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Abstract 

Carbon capture and storage by mineralisation (CCSM) is a promising technology that 
sequesters CO2 from flue gases into stable mineral carbonates. Although the development of 
indirect pH swing processes (dissolution at acid pH and carbonation at basic pH) able to 
recycle the chemicals used are promising, there are still limitations in reaction rate of mineral 
dissolution being slow in view of a large deployment of the technology. The extraction of Mg 
from lizardite using magnesium bisulphate has been studied as a function of temperature, 
reagent concentration, solid to liquid ratio, thermal and mechanical pre-activation. Although 
the overall highest Mg extraction (95%) was obtained after 3 hours, the reduction of the 
dissolution time to 1 hr can consistently reduce the volumes to be treated per unit time 
leading to low capital costs in a hypothetical mineralisation plant. About 80% of Mg was 
extracted from lizardite in 1hour at 140°C, 2.8 M NH4HSO4, particles < 250µm and a solid to 
liquid ratio of 100g/l. At 140°C, serpentine undergoes extensive structural modifications as 
indicated by XRD and FTIR analyses, producing amorphous silica and accelerating the 
kinetics of the reaction. Particles with diameter less than 250µm were obtained by grinding 
the lizardite at 925rpm for 10 minutes consuming 33kWh/trock.  
 
Keywords: Clean energy, Mineral carbonation, CO2 sequestration, serpentine dissolution, 
serpentine activation 
 

1. Introduction 

Currently, the most extensively investigated process for carbon dioxide capture and storage 

(CCS) is geological sequestration. However, this process is not universally applicable and 

requires suitable geological formations that are not present in many places or are located 

offshore and can be uneconomical or impractical (IPCC, 2005). CCS by mineralisation 

(CCSM) can be used as a potential CCS option, acting as a risk mitigation strategy, where 
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geological storage might not be practical (IPCC, 2005). CCSM has been identified as a safe 

and permanent CCS option, and is based on the accelerated reaction of CO2 from industrial 

flue gases with Mg-rich silicate rocks or inorganic wastes to form stable magnesium 

carbonates (Seifritz, 1990). Since industrial wastes seems to be able to sequester only a low 

fraction (<5%) of the total CO2 required to fulfil the Kyoto protocol objectives due to the 

limited volumes available, mineral carbonation of silicate rocks including mines tailings will 

be essential for the success of the technology (Sanna et al., 2012a; Vogeli et al., 2011). 

Furthermore, mineral carbonation is well suited for integration in mining operations (Hitch 

and Dipple, 2012). The natural weathering of rocks is exothermic and thermodynamically 

favoured at ambient temperature, so that the reaction of Mg/Ca-silicates with CO2 proceeds 

spontaneously, although it requires geological times. This is related to the kinetically 

unfavourable extraction of alkaline ions (Ca, Mg) from the silicate resources under ambient 

conditions. This unfavourable “extraction” can be accelerated by (i) directly increasing the 

pressure and temperature of the process or, (ii) indirectly, by using aggressive leaching 

agents. Although significant research has taken place over the last 20 years on direct 

processes, they still present poor economic and technical viability on a large scale due to the 

low reaction rate, long residence time, high pressure and temperature required for the 

reactions to happen (IPCC, 2005; Gerdemann et al., 2007). Alternatively, the indirect 

processes show promising results in addressing the low reaction kinetics by the use of 

additives able to extract the reactive Mg and Ca from silicate rocks that then react fast with 

CO2 forming carbonates at mild conditions, but unfortunately large quantities of chemicals 

need to be recycled (Nduagu et al., 2012a, 2012b).  

Among the indirect mineral carbonation routes, the pH swing processes allows the separation 

and recovery of pure products (e.g. carbonates, silica, and metal oxides) that could be 

potentially reused in a wide range of sectors, reducing the emissions related with fresh 
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materials production (Sanna et al., 2012b; 2012c). Also, this group of processes could help in 

lowering the costs of CO2 sequestration technology by reducing the precipitation of “silicates 

impurities” (e.g. Fe, Al) on the surface of the Mg bearing particles, which causes the ‘CO2 

diffusion limit’ typical of this technology (Teir et al., 2009). CCSM via the indirect pH 

swing, in the presence of NH4-salts has recently been investigated resulting in a “slow and 

limiting” dissolution step that requires about 3hours to reach 80-100% efficiency using 

antigorite [(Mg,Fe)3(SiO5)(OH)4]; followed by a fast carbonation step (~15-30 min) with 

efficiency of ~90% (Park et al, 2004; Eloneva et al., 2012; Kodama et al., 2008; Wang and 

Maroto-Valer, 2011a, 2011b; Sanna et al., 2012d). The main advantage of these methods is 

the recyclability of the chemicals used during the process, which would consume about 300 

kWh/tCO2 and also allow CO2 capture from flue gas, avoiding additional separation and 

compression stages (Kodama et al., 2008). Previous work found that the reactivity in mineral 

carbonation of antigorite and lizardite is very different; with antigorite having a carbonation 

efficiency of 92% and lizardite [(Mg,Fe)3(SiO5)(OH)4] of only 40% after thermo-activation 

(Gerdemann et al., 2007). This suggests that the mineral phase used as resource is an 

important aspect to evaluate a potential CO2 sequestration technology. So far, lizardite, which 

is the most common and readily available serpentine species in the UK, has not been tested 

using the ammonium-based pH swing process (Maltman, 1977; Cressey et al., 2008).  

A cost sensitivity analysis of the ARC/NETL mineral carbonation process based on 95 

reactor vessels able to treat 24 kt CO2/day, found that the cost of the carbonation reactors, 

which represented about 70% of the overall costs, would decrease from ~£620M to ~£310M 

(50%) if the residence time in the reactor were decreased from 2 to 1 hour (White, 2003). 

This indicates there is potential to reduce capital cost through better reaction understanding, 

coupled with an improved design approach. Faster dissolution kinetics can lower the costs of 

the NH4-based pH swing carbonation technology, since the dissolution represents the longest 
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and limiting step (3 hrs) compared to the carbonation step, which has a efficiency of 90% 

after 30 minutes (Wang and Maroto-Valer, 2011b). Therefore, in this study, further research 

is conducted on the NH4-salts pH swing process with the objective to optimise the lizardite 

dissolution variables (temperature, particle size, solid to liquid ratio, residence time) using 

ammonium bisulphate to enhance the potential for large-scale deployment of this technology.  

Thermal activation of serpentines can be described as a thermo-chemical decomposition 

reaction of the parent minerals to form a so-called “meta-serpentine” phase while releasing 

water from the crystal structure (McKelvy et al., 2004). It was demonstrated that the kinetics 

of the mineral dissolution and aqueous carbonation steps increases by almost an order of 

magnitude after heat activation of serpentine at 630C for 2 h in a direct mineral carbonation 

processes, resulting in an energy requirement of 326 kWh/t of lizardite treated (O’Connor et 

al, 2005). The effect of thermal-activation at a lower temperature and shorter time needs to be 

evaluated to establish its influence on the Mg-extraction using a pH-swing process and to 

establish the potential energy consumption reduction. Mechanical activation renders the 

crystal lattice of minerals less stable and this “disorder” contributes to lowering the activation 

energy for any further reaction of the material, such as chemical dissolution or CO2 

adsorption (Tromans and Meech, 2001; Fabian et al., 2010). Previous work indicated that 

increasing the milling energy input increased the materials amorphisation (Pourghahramani 

and Forssberg, 2006). The effect of short time at high speed and in presence of flue gas may 

reduce the energy consumption of grinding serpentine to a particle size needed to extract high 

level of Mg from the mineral lattice for the following carbonation reaction.  This needs to be 

evaluated using the NH4-salts pH swing process.  

2. Materials and methods 

2.1Experimental summary 
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This study aimed to investigate the parameters that can affect the Mg extraction from a 

silicate rock, namely serpentinite. A serpentinised lherzolite from the Lizard peninsula, 

Cornwall, UK was selected for the optimisation study. This rock contains ca 98% of 

serpentine minerals, ca 2% of hematite and a trace amount of calcite. The serpentine is a 

mixture of the two polytypes of lizardite (1M and 1T) and is different in composition in this 

respect to those used in previous work, which were richer in the antigorite type (Wang and 

Maroto-Valer, 2011a; Sanna et al, 2012d) . A series of dissolution experiments were 

performed in a batch reactor using the same serpentinite rock but at different temperatures, 

particle sizes, NH4HSO4 concentrations, different solid to liquid ratios and different 

pressures. Also, the effect on the Mg-extraction of two different pre-treatments were 

investigated, namely thermo-activation and fine grinding. A summary of the investigated 

parameters is presented in Table 1.  

2.2 Chemical Activation 

The experiments on the optimisation of serpentine dissolution were carried out by placing 20 

g of serpentinite into a three neck flask glass reactor containing 200 ml of NH4HSO4 solution 

with a constant stirring rate of 800 rpm and heated using a silicon bath at the desired 

temperature, as reported in previous works (Wang and Maroto-Valer, 2011a, 2011b). The 

dissolution experiments at 140°C were carried out using a 0.5 litre stainless steel Parr reactor 

(model no. 4575A). An aliquot of 1 ml was extracted after 5, 10, 15, 30, 60, 120 and 180 min 

to determine the content of Mg and other ions in the solution. After 3 h of dissolution, the 

flask content was cooled down to ambient temperature and filtered with a 0.7 μm Pall syringe 

filter.  After the dissolution experiments, the majority of elements other than Mg were 

removed as hydroxides by adding ammonia-water. This raised the initial acid pH of the 

solution from 0-1 to a pH value of 7 to precipitate all the impurities such as iron, manganese, 

nickel and aluminium. Then, 1 ml of solution was acidified with 2 ml of 70% HNO3 (trace 
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metal grade, Fisher Scientific) and then diluted to 100 ml with deionised water to be analysed 

by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). A Thermo-Fisher Scientific X 

Series Instrument, was used to measure the concentrations of the dissolved Mg, Fe and others 

elements in the samples as in previous work (Sanna et al, 2012d). Fourier Transform Infrared 

Spectroscopy (FTIR) was performed using BioRad Excalibur spectrometer system that 

includes a PC-based data system and the optical bench. The optical bench contains a 60° 

dynamically aligned Michelson interferometer with ceramic infrared source, an air-cooled 

Deuterated Tri Glycine Sulfate (DTGS) detector and potassium bromide beam splitter. The 

analysis was performed on KBr discs (1% dilution), using 60 scans and 2cm-1 spectral 

resolution.  The morphology and elemental composition of the serpentine before and after 

chemical activation at 140°C was determined by SEM-EDS analysis. The Scanning Electron 

Microscopy used was an FEI Quanta 600 (Tungsten filament).  Phase/mineral identification 

was aided by observation of energy-dispersive X-ray spectra recorded simultaneously during 

SEM observation, using an Oxford Instruments INCA 200 energy-dispersive X-ray 

microanalysis (EDS) system. 

2.3 Mechanical Activation 

An attrition mill with a water cooling jacket (model 01HD from Union Process Inc.) was used 

for the serpentine mechanical-activation with yttrium zirconium oxide as milling media 

(grinding media to process mineral ratio of 20:1).  Both 5 mm and 10 mm diameter grinding 

media spheres were used, with a mass ratio of ~1:3 (5 mm/10 mm). Total solid mass was 

approximately 1140 g for each run.  The particle size distribution was determined and an 

average mass loss of 3 wt% was found. Grinding in simulated flue gas was performed by 

connecting the gas line from gas mixture cylinder to the gas/fluid injection port at the bottom 

of the grinding chamber.  A gas outlet port was located on the top of the grinding chamber 

and was connected to the absorbing neutralising aqueous media through flexible tubing. X-
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ray diffraction analysis was performed using a Brucker D8 diffractometer; 2 range from 

11.22 to 12.87 was selected for automatic peak area measurement of the characteristic 1T 

lizardite peak for all samples. A micrometrics ASAP 2020 was used for BET measurements 

by degassing ~0.5 g of sample at 350C for 4 h. Power draw (as current and voltage) was 

recorded directly from the motor during grinding using a data logger. 

2.4 Thermal Activation 

About 2 g of serpentinite were used for heat treatment experiments. After grinding, powder 

samples were placed in alumina crucibles such that the thickness of the powder bed was ~5 

mm. To avoid the temperature overshot, the heating ramp was first set at 30/min up to 

580C, and after that, at 10/min up to 610C. After 30 min of dwell time, the heating was 

turned off and mineral samples were removed from the oven for quick cooling at ambient 

conditions.  

3. Results & Discussion 

3.1 Chemical Activation 

3.1.1 Effect of temperature 

The effect of time and temperature on the Mg extraction from the lizardite-rich serpentinite 

sample was investigated and the results are presented in Figure 1. It can be seen that 

temperature has a significant effect , where the higher temperatures of  100, 120 and 140°C 

produce much higher Mg extraction efficiency (after 3hours) than the lower temperatures  

(Figure 1). At 100°C and 60 min dissolution, 1.4 M NH4HSO4 was able to extract 60% of 

Mg, while less than 30% were removed at 70°C. The Mg extraction from lizardite was lower 

compared to that obtained from the USA antigorite used in previous experiments, where 80% 

and ~100% Mg was extracted in 1 and 3 hours, respectively (Wang and Maroto-Valer, 2012). 
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Therefore, lizardite, which represents the main UK resource for mineral carbonation, requires 

higher temperature to extract a reasonable amount of Mg. The experiment carried out at 

140°C indicates that the Mg extraction efficiency is enhanced in the first hour of dissolution 

(67% Mg extracted) compared to the extraction at 100°C. This is comparable to the highest 

extraction of Mg from high energy penalty roasting of serpentine and ammonium sulphate at 

440°C for 1 hr (Nduagu et al., 2012a, 2012b). Also, this decreases the residence time of the 

slurry into the reactor, which can reduce the costs associated to the reactors number/size. This 

higher temperature could not be achieved using the 3-neck glass flask used for the other 

temperatures due to the evaporation of the water solution from the increase in pressure. 

Therefore, the experiment was carried out using a 0.3 L Parr high pressure reactor using the 

same procedure. The final pressure registered at 140˚C was 4 bar.  

The effect of temperature on the structure of the serpentine samples is clearly depicted by 

FTIR analyses. Figure 2 shows absorbance spectra of serpentine, dissolution residues 

obtained at 100°C and 140˚C and an amorphous silica standard. Spectrum (d) is typical of 

highly polymerised amorphous silica (Loring et al., 2011). The very strong and broad band at 

1105 cm-1 with a shoulder towards higher wavenumber is assigned to the Si-O-Si asymmetric 

stretching vibrations, and the band at 800 cm-1 can be assigned to Si-O-Si symmetric 

stretching vibrations (Musić et al., 2011). The broad band at around 3430 cm-1 and low 

intensity peak at ca 1630 cm-1 arise from stretching and bending vibrations of H2O molecules 

respectively.  

Spectrum (a) shows the starting serpentinite. The peak around 960 cm-1 is assigned to the Si-

O basal vibration, while the lower intensity peak at about 1080 cm-1 is characteristic of the 

Si-O apical vibrations. The peak at 613cm-1 is probably related to in-plane displacement of H 

atoms (Balan et al., 2002). The sharp peak at 3688 cm-1 reflects OH bonded to Mg cations in 

the octahedral position. This peak is characterised by asymmetry towards the lower energies 
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with a distinctive shoulder occurring at ca 3650 cm-1. The asymmetry is interpreted as a slight 

variation of O-H bond strength, possibly arising from heterogenic cation substitution in the 

predominantly Mg-dominated octahedral site (Fuchs et al., 1998; Mellini et al., 2002).  

The spectra of dissolution residues b (100°C) and c (140°C) clearly indicate a change in the 

reactants` structure after the dissolution treatment. Starting with the most prominent peaks in 

the Si-O spectral range the residues show a low intensity peak at ca 796cm-1 that although 

slightly shifted, could correspond to 802cm-1 peak in the silica standard (symmetric stretching 

of Si-O-Si). Peaks at approximately 960cm-1 coincide with the position of Si-O basal 

vibration that is clearly seen in the starting serpentine material. The intensity of this band 

noticeably decreases with the temperature of dissolution (Fig. 2, red arrows).  

At higher wavenumber region, the reaction residues display two well defined peaks, one at ca 

1090 cm-1 and other at 1145 cm-1. Assignment of these bands is ambiguous and it is probably 

a combination of a portion of Si-O apical vibrations originating from the starting serpentinite 

as well as asymmetric Si-O-Si stretching bands of the newly formed silica. The minor peak 

shift from 1105cm-1 in the silica standard to lower wavenumber in the reaction residues 1094 

and 1089cm-1 for (100°C) and (140°C) respectively, could be related to subtle structure 

variation (e.g. newly formed silica). Crystallinity of quartz was previously identified by a 

band at 1145 cm-1, and this band is observed in our reaction residues (Shoval et al., 1991).  

Better defined peaks indicate well-crystallised quartz, and conversely the poorly defined 

shoulder, as observed in the analysed silica standard is indicative of low crystallinity. 

Whether the silica formed in our experiments is crystalline, primary amorphous or a 

combination of both requires further investigation; the XRD data suggest a predominant 

amorphous component that is consistent with the peak heights in the FTIR spectra. This is an 

important aspect in terms of utilisation of the produced silica, since amorphous silica is a 
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desired additive for cement. The reaction residues also display low intensity peaks (Fig 2, 

green arrows) at around 625cm-1, humps at 745cm-1 and three more peaks around 1430cm-1, 

these bands are probably related to newly formed hydrated NH4 and/or Mg sulphates,  by-

products of the experiment.  

At the far end of the mid-infrared region (3000-4000cm-1), the reaction residues show a 

distinct broad band between 3000-3600cm-1.  These bands, due to poor resolution and 

possible overlaps are probably related to a combination of infrared absorptions by various 

phases present in the samples analysed. The indistinct humps at ca 3250 cm-1 and 3400 cm-1 

could however be related to stretching vibrations of Si-OH groups in the structure of 

amorphous SiO2 due to bonded water and stretching vibrations of H2O molecules (Musić et 

al, 2011).  

The effect of temperature on the serpentine structural modifications can be observed in the 

XRD traces (Figure 3), where it can be seen that the crystal structure of the lizardite-rich 

serpentine remains almost unchanged after dissolution at 100°C (Figure 3-b), compared to the 

starting serpentine (Figure 3-a).  On the contrary, Figure 3-c shows that the serpentine 

undergoes extensive structural modification as indicated by significant peak broadening. This 

suggests that the starting material has undergone amorphisation during the 140°C experiment. 

The resulting amorphous material is readily dissolvable.  

SEM images of the untreated serpentine particles and the reaction residuum after the 

dissolution at 140°C are shown in Figure 4. Four different particle-types were identified and 

their elemental composition analysed. Particle 1 (Figure 4-a), represents the average 

serpentine particle with size ranging from 75 to 150µm. As shown on the EDX spectrum, the 

particle is composed of the expected Mg, Fe, Al, Si, O. The dissolution residue obtained at 

140°C contains chemically different particles. Overall, three compositional types were 
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observed (i) particles rich in Si and virtually free of Mg (Figure 4-b-2); (ii) particles poor in 

Mg and rich in Si (Figure 4-b-3); and (iii) particles poor in Mg, rich in Si and S. Particle 1 

resembles the elemental composition of lizardite. Particle 2 suffered a strong chemical 

modification becoming silica-dominated, while particle 3 suffered a lower level of 

transformation that may be related to the different starting mineral phases (difference 

between L-1T and L-1M). Both particles 2 and 3 present some sulphate impurities on surface. 

Instead, the distribution of Mg, S, O and Si in particle 4 indicates that it is probably made of a 

mixture of partially dissolved serpentine and Mg sulphates. The Mg:S ratio indicates that the 

sulphate phase could be epsomite (9.8% Mg, 137% S, 71% O), which has the following 

chemical formula MgSO4•7(H2O). This is supported by the XRD of dissolution residue 

shown in Figure 3-c. The Mg-sulphates formed due to precipitation of the excess NH4-salts 

used in the experiment. 

3.1.2 Effect of additive concentration 

Previous work indicated that the concentration of the leaching agent is an important 

parameter to enhance the cations extraction, since this can accelerate the reaction kinetics and 

decreasing the residence time of the slurry into the reactor (Wang and Maroto-Valer, 2011a; 

O’Connor et al, 2005). Accordingly, a series of experiments were conducted to evaluate the 

effect of the leaching agent concentration (1M, 1.4M, 2M and 3M) on the Mg extraction from 

lizardite-rich serpentine, and the potential for shortening the reaction residence time. The 

results shown in Figure 5 indicate that a 1M NH4HSO4 solution can extract only 60% of Mg 

after 3h dissolution, while a 1.4M solution can remove 60% after 1h dissolution and 76% 

after 3h. Therefore, a long reaction time is required for the serpentine dissolution in presence 

of 1M and 1.4M NH4HSO4 solution. To reduce the dissolution reaction time while 

maintaining an acceptably high Mg extraction of 70%, a 2M NH4HSO4 solution is required 

for a 1h extraction period. The 3M NH4HSO4 solution was the most effective extracting 80% 



12 
 

Mg in just 1h. The effect of NH4HSO4 on the extraction of Fe, the main “impurity” element 

in the serpentine used, is reported in Table 2.  Clearly, the stronger the salt solution, the 

stronger is the removal of Fe from the mineral lattice, i.e. 2M and 3M NH4HSO4 solutions are 

able to extract 100% of the Fe from the serpentine particles after 120 minutes dissolution. 

Much of the Fe is as Fe2+in the serpentine mineral structure but some is present as Fe3+ or 

mixed valences in magnetite, hematite and chromite. Chromite and magnetite are known to 

be resistant to leaching and require strong leaching solutions and high temperature/pressure 

(Liu et al, 2010; Vardar et al, 1994). Magnetite was found attached to the magnetic stirring 

bar after the experiment. The leached impurities can be separated from the main solution 

stream of MgSO4 by precipitation of Fe hydroxides. Therefore, the concentration of the 

leaching agent is a primary player if we want to maximise the extraction of all the other 

cations (apart from Mg) from the mineral lattice. This will leave behind pure amorphous 

silica that has a potential application in the construction sector as cement additive. Therefore, 

working at concentration ≥ 2M NH4HSO4 at 140°C will produce a dissolution residue 

predominant in amorphous component as confirmed by the XRD and FTIR analyses in 

Section 3.1.1.  

3.1.3 Effect of particle size 

The dissolution results using different particles sizes are shown in Figure 6 and indicate that 

the particle size has a large effect on final extraction of Mg from the mineral lattice. 

The dissolution of the sample with the larger particles (500-700µm) was not successful 

giving only 30% and 60% Mg, respectively after 1h and 3h of extraction. In contrast, the 

dissolution carried out at the smallest particle size (< 75μm) gave 70% and 90% Mg 

extraction after 1h and 3h dissolution. When particles with size less than 300µm were used, 

the Mg extracted was about 60% for 1h dissolution and 80% after 3h. This shows that the 

improvement in Mg extraction is big from reducing from 500µm to 300µm, but much less 



13 
 

going from 300µm to <75µm. However, the energy required to grind the serpentine to 

<75µm shows a substantial increase. Besides, particles larger than 500µm would require a 

long extraction time and particles < 75µm would consume too much energy. All grinding 

processes, particularly on an industrial scale produce a significant amount of undersize fine 

material. Grinding to produce a particle size less than 300µm will inevitably create a lot of 

material with a much finer particle size, so that particles < 250µm instead of defined particles 

range such as  75-150µm will represent a realistic case, which is treated in Section 3.2.1.  

Interestingly, the particles mixture with about 40% of <75 µm, could liberate some of the 

magnetite from the serpentine mineral, partially eliminating the need for a large Fe removal 

step in the overall process (Lackner et al., 2008). The Mg extraction improved by about 10% 

using particles < 75 µm compared to particles between 75-150 µm between 30-60 min 

dissolution.  Logarithmic trends have been used to predict the total time required to extract 

the majority of Mg from the serpentine using very small <75µm particles and particles in the 

range of 75-150µm. Figure 7 shows that the logarithmic trend has a good fit with the 

experimental data, with an R2 close to 1 in both the cases. About 6 hours would be required if 

particles <75 µm are employed, while the dissolution will be lengthened to 10 hours when the 

larger particles are used. The physic-chemistry meaning of having a parabolic trend can be 

explained with two different dissolution mechanisms, an initial stoichiometric dissolution of 

the external layers of serpentine followed by a non-stoichiometric extraction of Mg with 

transport in the solid resulting as the dissolution controlling mechanism (Brantley et al., 

2003). Previous work on olivine indicates that a 50 nm thick altered zone depleted in cations 

and enriched in Si has formed (Béarat et al., 2006). The FTIR (see Figure 2) and SEM-EDS 

(Figure 4) analyses of serpentine indicate that the dissolved residues are richer in silica 

compared to the starting serpentine and this can be related to the parabolic trend shown in 

Figure 7. The particle size of the serpentine fed to the dissolution stage has also an important 
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effect on the extraction of the other elements in the mineral matrix as reported in Table 3. The 

dissolution of particles reduced to <75µm in presence of mild NH4HSO4 (1.4M) is able to 

extract 100% of Fe in 2 hours and more than 90% in just 1 hour. However, less than half of 

the Fe is removed when larger particles are used. 

3.1.4 Effect of solid to liquid ratio 

The solid to liquid (S/L) ratio is an important parameter in terms of capital and operating 

costs because working at high S/L ratios reduces the volumes treated in unit time and 

consequently lowers the number of units or size of the single unit employed in the process. 

For example, to capture 1MtCO2/y using 3t of serpentine per t CO2 captured, about 6800 tslurry 

or 3400 tslurry would need to be processed each hour, using a solid to liquid ratio of 50 g/l or 

100 g/l, respectively. This would consistently decrease the capital costs due to a low number 

of reactors required in the process. Previous work indicated that using S/L ratios of 200 or 

300g/l in the NH4-salts process reduces the dissolution efficiency from 100% to 65-70% in 3 

hours time using antigorite-rich serpentine, due to the precipitation of MgSO4 at S/L ratio 

higher than 180g/L (Wang and Maroto-Valer, 2013).The results of our study using 25, 50 and 

100g/L at 100 and 140°C, indicate that a S/L ratio of 100g/l using 2.8M NH4HSO4 at 140°C 

can extract 72% of Mg in 60 minutes, when particles between 75 and 150µm are used. If 

particles <250µm and slightly concentrate NH4HSO4 solutions are used, the Mg removed can 

be increased to ~80-85%. This percentage can further be enhanced to 90% at 140°C just after 

15 minutes using an S/L ratio of 25g/l, but with any advantage from the costs point of view. 

Therefore, S/L ratio between 100g/l and 180g/l can be used to extract Mg during the 

serpentine dissolution at 140°C. The use of 100 g/l serpentine to NH4HSO4 solution ratio can 

decrease by half the volumes to be treated in the dissolution stage compared to 50g/l. Also, 

the use of a high S/L ratio would lead to an improved heat balance, due to less energy 
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required heat the reactor, reduced size of the reactor and less energy required to pump the 

slurry (Huijgen et al., 2006). 

3.2 Pre Chemical activation treatments 

3.2.1 Effect of mechanical activation 

Since grinding to produce a particles < 300µm will inevitably create a lot of material with a 

much finer particle size, some grinding experiments were carried out to establish real 

particles distribution and energy consumption. The following particle size distribution was 

produced in a single run using starting feed mineral of 5 mm after 10 minutes: 38% of milled 

material with particles diameter < 75m, 50% 75-150m, 1% 150-250m and 11% > 250m.  

The particles with diameter < 250µm decreased to 55% after only 5min grinding at 925rpm. 

The <250µm particles were tested in a dissolution experiments to compare the Mg extraction 

with standard 75-150µm particles and thermo-activation (see following section). Grinding for 

5 min at 925rpm allowed to extract 5% more Mg compared to the standard experiment, as 

can be seen in Figure 8. However, it is expected that the percentage of Mg removed from the 

serpentine grinded for 10 min will be higher (+10%), since 88% of the particles are <150µm, 

compared to the material grinded for only 5 min. However, the experiment to confirm it was 

not run. Table 4 shows the Particle Size Distribution (PSD) and energy consumption (kWh/t) 

after grinding at increasing mill speeds and different times. To make mechanical activation of 

minerals attractive, the energy used for activation has to be minimised. In this study it was 

found that the use of a shorter grinding time (5-10min) at higher speed (925rpm) is able to 

produce 55%-88% particles < 250µm consuming 17 and 33kWh/t rock, respectively in 5 and 

10 minutes. This consumes less energy than longer duration at slower speeds (314/409rpm - 

60 min) requiring 69-87kWh/trock. The highest mill speed also produced the largest fractions 

of particles with diameter < 250m and <150µm. It has been reported that grinding in 

presence of pure CO2 improves the follow up carbonation reaction (Nelson, 2004). Therefore, 
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a set of grinding tests was performed in hot air (100C) and hot simulated flue gas mixture 

(100C, 10% CO2, 5% O2, 3000 ppm SO2, 500 ppm CO, 250 ppm NOx, N2 balance) and their 

effect on the crystalline structure of serpentine (Cxrd) detected by XRD can be seen in Figure 

9. The results showed that about 40% of the starting crystalline structure was destroyed by 

grinding the serpentine in presence of flue gas, while only 10% of the structural bonds were 

removed by grinding in presence of air. Therefore, enhanced leaching of Mg from silicates 

can be obtained in presence of flue gas by breaking the structural bonds and producing 

amorphous material.  Based on the experimental data, grinding can be performed for a short 

time and at high rotation speed to produce a large fraction of < 250µm. Also, the presence of 

hot flue gas resulted in additional amorphisation of minerals, but it would require expensive 

gas tight grinding equipment. The results confirm that a particles mixture < 250µm can be 

successfully employed to extract Mg from serpentine with a small associated energy penalty 

and that using the fines produced at no extra cost a further 5-10% Mg is extracted, compared 

to experiment using 75-150µm at 100°C and 1.4M NH4HSO4.  

3.2.2 Effect of thermal activation  

The thermal-activation experiments in this study were performed for 30 minutes at 610 C 

requiring 245 kWh/trock instead of 326 kWh/trock  required for the dehydroxylation at 630°C 

for 2 hours, where 206 kWh/t (Cp=89.26 cal/K*mol, dT=605°C) were used to heat lizardite 

to the target temperature and 120 kWh/t were used to keep the dehydroxylation temperature 

for 2 hours (Gerdemann et al., 2007; O’Connor et al, 2005). Previous studies indicated that 

heat treatment in pure CO2 gas could also improve the kinetics of the follow up aqueous 

dissolution-carbonation steps (Dahlin et al., 2000). In this study, a simulated flue gas mixture 

was used (10% CO2, 5% O2, 3000 ppm SO2, 500 ppm CO, 250 ppm NO, N2 balance) instead 

of pure CO2, but no measurable changes in mineral amorphisation were observed when a flue 
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gas was used during thermal-treatment. The thermal-activated and mechano-activated 

serpentinites were tested in the dissolution experiments at 100°C to compare the Mg 

extraction with the chemical activation option and the results are displayed in Figure 8. 

Various functions were applied to fit the data including linear, logarithmic, and power; the 

best data fit was achieved with the power functions (%Mg~(LogT)n), shown on the plot. 

Based on the experimental data discussed above, ~75% Mg is extracted from the standard 75-

150µm serpentine after 60 minutes. Mechanical activation (5 min at 925 rpm) increases the 

Mg extraction to 80%, while a larger fraction of Mg (90%) is removed from serpentine after 

just 10 min of dissolution of thermal-activated serpentine. The Mg extracted resulted higher 

compared to previous work where thermal activation at 640-700°C for 1 hr (Fedoročková et 

al., 2012). Therefore, thermo-treatment is more effective in accelerating the Mg extraction, 

but with high associated energy penalty, while mechanical pre-treatment is able to increase 

the Mg extraction in the following dissolution with low energy penalty (17-33 kWh/t rock 

used). 

3.3 pH swing and carbonation steps 

The second stage of the overall process is the pH swing step, from acidic (pH between 0 and 

2) to neutral (pH 7), by the addition of ammonia water. This is to remove all the impurities 

(Fe, Al, Ni, Mn etc.) from the solution by precipitating them mainly as hydroxides. These 

hydroxides may be used for the production of pigments or as iron ore feedstock for the steel 

and iron industry (Sanna et al., 2012b). Table 5 shows the concentration of Fe, Al, Ni, Mn 

and Mg as a function of the pH change. Even if ICP-MS is a very good technique to analyse 

traces of elements, the concentration of Al, Ni and Mn might present an error due to their 

very low content (< 1wt%) in the starting serpentine. At the final pH value of 7, more than 

95% of Fe and Al are removed from the solution, while only 55% of Ni and 28% of Mn are 

precipitated at the end of the process. About 3% of Mg was lost from the solution during the 
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pH swing process, leaving a solution rich in MgSO4 ready for the carbonation reaction. After 

the pH swing process, the Mg-rich solution is carbonated by reacting it with ammonium 

bicarbonate (NH4HCO3) obtained from the capture step by reacting ammonium hydroxide 

(NH4OH) with the flue gas (Wang and Maroto-Valer, 2011b). The product of the reaction 

under the used conditions is hydromagnesite, which may access niche markets to produce 

high-value fillers (e.g. paper filler) (Sanna et al., 2012b). Also, it could be used (together with 

the hydroxides from the pH swing step) to produce low value controlled low-strength 

materials, which represent a solidified geotechnical composite for fill application 

(Bouzalakos et al., 2008). The efficiency of the carbonation reaction can be represented by 

the precipitation of Mg from the solution in the form of hydrated carbonate (Table 6). After 

60 minutes reaction, only 6 wt% of Mg did not react with the ammonium bicarbonate salt. 

Also, ca 77 wt% of Mg precipitated in just 10 minutes. Therefore,  in a real carbonation plant, 

a residence time of the slurry into the precipitator of 10 minutes  would be preferred to 

minimise the volumes to be treated in the unit time by maintain a good efficiency (77% Mg 

to carbonate) and consequently lower the capital costs of the plant.  

4. Conclusions 

The objective of this study was to optimise the dissolution of a lizardite-rich serpentine in 

order to facilitate the large-scale deployment of this technology. A set of dissolution 

conditions (temperature, particle size, solid to liquid ratio, reagents concentration) and two 

different pre-treatments (mechano- thermal- activation) were investigated. 

The maximum extraction of Mg (95%) from the serpentine lattice was achieved after 

dissolving 50g/l of a thermal-activated lizardite for 3 hours at 100°C. Besides, the dissolution 

conditions were optimised to maximise the extraction of Mg in a shorter time, since this can 

consistently reduce the volumes to be treated and thus leading to a lower capital expenditure. 
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An average of 80% of Mg was extracted in 1 hour when using a temperature of 140°C, and 

2.8 M NH4HSO4, particles < 250µm and a solid to liquid ratio of 100g/l. Using 100g/l would 

reduce the slurry volumes of a theoretical 1MtCO2/y plant from 6800t/h to 3400t/h. 

Moreover, the shorter dissolution residence time (1hr) would further reduce the number of 

reactors to be employed. The temperature plays an important role in accelerating the 

dissolution of lizardite as depicted in the FTIR spectra and by the broadening of XRD peaks. 

The reactivity of different minerals, including polymorphous minerals can change 

significantly the reactions condition and reactors design, as found in this work, and therefore, 

resource evaluation is a critical aspect to take into account during the techno-economic 

assessment of ex-situ mineral carbonation processes.   

A mechano-activation process to grind the serpentine at 925rpm for 10 minutes was able to 

produce particles with size < 250µm, which helped dissolving 80% of Mg in 1 hour at a 

reasonable energy penalty of 33 kWh/t rock. Addition of CO2 during the mechanical 

activation helped in destroying the crystallinity of the mineral, and therefore extracting more 

Mg from the mineral, but this would require expensive gas-tight equipments. Instead, 

thermal-activation at reduce temperature and time (610°C, 30 min) compared to previous 

work, helped to completely dissolve lizardite, but the associated energy penalty (250 

kWh/trock) remained significantly high.  
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Figure 1. Effect of temperature and time on Mg extraction from serpentinised lherzolite. 
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Figure 2. FTIR plot of (a) starting serpentinite, (b) dissolution residue obtained at 100°C, (c) 
dissolution residue obtained at 140°C, (d) silica standard. 
 



 

Figure 3. XRD patterns of a) raw serpentine, b) dissolution residue obtained at 100˚C, c) 
dissolution residue obtained at 140˚C. Green pattern represents Lizardite-1T; Peaks 1 and 2 
represent magnesium sulphate salt (epsomite).  
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Figure 4. SEM images of the studied materials and the ED X-ray spectra from the particles 
indicated on the micrographs. A) raw serpentine, b) dissolution residue obtained at 140˚C.  
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Figure 5. Effect of NH4HSO4 concentration and time on Mg extraction from serpentine. 
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Figure 6. Effect of particle size and time on Mg extraction from serpentine sample (100°C, 
50 g/l, 1.4 M NH4HSO4, 800 rpm). 
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Figure 7. Forecast of the time required to extract 100% of Mg from the serpentine sample 
using different starting particle size (100 °C, 50 g/l, 1.4 M NH4HSO4, 800 rpm). 
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Figure 8. Mg leaching study from serpentine samples. 
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Figure 9. Crystalline phase (Cxrd) of serpentine lizardite-type samples ground at 925 rpm for 
5 minutes in different environment. 
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Table1. Experimental summary. 

Experiment type  Experimental conditions 

Temperature 50°C, 70°C, 100°C, 120°C, 140°C 

Pressure  Ambient pressure (1bar-4bar) 

Solid/liquid ratio 25g/l, 50g/l, 100g/l 

Particle size <75µm, 75-150μm, 150-300μm, 500-
700µm 

Additive concentration 1M, 1.4M, 2M, 2.8M, 3M (NH4HSO4) 

Thermo-activation 610°C for 30 minutes, in presence of air 
and flue gas (10%CO2) 

Mechanical-activation 409rpm, 620rpm, 925rpm, 5-10-60 min, in 
presence of air and flue gas (10%CO2) 

 



Table 2. Effect of NH4HSO4 concentration on Fe extraction at 100°C and 50g/l.  

 

 

              Fe, wt%
Time, min 1M 1.4M 2M 3M

5 9.0 11.5 31.1 37.7
10 14.3 17.8 38.1 54.3
15 15.1 23.5 54.7 71.2
30 23.9 32.6 69.7 94.2
60 31.2 40.5 87.9 100.0

120 32.0 48.3 93.3 100.0
180 37.9 51.8 100.0 100.0



Table 3. Effect of particle size and time on Fe extraction from serpentine sample (100 °C, 50 
g/l, 1.4 M NH4HSO4, 800 rpm). 

 

 

Fe, wt%
Time, min < 75µm 75-150µm 150-300µm

5 43.14 11.54 7.05
10 55.73 17.81 12.03
15 65.96 23.53 16.95
30 82.51 32.58 26.90
60 94.21 40.50 36.88

120 100.00 48.34 46.64
180 / 51.78 49.42



Table 4. Effect of grinding speed and duration on particles size distribution and energy 
consumption. 

 

 

Grinding speed and time                                           Particle size distribution (wt%) Energy consumption 
(rpm-min) < 250 µm < 150 µm < 75 µm (kWh/t)

314-60 34.5 27.9 17.4 69.5
409-60 86.9 48.8 43.5 86.9
620-10 55.6 50.1 37.6 22.7
920-5 55 50.6 32.1 16.2
920-10 88.1 87.4 37.7 33.2



Table 5. Element abundance (wt%) in solution at different pH during pH swing process.  

 

 

Initial pH 3 pH 6 pH 6.5 pH 7
Element wt% wt% wt% wt% wt%

Fe 100.0 89.2 25.4 14.6 6.4
Al 100.0 93.4 12.5 2.4 0.2
Ni 100.0 100.0 84.4 71.6 72.9

Mn 100.0 100.1 100.8 94.4 83.9
Mg 100 99 98.5 98 97.8



Table 6. Abundance of Mg in solution (wt%) during carbonation reaction. 

 

 

Time, min Mg in solution, wt%
0 97.8
5 30.5

10 23.4
15 19.6
30 12.3
60 6.2


