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SUMMARY

A formula is obtained for the extra head loss due to partial penetra-
tion of a well under steady-state flow conditions. The formula, which is a
simplification of a previously developed approximation, is of adequate
accuracy for penetrations greater than about 207 yet is readily evaluated

on a calculator or in a computer spreadsheet.

In the development, it is assumed that inflow is uniformly distributed
along the screen of the well; this simple assumption is shown to be

superior to a recently advocated distribution.




1 INTRODUCTION

2 DRAWDOWN DUE TO PARTIAL PENETRATION
2.1 Exact solution
2.2 Simple approximate solution
2.3 Comparison of exact and approximate solutions ..............

3 DISCUSSION AND CONCLUSIONS

4 REFERENCES

5 NOTATION

APPENDIX A

APPENDIX B
penetration

APPENDIX C

3a.
3b.
4a.
4b.
ct.
c2.

Notation for partial penetration.

(5) ...

Table of Contents

-------------

.......

.............................................

.........................

......................................................

Results from Anon (1964)

Convergence of equation

Error in
Error in
Error in
Error in
Notation

equation (13),
equation (13),
equation (13),
equation (13),
for vertically

........................................................

.........................

Derivation of the general solution for partial

.......................................................

Table of Figures

using equation
using equation
using equation
using equation

infinite model.

Variation of drawdown along a screen.

i1

(21): large rw. ........

(22): small rw. ........ .



1 INTRODUCTION

The British Geological Survey has recently completed a comprehensive
study of irrigation well design for Bangladesh. As one element of the
study (Barker and Herbert, 1989), a set of formulae were presented for the
estimation of well losses: the formulae had to be sufficiently simple to be
incorporated in a spreadsheet for comparing the costs of various well

designs.

In the study area in Bangladesh, the wells are almost always fully-pe-
netrating, so the issue of partial penetration did not arise. However, to
make the results of that study of wider applicability a brief study of

partial-penetration was undertaken and is reported here.

There have been several studies of partial penetration (see, for
example, Hantush (1964), Anon (1964) and Sternberg (1973), and references
therein). The purpose of the study was neither to review previous work nor
to develop any fundamentally new approach. Rather the intention was to
obtain a very simple formula for approximating the head loss due to partial

penetration.

" An existing set of approximate formulae (Appendix A) were further sim-
plified and compared with a relatively accurate equation (derived in Appen-
dix B). These accurate equations are based on a model taking the form of a
finite-diameter well which partially penetrates a confined homogeneous
anisotropic aquifer, with uniformly distributed inflow along the screen.

This model is consistent with the model used in the Bangladesh study.

The uniform inflow boundary condition on the screen is arguably less
realistic than a constant-head condition (although the latter condition is
not exact because of well losses). In Appendix C consideration is given to
the uniformity of the head distribution that results both from the uniform
inflow and from a distribution of inflow advocated by Haitjema and Kraemer

(1988).

The possible presence of a gravel pack will not be considered. --.How-
ever, it is often the case that the outer surface of the gravel pack is the

surface to which the flow converges due to partial penetration, and should




thus replace the well radius in the following analysis. (Head losses
through the gravel pack will usually be adequately estimated by the Thiem

equation, or rather its generalization mentioned below.)




2 DRAWDOWN DUE TO PARTIAL PENETRATION

Consider the steady-state flow system shown in Figure 1. The average

drawdown over the whole aquifer thickness at the well radius is given by

sy==1| s(r,.z)dz (1)

Taking the drawdown at the outer boundary of the aquifer to be zero
(arbitrarily but without loss of generality), this average drawdown is
given by

w R
< 1

. ® _. ,
SuTonbK, T . (2

where b is the full aquifer thickness and K, is the horizontal hydraulic

conductivity of the aquifer (see Figure 1 and Section 5 for notation).

Equation (2) represents a generalization of the well-known Thiem equa-

tion, a proof of which is given in Barker and Herbert (1989, Appendix A).

The average drawdown over the well screen is

- 1 .[°r
= Lo)dz 3
Se 55 ), S(rue)e (3)

which depends on the parameters b., b, and K, in addition to those appear-

ing in (2).

The difference between the two average drawdowns: s, (over the full

thickness of the aquifer at the radius of the screen) and s, (over the
penetration depth of the 'screén) - will be referred to as the penetration

loss..

The use of vertically averaged drawdowns is necessitated by the vari-
ation in drawdown along the well screen which results from the uniform-

inflow assumption.




Some authors represent the additional drawdown due to partial penetra-

tion by a term of the form 2s,Q,/4n7T, so the quantity s, (sometimes

referred to as a pseudo-skin factor) is

2nT - -
Sp= 0 '(ss—sw)

where T (=bK,) is the transmissivity.

21 Exaét solution

The exact solution for the model depicted in Figure 1 (which is

derived in Appendix B) is

2rbK, - - =
2(5,-5.)= )

Qw : n=1

where
c _ To(nx)Ko(nx )~ Ko(nx)lo(nxy,) 2(sinn§w—sinncc)2
0 AR K o)+ K (ax ) [ o(rK) | moxu(Ta-t.)?
L, ,=nb,/b
g, =nb /b
TR /Kl
X =
b \f Ah
and
My, 'K,
= VF.

(4)

(3)

(6)

(7>

(8)

(9)

(10)



The dependence of C, on x and hence on the aquifer radius, R, 1s
emphasized because, in general, it is not possible to assign a value to

this radius. Fortunately, this problem is overcome by noting that

Ko(x)
m =
x=0 [O(’\.)

(ry)

The coefficient C,(R) therefore converges to a finite limit as R tends

to infinity:

- . o 2
Ao(nxw)}2(5u1n§w sinng,.) (12)

C"(w)=[KH(nxw) n’x, (8, -8.)*

Equation (5) with (12) gives the asymptotic penetration loss in the
steady state as the radius of influence increases. The speed of conver-
gences 1is demonstrated in Figure 2 where ) C,.(x)/2 C,(~) is plotted
against x, for x,=10"" and a centrally placed screen. This result
indicates that the aquifer radius need only be about the same as the
aquifer thickness (k=1 for and isotropic aquifer) for (12) to
adequately approximate (6); and it will therefore be appropriate after

any reasonable period of steady pumping of a well.

2.2 Simple approximate solution

Although the solution given by (5) and (12) is of practical value
in a scientific computing environment, it is far too complex for hand
calculation or to be incorporated effectively into a spreadsheet pro-
gram. Also, the series is slowly convergent for certain combinations of

parameter values.

It was therefore considered necessary to develop a simpler approxi-
mate .solution. Anon (1964) gives an estimate (based on flow to a line
source) of the extra head loss-due rto partial penetration in an
isotropic aguifer (see Appendix A). Following Huisman (1972), we can

write the result in the form:




Qu (l—p)lnnep

As, = 13
SPTonbk,  p X, (13)

where p=(b,-b.)/b is the fractional penetration, and © is a tabulated
function of the degree of penetration and the eccentricity of the screen
with respect to the centre of the aquifer. For a well which extends
from the bottom (or top) of the aquifer, Huisman (1972) suggests that

the following approximation is valid for penetrations greater than 20%:

6=1-p (14)

If the screen is centrally positioned between the top and the bot-
tom of the aquifer, the previous two formulae apply to both the upper
" and lower half of the aquifer (by symmetry). Factors of 1/2 in the
discharge rate and aquifer thickness will cancel so (13) still applies

to the whole aquifer provided:

06=— (15)

Although Huisman provides a table of © values for intermediate
degrees of eccentricity of the screen, interpolation on the table is not
convenient. The approximation has therefore been developed further giv-

ing an entirely analytic formula.

First an eccentricity parameter, n , is introduced (which is dif-

ferent from that, e, of Huisman, 1972):

(16)

where-

(17)

o| M




and z. is the vertical displacement of the centre of the screen from the
centre of the -aquifer. The value of n ranges from zero (for a centrally
placed screen) to unity (for a screen extending from the top or base of
the aquifer). Equations (15) and (16) suggest the introduction of an
?stimate, 8(p.n), of © which has the properties

8(p.0)=(1-p)/2 (18)

and

6(p.1)=(1-p) (19)

From the equations given in Appendix A it can be deduced that the
derivative of © with respect to eccentricity is zero when the eccentric-
ity is zero:

gﬁ(P~0)

0 (20)

This condition suggests the use of a quadratic functional form. Both of

the following forms satisfy all three conditions (18)-(20)

(1-p)
)= 21)
(p.m) (2-n%)
8(p.n)=(1-p)(1+n?)/2 (22)

2.3 Comparison of exact and approximate solutions

The accuracy of the approximatigﬁsexpressed by (13) with (21) or
(22) has been-investigated-by.comparison with results from:(5) for an
infinite aquifer. Figures 3 and 4 show the percentage error in As, as a

function of the eccentricity, n:




_A )
——fx 100 (23)

‘ The errors are all acceptably small, and there is little to choose
between the accuracy of (21) and (22). Equation (21) is preferred .
slightly because it is less biassed overall; although (22) is clearly

better at moderate eccentricities.

As the penetration increases the penetration loss becomes small in
relation to other losses, so errors at larger penetrations are less
important and equation (13) is sufficiently accurate for most practical

purposes for all penetrations greater than about 20%.



3 DISCUSSION AND CONCLUSIONS

A previously developed formula for the extra head loss, As, , due to

partial penetration has been simplified further to make it easier to apply.

The result 1is:

Ae o Qv (U=-p) (p(1-p)b [Ki
A= 5ok, b ln((z—nz)r,,,\/k'b) (24)

where p is the fractional penetration of the well screen and n is the
eccentricity of the screen with respect to the centre of the aquifer (see

(16) and (17)). The formula is considered adequate for penetrations

greater than about 20%.

Any estimation of the extra drawdown due to partial penetration will

be subject to several unavoidable errors, which include:-

(a) Aquifers are all heterogeneous to some extent.

(b) It is often difficult to estimate the full aquifer thickness.

(c) The formation close to the well is often damaged as a result of
drilling.

In view of these it is concluded that, although accurate formulae are

available, the above formula can be used in most practical situations.

The study was based on the assumption of uniform inflow along the well
screen. Although this assumption will always be an approximation, is shown
(Appendix C) to be more consistent with the alternative assumption of con-
stant head along the screen than a non-uniform inflow distribution used by

Haitjema and Kraemer (1988).
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5 NOTATION

b thickness of the aquifer.

b, vertical distance from the top of the aquifer to the top of the
screen.

b, dgpth of the bottom of the screen below the top of the aquifer.

C.(x) see (6).

e =z./b

H(x) function given by (A3).

I,.1, modified Bessel functions of the first kiné.

Jo " Bessel function.

K, the horizontal hydraulic conductivity of the aquifer.

K, the vertical hydraulic conductivity of the aquifer.

Ko, K, modified Bessel functions of thevsecond kind.

l - half the screen length (=(b.-b.)/2).

n number of a term in a Fourier expansion, see (5).

P fraction of the aquifer depth occupied by the screen,
=(b,-b.)/b .

q(z) inflow rate per unit length of the screen.

g, singular flux distribution, see (C11).

94 uniform inflow distribution, =Qw/21.

Q. total abstraction rate from the wellunl

r radial distance from the well.

e radius of the well screen.

11




R outer radius of aquifer, at which the drawdown is zero.

s(r.z) drawdown in the aquifer.

S, pseudo skin factor, see (4).

As, extra head due to partial penetration, see (13) and (24).

S, average drawdown over the screened interval of a well, see (3).
Su -average drawdown over full aquifer thickness, see (1) and (2).-
T transmissivity of the aquifer, =bK,.

z vertical coordinate, see Fiéﬁres 21) and (C1).

v(t) dimensionless vertical distribution of flow through a screen.
Ye(w) cosine transform of vy(&).

e =nz/b

T, =nb,/b ]

z, =nb./b

n eccentricity factor, see (16).

8(p.e) function in Huisman's equation, (13).

8(p.n) function, approximating ©, in the Huisman equation.

X see (9).

Ky =Ky

A see (C5).

o) | =r/R.

Pu =r,/R.

o(p.t) dimensionless drawdown.

12




g.(p.n) cosine transform of o.

o average dimensionless drawdown over a vertical interval at a

given radius, see (B26).

w parameter of the half-line cosine transform.

13




APPENDIX A
Results from Anon (1964)

The following results are taken form Anon (1964, p82 & p95), but are

presented in terms of the notation used in this report.

Asp=2nwaKh(-l-;—p)(ln%+%ln£:—F(p.e)) (A1)
where
F(p.e)=-b(l—l_p—)[ZH(%)-Zfi(%—§)+2AH(9)\-—“{-1(9—g)—H(e+§) (A3)
and
H(x)=H(—.\-)=ﬁf1n{;§izﬂau (A3)
\z Y,

The quantity 6 given in (13) is related to the function F by

8(p.e)=4 exp[-F(p.e)] (A4)

14




APPENDIX B

Derivation of the general solution for partial penetration

Consider steady-state flow in a homogeneous, anisotropic, confined
aquifer from a fixed-head outer boundary to a partially-penetrating well

(Figure 2). Combining Darcy's law with the conservation equation gives
____(r—)+K — = rw<r<R . 0<z<b (Bl)
z

At the outer boundary the drawdown is, without loss of generality,

taken as zero:

s(R.z)=0 (B2)

Since the aquifer is confined
0 )
Er.0y=2(r.b)=0 (B3)
0z oz
The flux along the well screen is given by Darcy's law while that
along the well casing is zero:

2
2ner,,§(rw.z)=q(z) b,<z<b,

=0 otherwise (B4)

Before solving these equations it is convenient to transform to a

dimensionless form using

n=
c =,-b—_ [ . 0 (B-S )a'
=" B6
p=r (B6)

15




and

2nK,bs
g=———mm— 17—
Qu

Then (B1)-(B4) become

where
_TR /"v
“TB VK,
6(1.2)=0
o0 . 20
SE(P'l)=EE(P-ﬂ)—O
20 =-y(%) §<C<C‘
Puzg(Purt) =~ : .
=0 otherwise
where
_q(z)b
w(t). Q.

(B7)

(B8)

(B9)

(B10)

(B11)

(B12)

(B13)

The solution of these equations can now be obtained with the help of

the finite cosine transform:

ﬂ(n)=[f<«:)cos(nt)dt

16

(B14)



Equation (B8) transforms to

do,
ICi(p )=n%x2dc

pdp\" dp

which has the solution

o.(p,n)=A,Ko(nxp)+B,l,(nxp) n>0

0.(p,0)=Aylnp+ B, n=0

Using (B10), the outer boundary condition, (B16) and (B17) give

A Ko(nx)+ B, l,(nx)=0 n>0
and
B,=0
respectively.
The transformation of (B12) 1is
da, ()
———— . = — n
pwdp(pw n)=-wvy,
and, using (B16) and (B17), this gives
oy
v o

Anﬁn(nxpw)-Bnlmﬂxaw)%pwnK.

and
Ag=-9 (0)=-n

17
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(B16)

(B17)

(B18)

(B19)

(B20)

(B21)

(B22)




Solving (B18) and (B21) for the unknown coefficients A, and B, and
substituting back into (B16) gives

Io(nx)K o(nxp) = Ko(nx)o(RKp) }“’c(”) >0  (B23)

oip'n)=[K5(nK)lmnpr)+K}(nxpw)ldnk) nKp,

Similarly, B(17) becomes

o.(p.0)=-nlnp (B24)

Using the above two equations, the general solution for the drawdown at any
point in the aquifer can be written in the form of the inverse cosine

transform:

o(p.t)= 2L %Z ¢.(p.n)cos(nt) (B25)

b1

The quantity of interest is the difference between the average draw-
downs over the screen and the whole aquifer thickness. In general, the

average drawdown between two depths z, and =, is given, in dimensionless

form, by
_ 1 [ 9
O(p:ta»cb)=cb_cafta o(p.g)dy
o.(p.0) 2 - [sin(nrg,)-sin(nt,)]
= + . B26
TR VR n (B26)

So the required difference is

2 io( n)[sm(nt w)—sin(ng.)] - (B27)

5(pw:§=,tw)-5(pw:0,ﬂ)=m—_ﬁ > a.(p. ~

18




The above formula can be applied once a specific distribution of flux
into the well screen has been chosen. The simplest example is that of a

uniform flux:

Q.
q(z “b.-b, (B28)
This gives, using (B13) and (B14),
tof b sin(ng,)-sin(ng,)
= = B29
v .(n) f( (bw_bc)COS(HC)dC VTR ( )

In summary, the dimensionless penetration loss for uniformly distrib-

" uted inflow is given by (B27) in conjunction with (B23) and (B29).

19




APPENDIX C
Uniformity of the distribution of inflow

In this appendix consideration is given to the question of the valid--

ity of the uniform-inflow assumption.

The flow distribution into the screen will depend on the head vari-
ation within the screen, which in turn depends on the head losses within
the screen. Even if there were no well losses, the distribution of flow
into a partially-penetrating well would not be uniform: in general, there

is bound to be some concentration of flow at the ends of the well screen.

The problem of finding the distribution of flow into a well screen,
even for the relatively simple case of a constant drawdown along the
screen, is (to the best knowledge of the author) as yet unsolved. However,
it 1s not difficult to find a formula for the head-distribution correspon-
ding to a given flow distribution. So the approach adopted here is to
consider the uniformity of the head distribution corresponding to given

inflow distributions, when there are no well losses.

The flow distribution into a screen will vary from uniform (assuming
no well losses) when the well is fully penetrating, to most non-uniform
when the well is in a vertically infinite aquifer. It is therefore appro-
priate to study this extreme latter case (Figure C1). The flow equations
are the same as those given in Appendix B, but the outer boundary

conditions are replaced by

lim s(r,z)=0 rzr (C1)

zz¢r2-¢eo

The solution of the equations is effected in essentially the same way
as in.Appendix B,. but.with. the half-line cosine transform replacing the

finite transform. The dimensionless drawdown is found to be given by

(€2)

G(p,tz)\)=4 s( z)- 2f Y (w)Ko(w)\p)cos(wt)

WAK (W)

where

20




g=z/1 (C3)

(C4)

>
<

“rTw\/_ A

>
>

and the cosine transform of the flow distribution into the screen is given

by

vc<w>=fv<c)cos(w«:)dc . (c6)
where
v(c>=% €

.The average drawdown along the screen is also of interest ((C13)

below) and is given, in dimensionless form, by

For the case of a uniform flux

=2
qu(“") 21
0

z|>1 (C9)

the transformed dimensionless flux is given by

21




sinw
w

yu(u0=i[lc050»§)d§= (C10)

Another flux distribution worth consideration is that recently advo-

cated by Haitjema and Kraemer (1988) which has the form

__ Qu
T

lzf<1

-0 lz]> 1 (C11)

Note that this function is singular at the ends of the screen, but it has a

finite integral, equal to Q,, along the screen.

The distribution given by (C11) is exact for the two-dimensional prob-
lem of planar flow through a finite slot across which there is a uniform
potential. Polubarinova-Kochina (1962) argued that the same distribution
would become precise for the partial-penetration problem, with constant
head within the screen, as the well radius tends to zero. Haitjema and
Kraemer (1988) (following Muskat (1937)) point out, however, that in that
limit (r, - 0) the inflow distribution should become uniform. What none of
these researchers appeared to realize is that (C11) must be the limiting
form of the distribution as the radius of the well tends to infinity, since

it is then that the cylindrical problem tends to the planar problem.
The dimensionless transform of ¢.(z) is given, from (C6), by

Y (W) =Jo(w) (C12)

where J,(x) is_a Bessel function.

Equations (C2) and (C8) give the drawdown distribution. (and.itsiaver—
age)ialong:thewshreedsa However, the problem of interest is that of the
uniformity of this distribution for a given flux distribution. There are

many possible ways of expressing this uniformity in quantitative terms.

22




For computational convenience the measure of uniformity used here is the
percentage deviation of the drawdown at the centre of the screen from the

average along the screen:

g(1.0:A)-0,.(N)
0.(N)

x 100 (C13)

This measure is only valid because the drawdown distribution changes mono-
tonically along the screen away from its centre, for both the uniform and
singular flux cases. The results obtained by numerical integration of (C2)

and (C8) are shown in Figure C2.

Note that for the singular case the deviation tends to zero as A, and
hence r,, tends to infinity - as was anticipated. An asymptotic analysis
(not presented here) has shown that the deviation tends to zero for the

uniform case as A and (hence) s, tend to zero. However, another asymptotic

result:

a(1.0:N)

a0 o(l,1:N) 2 ' (c14)

indicates that the drawdown at the centre of the screen tends towards twice
that at the end of the screen as the diameter tends to zero. This 1s not
inconsistent with the observation that the deviation tends to zero, Figure
C2, since the drawdown deviates from the mean value only over an increas-
ingly small region as the diameter tends to zero. (In mathematical termi-
nology, the drawdown distribution tends uniformly - but not pointwise - to

a constant value.)

Note, in particular, from Figure C2, that the drawdown deviation for
the singular flux exceeds that for a uniform flux for A values below about
eight. Since, in.practice, that would.correspond, to,an unnaturally.short
screen, the.obvious conclusion is that the flux-.distribution given by (C11) .
is, in general, of far less validity than the simple uniform distribution.
For a confined aquifer the uniformity increases and the conclusion is

strengthened

23
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Figure 1. Notation for partial penetration.’
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Figure 2. Convergence of equation (5) as the aquifer radius

increases, x 2, (n=0. x,=1073)
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Percentage error

] i

o . 0.2 0.4 0.6

Eccentricity
+ 30% < 50% Z 70%

0.8

90% penetration.

Figure 3a. Error in equation (13) with © given by equation (21),

K,/n=10"2%
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Percentage error

] ¥ 7 ] i B 1

0 0.2 0.4 0.6 0.8

. Eccentricity
30% < 50% B 70% . 90% penetration.

4

Figure 3b. Error in equation (13) with © given by equation (22),
K, /=102
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Percentage error

0 0.2 0.4 0.6 ) 0.8

Eccentricity )
+ 30% o S50% & 70% - 90% penetration.

Figure 4a. Error in equation (13) with © given by equation (21),
X, /=103, '
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Percentage error

0 0.2 0.4 0.6 0.8

Eccentricity
+ 30% - > 50% & 70% : 90% penetration.

Figure 4b. Error in equation (13) with © given by equation (22),

x,/n=1073
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« ds _
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z ,{-qm
21 I roo. s(r,z)

-<—:2rvv—a-

Figure C1. Notation for vertically infinite model for drawdown dis-

tribution for a given flow distribution, g(z).
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Figure C2. Variation of drawdown along a screen (expressed in terms

o . re K,
‘of equation C13) as a function of the shape factor: )‘=71’K—, .
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