−1.

Bay, part of Ungava Bay1 near the entrance to Hudson Strait,
has been reported as having the world’s second highest tidal
range (O’Reilly et al., 2005).

The high tides of Ungava Bay were studied byArbic
et al. (2007) using a time-dependent numerical model. This
showed that the tides of the region were affected by a quarter-
wavelength resonance between the coast and the deep ocean.
The resonance mode also showed maxima elsewhere in Foxe
Basin and Hudson Bay which, following the recent study of
the English Channel and Irish Sea (Webb, 2013a), might indi-
cate the presence of additional resonances affecting the tides.

The English Channel and Irish Sea study used a time-
independent model. This has the advantage that it can be run
for complex values of angular velocity and so allows a de-
tailed study of the resonant structure of a region.

The study uses a method of analysis in regular use by
physicists (e.g.Morse and Feshbach, 1953; Mathews and
Walker, 1965; Courant and Hilbert, 2008; Riley et al., 1998)
but not widely used by physical oceanographers. In this, the
response to forcing of a linear (or approximately linear) sys-
tem is shown to depend on the resonance properties of the
system. Use is also made of the fact that, for such systems,
the response to periodic forcing is described by an analytic
function, the response function, whose poles correspond to
the resonant angular velocities or eigenvalues of the sys-
tem. Once the resonance eigenvalues and eigenfunctions are
known, the response of the system to any kind of forcing can
be calculated.

Although the tides are affected by nonlinearities, the am-
plitude of the nonlinear tidal constituents are small over most
of the ocean. As a result, the assumption of linearity is a good

1Leaf Bay is adjacent to Hopes Advanced Bay, indicated by the
letter U in Fig. 2. Other locations discussed in the text are also
shown in this figure.

first approximation for any study of the large-scale behaviour
of the tides.

If the system is frictionless, the poles of the response func-
tion lie on the real angular velocity axis and the eigenfunc-
tions corresponding to the different resonances are orthogo-
nal. If friction is present, as it is within the ocean, the poles
lie off the real axis and the imaginary component of angular
velocity then equals the inverse decay time of the resonance.
With friction the eigenfunctions are also not orthogonal. This
complicates the analysis, but it is still tractable making use of
the adjoint set of equations and eigenvalues.

A simple example of the approach, using a 1-D tidal
model, is given inWebb(2011). Further details and exam-
ples, solving Laplace’s tidal equations in more realistic re-
gions of ocean, are given in other papers from the present se-
ries (Webb, 2012, 2013a, b, 2014). Results from three much
earlier papers on the tides (Webb, 1973, 1976, 1982) are also
relevant.

In the present paper, a model similar to that used for the
English Channel study is used to study the Hudson Bay re-
gion. The study aims to investigate the resonances and also
the impact of three unusual properties of the region.

The first of these concerns Hudson Strait. With central
depths of over 300 m, the strait is much deeper than is nor-
mal for continental shelf regions. The extra depth means that
tidal wavelengths are longer than normal and frictional ef-
fects are smaller. As a result there is a potential for quarter
and three-quarter wavelength resonances extending far into
Hudson Bay in the south and into Foxe Basin in the north.

A second concerns the complex pattern of bays and chan-
nels in Foxe Basin. These all have the potential for support-
ing resonances and introducing extra complexity into the sys-
tem.
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Finally, the open region of Hudson Bay in the south is large
enough to support a circulating wave. This may act like a
resonator but a damped circulating wave might also have the
properties of a damped infinite channel.

Section 2 of the paper gives the details of the model used
for the study. Section 3 then reports on the results obtained
using real values of angular velocity and Sect. 4 extends this
to complex values of angular velocity. Section 5 is concerned
with the main resonances affecting the semi-diurnal tides and
Sect. 6 investigates how these combine to generate the ob-
served response within the tidal band. Finally the discussion
section reviews the main results of this study and considers
their implications.

2 The numerical model

The model used to study the Hudson Bay, Hudson Strait
and Foxe Basin region is based on that described byWebb
(2013a). It solves the linear form of Laplace’s tidal equations
at a single angular velocity using finite difference equations
based on an Arakawa C-grid distribution of model variables.

The model covers the region bounded by the latitude
and longitude lines at 94.25◦ W, 57.5◦ W, 51.125◦ N and
70.375◦ N, with a resolution of 0.125◦ in the east–west di-
rection and 0.25◦ in the north–south direction. The other free
parameters are the linear coefficient of bottom friction and
the minimum cell depth. These were set to 0.2 cm s−1 and
2.5 m, as inWebb(2013a).2

Coastlines and cell depths are based on the GEBCO coast-
line depth data sets (IOC et al., 2003). The GEBCO depth
data is at a higher resolution (1/60◦) than that used for the
model grid, so depths were calculated such that the volume
of each model grid cell is the same as the corresponding
GEBCO region. Away from coastlines this is equivalent to
them having the same average depth.

As discussed inWebb(2013a), coastlines are specified to
pass through velocity points, such that the normal velocity at
the coast can be specified to be zero. Open boundaries are
specified to follow lines of sea surface height points.

In the extreme northwest, the model closes off the narrow
Fury and Hecla Strait which connects Foxe Basin with the
Gulf of Boothia. The east of the strait is blocked by Elder
and Ormonde islands, with the largest of the narrows being
only 2 km wide. The total cross-section is so small that little
tidal energy can flow into or out of Foxe Basin via this route.

The open boundary includes part of the Labrador Sea
with depths extending down to 3000 m. In this region of the
model the northern and southern limits are at 57.125◦ N and

2The model allows the linear coefficient of bottom friction to be
a function of position. As discussed byHunter(1975) this allows the
mean effect of a realistic non-linear bottom friction term to be in-
cluded. However, this requires additional runs of a fully non-linear
model and has not be used for the study reported here.
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Figure 2. Model solution for the M2 tide. Thick lines are contours
of amplitude at 0.5 m, 1 m, 2 m and 3 m. Thin lines are contours of
phase, at intervals of 30 degrees, relative to the equilibrium tide at
Greenwich. Colours denote phase quadrant (red, 0◦–90◦; orange,
90◦–180◦; green, 180◦–290◦; blue, 270◦–360◦) with the more in-
tense colours denoting higher amplitudes. The tide gauge stations
are C, Churchill; H, Hall Beach; R, Repulse Bay; W, Great Whale
River; U, Hopes Advance Bay (Ungava Bay). Locations R1 to R4,
S (Southampton Island), FB (Frobisher Bay) and CS (Cumberland
Sound) are referred to elsewhere in the paper.

66.875◦ N. As a result the open boundary in the east includes
almost all of the energy inflow region shown in Fig.1.

For the open boundary,Webb (2013a) used Dirichlet
boundary conditions in which the tidal height on the bound-
ary is fixed by observations. The tangential velocity is set to
the value one row in from the open boundary.

The present version of the model uses the same open
boundary condition for the validation stage where the deep
ocean tide is known. Then in the remainder of the study it
is changed to allow radiation of energy back into the deep
ocean. The radiation scheme is based on that ofFlather
(1976) which is often used for time-dependent models. De-
tails are given in Appendix B1.

3 The M2 tide

The model was validated using a simulation of the M2 tide.
For this the model was forced at the open boundary with
tidal amplitudes and phases taken from a global assimilation
of satellite altimeter data (Egbert and Erofeeva, 2002). The
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model result is shown in Fig.2 and the values at representa-
tive stations compared with tidal observations (IHB, 1954) in
Table1.

The agreement is good at Hopes Advance Bay, in the west
of Ungava Bay near Leaf Basin. The phase in the deep ocean
is around 300◦ so the coast here is approximately 70◦ out of
phase. Given that some of the highest tides in the world are
found in Leaf Basin, this phase difference between the coast
and the deep ocean is less than the 90◦ expected from a pure
quarter-wavelength resonance.

Agreement is also good at Churchill in the far west of Hud-
son Bay and, after the tidal wave has propagated around the
south of Hudson Bay, the reduction in amplitude is repre-
sented reasonably well at Great Whale River in the south-
east. However, the model tide arrives there early. This may
indicate that the model depths are too deep or it may be be-
cause the model is not correctly representing the nearby am-
phidrome.

Unfortunately, in the north of the model region, analyses
are available from only three stations and these are based on
only a month’s data. Two of these (Repulse Bay and Hall
Beach) are included in the table. The third, Rowley Island,
lies close to Hall Beach.

At both Repulse Bay and Hall Beach the model ampli-
tude is not unreasonable but the phase is almost 180◦ out of
agreement. Two series of tests were carried out to see if the
difference could be understood.

In the first, the model was run with different values of
the friction coefficient. This was found to affect the ampli-
tude at inland stations but have only a small effect on phase.
Thus halving the friction coefficient increased the amplitude
at Churchill by over 50 % but only changed the phase by 11◦.
At Repulse Bay the increase was over 150 % and the phase
change 12◦.

The second set of tests arose from the observation that
model phases close to the observed phase at Repulse Bay
were found in the southwest of Foxe Basin. There is also a
minimum amplitude in the channel joining the two regions
and an area of rapid phase change, implying the presence of
an amphidrome or nearby virtual amphidrome.

As the channel may have been too small in the model,
tests were carried out where this was made wider and had
its shallows removed. The changes affected the amplitude at
Repulse Bay but had very little effect on the phases or the po-
sition of the amphidrome. A 180◦ phase change at Repulse
Bay only appears possible if the amphidrome is moved to the
channel running south towards Hudson Bay.

The phase agreement at Churchill indicates that ampli-
tudes and phases are good in Hudson Bay, so the am-
phidrome can only be moved if the depths in the south of
Foxe Basin are increased to raise the speed of the tidal wave
through the region. Similarly, the phase error at Hall Beach,
which is also in a region of low amplitudes, may be explained
if the position of the model amphidrome is incorrect due to
errors in model depths.
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Figure 3. In colour: amplitude of the response function plotted
as a function of angular velocity for real values of angular veloc-
ity. Colours: red, Ungava Bay (Hopes Advance Bay); orange, loca-
tion R2 (see Fig.1), north side of Hudson Strait; brown: Churchill;
green, Repulse Bay; light blue, R3, East Foxe Basin; dark blue, R4,
North Foxe Basin. In black: amplitude of outgoing (radiated) wave
at boundary point R1.

Good depth data from Foxe Basin is limited, as it is cov-
ered in ice for much of the year. Freely floating sea-ice should
not affect the tidal wave. Sea-ice fixed to the shore should re-
sult in increased turbulence and damping but is not expected
to have a significant effect on wavelength.

This is because, as discussed inWebb(2011), with the fric-
tion coefficient and depths used in the model, friction has
a significant effect on amplitudes and decay times but only
a small effect on wavelength. Similarly, the use of a linear
friction coefficient, instead of a fully nonlinear one, should
affect decay times and amplitudes but have little effect on
wavelength.

The suspicion therefore remains that the model phase er-
rors result from a problem with the depths. No more can be
done at this stage but the phase errors need to be kept in mind
in the remainder of this analysis.

4 The response at real values of angular velocity

For the remainder of the study, the model was forced at the
open boundary with an incoming wave of unit amplitude.
Figure3 shows the amplitude of the resulting model response
at representative points within the region plus the amplitude
of the outgoing wave at one point of the open boundary.

The chosen locations include Ungava Bay, Repulse Bay
and model points R2 and R3. The latter two are on the north
side of Hudson Strait and the east side of Foxe Basin where

Ocean Sci., 10, 411–426, 2014 www.ocean-sci.net/10/411/2014/
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Table 1.Model M2 tidal amplitude (m) and phases (degrees relative to the equilibrium tide at Greenwich) compared with tide gauge analyses
(IHB, 1954).

Model Tide gauge

Amp. (m) Phase◦ Amp. (m) Phase◦

Hopes Advance Bay 69.6◦ W 59.4◦ N 3.16 13 3.88 10
Churchill 94.2◦ W 58.8◦ N 1.46 13 1.52 24
Great Whale River 77.8◦ W 55.3◦ N 0.54 345 0.63 17
Repulse Bay 86.5◦ W 66.4◦ N 1.63 18 1.88 192
Hall Beach 81.2◦ W 68.8◦ N 0.36 186 0.22 25
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Fig. 3. In colour: amplitude of the response function plotted as a function of angular velocity for real values of

angular velocity. Colours: Red, Ungava Bay (Hopes Advance Bay); Orange, Location R2 (see Fig. 1), North
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Fig. 4. Real and imaginary components of (a) the response function on the west side of Ungava Bay and (b) the
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the value (1+ i0).

on the western shore of Hudson Bay, but stations further south are omitted as the responses there are180

similar to Churchill but with lower amplitudes.

Finally, the figure includes the outgoing wave at point R1 on the open boundary (see Fig. 2). This
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Figure 4. Real and imaginary components of(a) the response function on the west side of Ungava Bay and(b) the outgoing wave at point
R1 on the open boundary, plotted for real values of angular velocity between zero and 30 rad day−1. Crosses at intervals of 10 rad day−1. The
red sections correspond to the diurnal and semi-diurnal tides. At zero rad day−1 the response function at Ungava Bay has the value(2+ i0)

and the outgoing wave has the value(1+ i0).

the model semi-diurnal tides are highest. A station in north
Foxe Basin is also included because the response there ap-
pears to be very different to that of east Foxe Basin. In the
south, the figure includes Churchill, on the western shore of
Hudson Bay, but stations further south are omitted as the re-
sponses there are similar to Churchill but with lower ampli-
tudes.

Finally, the figure includes the outgoing wave at point R1
on the open boundary (see Fig.2). This is chosen because
it is in deep water at the foot of the continental slope and
is in a position where it should give an indication of the be-
haviour of Kelvin waves travelling south out of the model
region. It also lies near the positions where the resonances,
discussed later, show the maximum energy losses through the
open boundary.

At zero angular velocity both the ingoing and outgo-
ing waves at the open boundary have unit amplitude, so
the amplitude everywhere equals two. As angular veloc-
ity increases, the amplitudes initially tend to decrease but
they then increase to maxima near the semi-diurnal tidal
band. There is then a general decrease to minima around

21 rad day−13 after which there are further maxima between
25 and 30 rad day−1.

Within this large-scale behaviour there are many individ-
ual maxima and changes in curvature, which, on the basis of
previous work, are likely to be due to individual resonances
or groups of resonances. Sometimes the maxima and changes
in curvature occur at the same angular velocity, indicating
that such regions are coupled and affected by the same reso-
nance. However, at other angular velocities the same regions
may have very different response to the forcing.

A noticeable feature of the outgoing wave at R1 is that
it has a minimum where the resonances are largest near
12 rad day−1 and a maximum near 22 rad day−1 where the
large-scale response is least. It then has another minimum
near 26 rad day−1 where Ungava Bay has a maximum.

An alternative view of the system’s response is obtained by
plotting the real and imaginary components of the response
function, as in Fig.4. As shown in Appendix A, the response
functionR(x,ω) at positionx and angular velocityω can be

3The paper uses units of radians per day (rad day−1). Thus the
semi-diurnal tides with periods around 12 h have angular velocities
around 4π rad day−1.
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Fig. 5. Response function amplitude on the west side of Ungava Bay plotted as a function of complex angular

velocity. The colours denote complex phase, in degrees, as denoted on the scale below the main figure. Values

at real values of angular velocity are plotted in blue. The origin (0,0) is on the right with the positive real axis

(in red) running from right to left and the negative imaginary axis running into the figure. Both are marked

by red crosses every 1 rad/day. The vertical axis is marked similarly at unit intervals. On the real axis green

crosses indicate the limits of the tidal bands near 2π (diurnal), 4π (semi-diurnal), 6π and 8π rad/day.

Applying these ideas to Fig. 4, at Ungava Bay the response function is seen to contain four main

loop structures. These consist of two small loops generating the amplitude minima near 2 and 21

rad/day and two larger ones which generate the maxima near 13 and 26 rad/day.

The outgoing wave at R1 also shows large and small loops at roughly the same angular velocities,220

but this time the large loops reduce the amplitude of the radiated wave. Near 12 rad/day the ampli-

tude drops to near 0.1, and as the radiated power depends on the square of the amplitude it implies

that the radiated power is close to 1% of the incident power.

5 The Response at Complex Values of Angular Velocity

The previous figures illustrate the type of information that can be obtained with models that can225

investigate real values of angular velocity. However an advantage of the present model is that it

can also obtain solutions for complex values of angular velocity and thus explore the full resonant

structure of the system.

Figures 5 to 7 show the response function at four stations plotted on the complex plane. In these

figures the vertical coordinate indicates the response function amplitude and the colour represents230

phase, zero phase being the phase of the incoming wave on the open boundary.

The functions can be interpreted using Eqn. 1. The poles in the complex plane correspond to the

resonances, the co-ordinate of the poles giving the real and imaginary components of each eigenvalue

ωj . The position of the resonances is the same in each figure but their strengths differ due to changes
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Figure 5. Response function amplitude on the west side of Ungava Bay plotted as a function of complex angular velocity. The colours
denote complex phase, in degrees, as denoted on the scale below the main figure. Values at real values of angular velocity are plotted in blue.
The origin (0,0) is on the right with the positive real axis (in red) running from right to left and the negative imaginary axis running into
the figure. Both are marked by red crosses every 1 rad day−1. The vertical axis is marked similarly at unit intervals. On the real axis green
crosses indicate the limits of the tidal bands near 2π (diurnal), 4π (semi-diurnal), 6π and 8π rad day−1.

expressed as a sum over the resonance contributions,

R(x,ω) =

∑
j

ψj (x)rj/(ω − ωj ) , (1)

whereωj is the angular velocity of thej th resonance,ψj (x)

describes the spatial structure of the resonance andrj de-
pends on how the system is forced.

At a fixed location when the resonances are well sepa-
rated, the response functionR(ω) near each resonances has
the form

R(ω) = Aj/(ω − ωj ) + B(ω) , (2)

whereB(ω) represents the smooth background due to of dis-
tant resonances.

When this function, without the background term, is plot-
ted as in Fig.4, its locus generates a simple circle. This starts
at the origin whenω is minus infinity. It then moves in an
anticlockwise direction, reaching maximum amplitude when
ω equalsωj , and returning to the origin asω approaches in-
finity.

When the background is added, isolated resonances gen-
erate single loops on the smooth background. Where reso-
nances are overlapping, more complicated structures may be
formed but the contribution of each resonance still has the
same simple underlying form.

Applying these ideas to Fig.4, at Ungava Bay the response
function is seen to contain four main loop structures. These
consist of two small loops generating the amplitude minima
near 2 and 21 rad day−1 and two larger ones which generate
the maxima near 13 and 26 rad day−1.

The outgoing wave at R1 also shows large and small
loops at roughly the same angular velocities, but this time
the large loops reduce the amplitude of the radiated wave.
Near 12 rad day−1 the amplitude drops to near 0.1, and as

the radiated power depends on the square of the amplitude it
implies that the radiated power is close to 1 % of the incident
power.

5 The response at complex values of angular velocity

The previous figures illustrate the type of information that
can be obtained with models that can investigate real val-
ues of angular velocity. However, an advantage of the present
model is that it can also obtain solutions for complex values
of angular velocity and thus explore the full resonant struc-
ture of the system.

Figures5–7 show the response function at four stations
plotted on the complex plane. In these figures the vertical
coordinate indicates the response function amplitude and the
colour represents phase, zero phase being the phase of the
incoming wave on the open boundary.

The functions can be interpreted using Eq. (1). The poles
in the complex plane correspond to the resonances, the coor-
dinate of the poles giving the real and imaginary components
of each eigenvalueωj . The position of the resonances is the
same in each figure but their strengths differ due to changes
in the eigenvectorψj (x) between locations.

The figures show only a quarter of the complex angular ve-
locity plane, the quarter where the real component of angular
velocity is zero or positive and the imaginary component is
zero or negative. There is no need to show more because, as
discussed in Appendix A, causality means that there can be
no resonances with positive imaginary components and sym-
metry requires the function to be mirrored about the imagi-
nary axis. Thus each resonance with angular velocityωj and
residuerj has a twin with angular velocity−ω∗

j and residue
−r∗

j .
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Figure 6. The response function amplitude plotted as a function of complex angular velocity(a) at Churchill and(b) location R3 on the
eastern side of Foxe Basin. Colours and axes as in Fig.5.

Fig. 7. Response function amplitude of the outgoing wave at point R1 on the open boundary. Colours and

scales as in Fig. 5.

5.1 Radiation at the Open Boundary

Figure 7 indicates that the first of the large loops in Fig. 4b is associated with resonances D to G and280

the second large loop with resonance U. The first of the small loops is associated with the shelf and

Rossby wave resonances. The cause of the second loop is not so clear but it is likely to be Q together

with K and L.

In the previous study of the English Channel and Irish Sea (Webb, 2013a), the high semi-diurnal

tides in the Bristol Channel were found to result from two resonances which both had slightly higher285

angular velocities. It was assumed that these were also responsible for the large amount of tidal

energy that was dissipated in the region.

The present result indicates that the strong absorption of tidal energy by the Hudson Bay system

is a result of four resonances which straddle the tidal band. The strong absorption thus may result

from straddling the tidal band or it may result from the fact that four resonances are involved, each290

of which can provide an independent contribution to resonant absorption of tidal energy.

6 Structure of the Main Semi-Diurnal Resonances

The spatial structures of the four largest resonances near the semi-diurnal tidal band were calculated

using the method outlined in Appendix B2. The results are shown in Fig. 8. The solutions have been

normalised so that the maximum amplitude is one and the phase is zero in the west of Ungava Bay.295

For two of the modes, the maxima are on the eastern side of Foxe Basin. The other two have maxima

on the western side of James Bay.
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Figure 7. Response function amplitude of the outgoing wave at point R1 on the open boundary. Colours and scales as in Fig.5.

In Fig. 5, Ungava Bay is plotted because of the interest in
its extreme tides and because the region appears to support a
classic quarter-wavelength resonance. Churchill and location
R3 (Fig. 6) are chosen to represent Hudson Bay and Foxe
Basin. Location R1 (Fig.7) lies beyond the outer edge of the
continental slope and is chosen to capture any Kelvin wave
progressing southward out of the model region.

In the limit of zero angular velocity, both the incoming and
outgoing wave on the open boundary have unit amplitude.
As a result, as shown in Figs.5 and6, the amplitude at the
origin is two. Figure7 shows only the outgoing wave on the
boundary, so its amplitude at the origin is one.

As angular velocity increases along the real axis, the phase
tends to increase. This arises because the ratio of the phase
to the angular velocity is a measure of the time taken for the
wave to propagate to each location from the forcing region.
Off the real axis the behaviour is more complicated due to the
phase increase of 2π radians close around each pole which
arises from Eq. (2).

Starting from near the origin, there is initially a dense
group of weak resonances which extends to near 6 rad day−1.
As in Webb (2013a) these are the continental shelf and
Rossby wave modes. There is then a series of gravity wave

modes extending to higher angular velocities. The angular
velocities of these modes, calculated using the method out-
lined in Appendix B2, are given in Table2.

Near the real axis, the colours show that the phase at Un-
gava Bay increases slowly, reaching 90◦ in the region of the
semi-diurnal tides. In contrast, there is a more rapid phase
change at both Churchill and at location R3, the colours in-
dicating that near the semi-diurnal band these phases are ap-
proximately 450◦, i.e. one and a quarter wavelengths differ-
ent from the forcing.

The response function for Ungava Bay shows that the
large-amplitude region near the semi-diurnal tidal band
(12 rad day−1) is associated with four main resonances.
These are resonances D to G of Table2. The figures show
that the same resonances are also responsible for large am-
plitudes in Hudson Bay and Foxe Basin, the strength of in-
dividual resonances there often being larger than in Ungava
Bay.

In some ways this result is surprising. Ungava Bay is
known to have high tides, and given the local bathymetry and
distance from the shelf edge and the phase of the response
function, the high semi-diurnal response might be expected
to be due to a single quarter-wavelength resonance. Hudson
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Fig. 8. The amplitude and phase of resonances D to G of table 2. Amplitudes normalised to one and phases are

relative to the west side of Ungava Bay. Thick lines are contours of amplitude at 0.1, 0.2, 0.4, 0.6 and 0.8. Thin

lines are contours of phase at intervals of 30 degrees. Colours as in Fig. 1, with zero phase between the red and

blue areas.
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Foxe Basin or Hudson Bay.

None of the modes can be characterised by a single unique feature, such as a standing wave in

a limited region of shelf. Instead they appear to involve the coupling of a series of such simple or

underlying modes.

14

Figure 8. The amplitude and phase of resonances D to G of Table2. Amplitudes normalised to one and phases are relative to the west side
of Ungava Bay. Thick lines are contours of amplitude at 0.1, 0.2, 0.4, 0.6 and 0.8. Thin lines are contours of phase at intervals of 30 degrees.
Colours as in Fig.1, with zero phase between the red and blue areas.

Bay and Foxe Basin are much further from the shelf edge
and on the same basis they must involve at least three-quarter
wavelength resonances and possibly one and a quarter wave-
length resonances.

At higher angular velocities the Ungava Bay response
function shows two further strong resonances. The first, res-
onance Q near 21 rad day−1, has little impact on the response
at real values of angular velocity. The second, resonance U
near 27 rad day−1, has a much greater impact on the response
in Ungava Bay. It is also responsible for an increased ampli-
tude at Churchill but has essentially no impact at position R3.
Further investigation of their structure showed that resonance
Q is primarily a quarter-wavelength resonance of Cumber-
land Sound and U a similar resonance of Frobisher Bay.

5.1 Radiation at the open boundary

Figure7 indicates that the first of the large loops in Fig.4b is
associated with resonances D to G and the second large loop

with resonance U. The first of the small loops is associated
with the shelf and Rossby wave resonances. The cause of the
second loop is not so clear but it is likely to be Q together
with K and L.

In the previous study of the English Channel and Irish
Sea (Webb, 2013a), the high semi-diurnal tides in the Bris-
tol Channel were found to result from two resonances which
both had slightly higher angular velocities. It was assumed
that these were also responsible for the large amount of tidal
energy that was dissipated in the region.

The present result indicates that the strong absorption of
tidal energy by the Hudson Bay system is a result of four res-
onances which straddle the tidal band. The strong absorption
thus may result from straddling the tidal band or it may re-
sult from the fact that four resonances are involved, each of
which can provide an independent contribution to resonant
absorption of tidal energy.
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Figure 9. Energy flux vectors for resonance F. The flux is nor-
malised so that its maximum value is one.

6 Structure of the main semi-diurnal resonances

The spatial structures of the four largest resonances near the
semi-diurnal tidal band were calculated using the method
outlined in Appendix B2. The results are shown in Fig.8. The
solutions have been normalised so that the maximum ampli-
tude is one and the phase is zero in the west of Ungava Bay.
For two of the modes, the maxima are on the eastern side of
Foxe Basin. The other two have maxima on the western side
of James Bay.

The energy flux vectors for resonance F are shown in
Fig. 9. This and similar plots (not included) for the other
modes show that, in each case, the flux is away from the deep
regions of Hudson Strait, both eastwards towards the open
boundary and westwards towards the high-amplitude regions
in Foxe Basin or Hudson Bay.

None of the modes can be characterised by a single unique
feature, such as a standing wave in a limited region of shelf.
Instead they appear to involve the coupling of a series of such
simple or underlying modes.

The first of these is the quarter-wavelength resonance in-
volving Ungava Bay. The justification for this is the fact that
all four modes show an approximate 90 degree phase lag be-
tween the west side of Ungava Bay and the shelf edge or open
boundary – although depending on the precise point chosen
the value can vary between 75 and 130 degrees.

A second is a three-quarter wavelength mode between the
shelf edge or open boundary and the east side of Foxe Basin.

Table 2. Real and imaginary components of angular velocity (in
radians per day) for the gravity wave resonances.

Angular velocity Angular velocity

Real Imag. Real Imag.

A 4.1435 −1.1716 N 19.9437 −2.5796
B 5.1052 −1.6125 O 20.2071 −1.5208
C 7.5167 −1.2326 P 20.9670 −1.8545
D 9,4433 −1.5199 Q 21.4514 −2.1738
E 10.8327 −1.7144 R 23.2567 −1.6131
F 12.1613 −1.5320 S 24.4043 −1.3558
G 13.9215 −1.6782 T 26.1338 −1.6607
H 15.6169 −3.9629 U 26.5379 −1.2928
I 16.0036 −1.5008 V 27.7020 −2.0412
J 16.5089 −4.4841 W 28.7601 −1.1003
K 17.1372 −1.4164 X 28.9116 −1.7231
L 18.2980 −1.2522 Y 29.0517 −4.0404
M 19.7361 −1.5471

As seen best in resonance E where there is a maximum in
Hudson Strait and a node to the north of Southampton Is-
land, the locations lying roughly one-quarter and one-half of
a wavelength from the open boundary.

A third is a half-wavelength resonance trapped between
the northwest and southeast coasts of Foxe Basin. This is
best seen in resonance D, but as the model had poor agree-
ment with the measured tide in the NW of Foxe Basin, this
possibility should be treated with caution.

Finally, Hudson Bay itself appears to support its own un-
derlying mode, consisting of a single wavelength that circles
the bay in an anticlockwise direction. This is best seen in
resonance F.

The results imply that although resonances involving the
shelf edge are important, the grouping of resonances around
the semi-diurnal tides is partly due to standing waves within
the interior of the Hudson Bay system.

7 Resonant contributions to the semi-diurnal tides

As discussed inWebb(2012), the response function near a
tidal band can be split into the contribution of nearby reso-
nances and a smooth background due to distant resonances.
Thus,

R(x,ω) =

∑
j

Aj (x)/(ω − ωj ) + S(x,ω) + B(x,ω) , (3)

whereR(x,ω) is the response function at positionx and an-
gular velocityω. The sumj is over key nearby resonances
andAj (x) is the residue atwj , the resonance angular veloc-
ity. Methods for calculating the residue are described in Ap-
pendix B3. For this part of the analysis, the symmetry term
S(x,ω), due to the mirror images of the resonances in the
summation, is simple to calculate and so is split off from the
background.
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Fig. 10. In black: real and imaginary components of the response function (a) on the west side of Ungava Bay

and (b) the outgoing wave at point R1 on the open boundary, plotted for real values of angular velocity between

11 and 14 rad/day. Coloured vectors indicate the contributions of the resonances D to G of table 2 and their

conjugates. The blue line is the residual background. The red section of the main curve corresponds to the

semi-diurnal tides.
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Figure 10. In black: real and imaginary components of the response function(a) on the west side of Ungava Bay and(b) the outgoing wave
at point R1 on the open boundary, plotted for real values of angular velocity between 11 and 14 rad day−1. Coloured vectors indicate the
contributions of the resonances D–G of Table2 and their conjugates. The blue line is the residual background. The red section of the main
curve corresponds to the semi-diurnal tides.

In Fig.10, Eq. (3) has been used to determine how the four
resonances of Fig.8 contribute to the high semi-diurnal tides
of Ungava Bay and the low outgoing wave at position R1 on
the open boundary.

It shows that in Ungava Bay the high tides are primarily
due to resonances F and G. They both have large amplitudes
and, as their phases are similar, they reinforce each other.
Resonance E makes some contribution, but D is insignificant,
its amplitude being smaller than the background.

Resonances F and G are also the dominant ones at position
R1. At 12 rad day−1 they both have the effect of reducing the
amplitude of the outgoing wave by about a third. At the same
point resonances D and E are contributing to a reduction of
the outgoing wave, but by 13 rad day−1 this is no longer the
case.

The net effect of the resonances at 12 rad day−1 is to re-
duce the response function amplitude from 0.91 to 0.15.
Assuming that the power is proportional to the amplitude
squared, this means that the four resonances are absorbing
over 97 % of the incident tidal energy. Resonances F and G
together reduce the energy by approximately 90 % and al-
though the contributions of resonances D and E are much
smaller they are responsible for absorbing over 70 % of the
remaining energy.

8 Conclusions

The study has shown that the semi-diurnal tides of the Hud-
son Bay region are dominated by four resonances. These
straddle the semi-diurnal tidal band and contribute both to
high tidal amplitudes within the region and to very low am-
plitudes in the tidal wave radiated away from the region.

The previous study, made using a time-dependent model
(Arbic et al., 2007), was only able to identify one resonance
affecting the semi-diurnal tides. The new result therefore em-
phasises the usefulness of the present approach.

The study does not explain why the Hudson Bay system is
such a good absorber of tidal energy and more effective than
the English Channel and Irish Sea but it does give hints that
need to be followed up.

The first is the primary result that the Hudson Bay system
has four significant resonances close to and straddling the
semi-diurnal tidal band. In the case of the Bristol Channel
and Gulf of St Malo there are only two resonances and they
lie to one side of the tidal band.

The study also used one of the points on the open boundary
as an analogue of the reflected wave for the case of a uniform
amplitude incident wave at all points on the open boundary.
Although the uniform amplitude incident wave is a special
case, it is a plausible first approximation to the way the M2
tide forces the region.

The results show that each of the four main resonances
acted to reduce the amplitude of the reflected wave in the
semi-diurnal tidal band. At 4π rad day−1, two of the reso-
nances together absorbed∼ 90 % of the incident energy and
the other two, although weaker, absorbed∼ 70 % of the re-
mainder. The small reflection coefficients imply that all four
resonances have impedances which are well matched to that
of the deep ocean.4

The study shows that the closeness of the resonances is
partly due to the complex topography of the region. As well
as the “classical” 1/4 wavelength wave between Ungava Bay
and the shelf edge, the deep Hudson Strait also allows the de-
velopment of 3/4 wavelength, and possibly 5/4 wavelength,

4Impedance matching is critical in the design of waveguides and
in other systems involving propagating waves.
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resonances between the shelf edge and features far to the
west. There, both Foxe Basin and Hudson Bay are of the right
size to support standing waves of near-tidal period.

The depth of Hudson Strait also means that energy dissi-
pation is reduced compared with a normal shelf. The mean
depth (∼ 300 m) is approximately four times that of a normal
shelf (∼ 80 m), so the frictional effect per wavelength in the
strait should be halved. This probably helps in matching the
Foxe Basin and Hudson Bay components of the resonances
to the deep ocean.

The effectiveness of a continental shelf region in absorbing
tidal energy is also likely to depend on both the length of con-
tinental shelf involved and the angle at which the tidal wave

approaches the shelf. These features have not been studied
here but as it passes the English Channel and Irish Sea, the
semi-diurnal tidal wave in the deep ocean runs roughly par-
allel to the shelf edge. In contrast, as it approaches Hudson
Strait the wave approaches roughly at right angles to the shelf
edge.

To conclude, the present study has given new insights into
the properties of the Hudson Bay region and the complex
interactions that are involved. The study has shown that there
is still much to be learnt about the physics of the region but
the results presented here should provide a useful basis for
further work.
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Appendix A: Solution in terms of resonances

Laplace’s tidal equations with a linear friction term are

ρ∂u/∂t + ρf ×u+ ρg∇η + (κ/h)u = ρg∇η0 , (A1)

∂η/∂t + ∇ · (hu) = 0 ,

whereu is horizontal velocity,η tidal height,ρ density,f
the Coriolis parameter,g gravity, h water depth,κ the lin-
ear coefficient of bottom friction andη0 the equilibrium tide
forcing the ocean.

If u(x, t) andη(x, t) at locationx and timet are repre-
sented by the vector9,

9(x, t) =

(
u(x, t)

η(x, t)

)
, (A2)

and if

90(x, t) =

(
0

η0(x, t)

)
, (A3)

then the tidal equations can be written in the form

∂9(x, t)/∂t + L9(x, t) = L90(x, t) (A4)

where L is a matrix operator discussed further inWebb
(2014).

Consider the response when the system is forced at angular
velocityω. The solution will then have the form

9(x, t) = (9(x,ω)exp(−iωt) + c.c. , (A5)

= 2Re(9(x,ω)exp(−iωt)) , (A6)

whereRe() represents the real part andc.c. represents com-
plex conjugate. Substituting in Eq. (A4),

(L − iω1)9(x,ω) = L90(x,ω) , (A7)

where90(x,ω) and9(x,ω) are the forcing and ocean re-
sponse at angular velocityω and1 is the unit matrix.

Equations of this form can be solved using the eigenfunc-
tions of the operatorL and its adjointL̃. The basic method is
described inMorse and Feshbach(1953). Webb(2014) dis-
cusses its application to Laplace’s tidal equations and shows
how a suitable definition of the inner or dot product generates
a physically meaningful adjoint.

Dropping thex coordinate, ifωj andψj are the eigenval-
ues and eigenfunctions of the equation

(L − iωj 1)ψj = 0 (A8)

and if λk andφk are the eigenvalues and eigenfunctions of
the adjoint operator

(L̃ − iλk1)φk = 0, (A9)

then (Morse and Feshbach, 1953; Webb, 2014)∫
dx φ∗

j (x) ·ψk(x)(ωj + λk) = 0. (A10)

Thus eitherλk equals−ω∗

j or the integral is zero, so the
eigenfunctions are orthogonal.

Normaliseψk(x) so that the above integral withφk(x)

equals one. Then expanding9(x,ω) and the equilibrium tide
90(x,ω) in terms of the eigenfunctions

9(x,ω) =

∑
j

aj (ω)ψj (x), (A11)

90(x,ω) =

∑
j

ψj (x)

∫
dx′φ∗

j (x
′) ·90(x

′,ω). (A12)

Substituting in Eq. (A7),

(L − iω)
∑
j

aj (ω)ψj (x) =

L
∑
j

ψj (x)

∫
dx′φ∗

j (x
′) ·90(x

′,ω),∑
j

aj (w)(iωj − iω)ψj (x) =

∑
j

ψj (x)iωj

∫
dx′φ∗

j (x
′) ·90(x

′,ω). (A13)

Multiplying by φ∗

k(x) and integrating overx,

ak(ω) = (−ωk/((ω − ωk))

∫
dx′ φ∗

k(x
′) ·90(x

′,w). (A14)

Thus the solution to Eq. (A4) is

9(x,ω) =∑
j

ψj (x)
−wj

w − wj

∫
dx′ φ∗

j (x
′) ·90(x

′,ω). (A15)

In the type of problem investigated in this paper, the forc-
ing term90(x, t) can be separated into a spatial term90(x)

and a time-dependent term90(t), with Fourier transform
90(ω). Then,

9(x,ω) = R(x,ω)90(ω) , (A16)

R(x,ω) is the (vector) response function

R(x,w) =

∑
j

ψj (x)
rj

w − wj

(A17)

rj = −ωj

∫
dx′ φ∗

j (x
′) ·90(x

′) . (A18)

The response functions plotted in Figs.5 and6 are the sea
surface elevation component ofR.

A1 Forcing at an open boundary

A similar result is obtained when forcing is due by a tidal
wave entering through an open boundary. In this case the
eigenfunctions are first obtained withη equal to zero on the
open boundary and the equilibrium tide term in Eq. (A1) is
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replaced by a function which is zero within the region stud-
ied but has a step change along a line just inside the open
boundary,

η0(x) = −2(n)ηb(s), (A19)

wheren ands are the coordinates normal and tangential to
each point on the open boundary andηb(s) is the forced wave
at positions. The function2 is zero inside the boundary and
equals one on and outside the open boundary.

To confirm that Eq. (A19) has the right form, integrate
Eq. (A1) between a point a distanceε within the region and
a point on the boundary. As the distanceε tends to zero, all
terms tend to zero except for

0∫
−ε

dn ρg(∂/∂n)η = −

0∫
−ε

dn ρg(∂/∂n)2(n)ηb(s). (A20)

But η is zero on the boundary and the integral of the gra-
dient of a step function is one, so after integrating and rear-
ranging, the value of sea level just inside the boundary equals

η = ηb(s), (A21)

as required.
The derivation of Eq. (A15) follows as before, the main

change occurring in Eq. (A13) which now reads as

(L − iω1)
∑
j

aj (ω)ψj (x) =

(
−g∇(2(n)ηb(s))

0

)
.(A22)

When multiplied byφ∗

k(x) and integrated overx, the right-
hand side becomes an integral around the open boundarys,

− g

∮
ds φn∗

k (x(s)) · (∂/∂n)(2(n)ηb(s)), (A23)

whereφn
k is the velocity component of eigenvectorφk which

is normal to the boundary. Integrating by parts, this becomes

g

∮
ds ∂/∂n(φn∗

k (x(s))) · ηb(s). (A24)

Thus the integral of Eq. (A15) is replaced by an integral
around the open boundary.

A2 Symmetry

Equation (A5) corresponds to a Fourier transform represen-
tation when only a single angular velocity is present. For the
general case where the system contains a full range of an-
gular velocities, the Fourier transform between the time and
angular velocity representation of9(x) is

9(x, t) =

∞∫
−∞

dω exp(−iω t)9(x,ω), (A25)

9(x,ω) =
1

2π

∞∫
−∞

dt exp(iω t)9(x, t). (A26)

9(x, t) is real so

9(x,−ω∗)∗ =
1

2π

∞∫
−∞

dt exp(iω t)9(x, t), (A27)

and

9(x,−ω∗)∗ = 9(x,ω) . (A28)

90(x, t) is also real, so

90(x,−ω∗)∗ = 90(x,ω) . (A29)

Similarly, for the response functionR(x,ω) relating
9(x,ω) and90(x,ω),

R(x,−ω∗)∗ = R(x,ω) . (A30)

In Eqs. (A15) and (A17), this means that if there is a pole
atωj with residuerj (x), there must also be one at−ω∗

j with
residue−rj (x)∗.

A3 Causality

Substituting the response function equation (Eq.A16) into
Eq. (A25),

9(x, t) =

∞∫
−∞

dω exp(−iω t)9(x,ω) (A31)

=

∞∫
−∞

dω exp(−iω t)R(x,ω)90(ω), (A32)

=

∞∫
−∞

dω exp(−iω t)R(x,ω)
1

2π

∞∫
−∞

dt ′ exp(iωt ′)90(t
′). (A33)

Let the forcing90(t) be an impulse at time zero only. Such
an impulse can be represented by the product90δ(t). 90 is a
constant and the delta functionδ(t) has the property that for
any functionF(t),

∫
dt δ(t)F (t) = F(0). (A34)

www.ocean-sci.net/10/411/2014/ Ocean Sci., 10, 411–426, 2014



424 D. J. Webb: Tidal resonances of Hudson Strait

Then, using Eq. (A17),

9(x, t) =

∞∫
−∞

dω exp(−iω t)
∑
j

ψj (x)
rj

w − wj

1

2π

∞∫
−∞

dt ′ exp(iω t ′)δ(t ′)90 (A35)

=
1

2π

∞∫
−∞

dω exp(−iωt))

∑
j

ψj (x)
rj

w − wj

90. (A36)

The integrand is an analytic function ofω, so the integral
can be completed using the method of contour integration.
If t is positive, exp(−iωt) tends to zero asω tends to mi-
nus infinity, so the contour can be completed in a clockwise
direction around the negative imaginary half-plane. Thus,

9(x, t) = −i
∑
j

exp(−iωj t) ψj (x)rj90, (A37)

where the sum is over the poles in the negative imaginary
half plane. Each resonance oscillates independently and dies
away at its own natural rate.

If t is negative, the contour can be completed around the
positive imaginary half-plane. If there are any poles there,
the result is non-zero, so the system is responding before any
forcing is applied. This is impossible for physically realistic
systems as it breaks causality. As a result there can be no
poles in the positive imaginary half-plane, i.e. no resonances
with positive imaginary components of angular velocity.

Appendix B: Mathematical and numerical details

The model used for the present study represents Laplace’s
tidal equations as a set of finite difference equations on an
Arakawa C-grid, as described inWebb(2013a). The model
assumes a time dependence of the form exp(−iωt), wheret

is time andω the angular velocity of the ocean wave. If the
model variables are represented by a vectory, then the finite
difference equations can be written as a matrix equation,

(L − iω1)y = z , (B1)

where1 is the unit matrix. The term(−iω1) results from
the time-dependent terms in Laplace’s tidal equations and the
matrix L contains the contributions from all the other terms
in the set of finite difference equations. The vectorz repre-
sents the forcing. If the variables are numbered in a system-
atic manner,L becomes a band matrix and the equations can
be solved using efficient band matrix algorithms.

B1 The open boundary condition

In previous versions of the model, sea surface height (SSH)
points on the open boundary were treated explicitly as part
of the model vectory. However, an investigation of the prop-
erties of the adjoint system (Webb, 2014) showed that it was
better to treat the open boundary condition implicitly, that is
as an additional term acting on the normal velocities at points
adjacent to the open boundary.

Webb(2014) also showed that it is better to set the tan-
gential velocities at the open boundary to zero, so this was
done in the present model. The change ensures that the finite
difference Coriolis terms conserve energy and also ensures
that the resulting matrix equation has the expected adjoint
symmetry.

The previous model also used Dirichlet boundary condi-
tions in which SSH on the open boundary is fixed. To allow
radiation of energy through the open boundary, a scheme has
been developed based on the one proposed byFlather(1976)
which is often used for time-dependent models.

Let ζ represent sea surface height andu the velocity nor-
mal to an open boundary placed at the origin of coordinatex.
In a plane wave propagating in the positive direction in a re-
gion of constant depthh, the sea surface height and velocity
are related by

u = (c0/h)ζ, (B2)

where the wave speedc0 equals(gh)1/2.
The new boundary condition assumes that the solution in

the neighbourhood of a boundary point can be expressed as
the sum of two such waves each propagating in opposite di-
rections normal to the boundary,

ζ = Aexp(ikx − iωt) + B exp(−ikx − iωt), (B3)

u = A(c0/h)exp(ikx − iωt) − B(c0/h)exp(−ikx − iωt).

If A represents the unknown outgoing wave and B the
known incoming wave, then eliminatingA, the open bound-
ary condition becomes

ζ − (c0/h)u = 2B. (B4)

As the open boundary value ofζ is not part of the model
vector, this equation is used to replace the term involving the
open boundaryζ in the equation for the normal velocity point
closest to the boundary.

Webb(2013b) proposed a similar scheme but one which
allowed for the differing position of the SSH and normal
velocity points. Unfortunately, the resulting open boundary
condition is a function ofω and as a result the matrixL also
becomes a function ofω. Tests were carried out with both
boundary conditions, to see the effect of the change on the
calculated eigenvalues and eigenfunctions. The effect was
small, the differences in the calculated resonance eigenval-
ues being less than 0.01 rad day−1.
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B2 Calculation of eigenvalues and eigenvectors

Initial estimates of the eigenvaluesωj were obtained from
the data sets used to generate Figs.5 and6 by fitting the four
points around each maximum of the response function, for a
fixedxk, to the expansion

R(xk,ω) = Rj (xk)/(ω − ωj ) + B(xk) + C(xk)ω. (B5)

Accurate values of the eigenvector and eigenvalue were
then obtained by inverse iteration, i.e. by solving the set of
equations

(L − iω′

j 1)ψ
[n]

j = ψ
[n−1]

j /N
[n−1]

j , (B6)

whereω′

j is the initial estimate ofωj , ψ [n]

j is the solution

following thenth iteration andN [N]

j is a normalising constant

equal to the maximum element of vectorψ [n]

j .
The sequence converged to the order of the machine

rounding error after less than 10 iterations. Then ifψj is the
converged eigenvector andNj the converged normalisation
constant,

(L − iωj 1)ψj = 0. (B7)

(L − iω′

j 1)ψj = ψj/Nj .

Subtracting the equations, the true eigenvalueω is given
by

ωj = ω′

j − i/Nj . (B8)

The results were checked by obtaining the correspond-
ing eigenvectorsφj of the Hermitian adjoint matrix equation
with eigenvalue−w∗

j . These were then normalised so that
the dot product(ψ∗

j ·φj ) equalled one. Under these condi-
tions the dot product(ψ∗

j ·φk) should be zero whenj 6= k.
This was found to be correct to within the machine rounding
error.

B3 The residue

In Sect. 7 of the paper, Eq. (3) requires the SSH residue
Aj (xm) of the eigenvector at positionxm. Let y be the so-
lution of the matrix equationB1,

y =

∑
k

akψk . (B9)

Then using the matrix eigenvectors and eigenvalues de-
fined in Appendix B2,

(L − iω1)
∑

k

akψk = z , (B10)∑
k

ak(iωk − iω)ψk = z . (B11)

Taking the dot product withφj and rearranging,

aj =
i

(ω − ωj )
(φ∗

j · z) . (B12)

Thus the residue atxm is

Aj (xm) = ψj,mi(φ∗

j · z) . (B13)

The residue can also be obtained from the inverse iteration
sequence (Eq.B6) without solving for the adjoint eigenvalue.
If the iterations are initialised withψ [0]

j equal toz andN
[0]

j

equal to 1, then aftern iterations

ψ
[n]

j = ψ
[n−1]

j i(φ∗

j · z)

n∏
k=1

(N
[k]

j /N
[n]

j ) + ε, (B14)

whereε is the contribution from other resonances. Once the
solution has converged then, to within the machine rounding
error,ε is zero andψ [n]

j equalsψ [n−1]

j , so

i(φ∗

j · z) =

n∏
k=1

(N
[n]

j /N
[k]

j ), (B15)

Aj (xm) = ψj,m

n∏
k=1

(N
[n]

j /N
[k]

j ). (B16)
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