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ABSTRACT: We investigated which landscape and climate-related data (including1

information on hydrological source of flow) were statistically significant predictors of2

channel wetted width (WW) across a sizeable (2200 km2) region of the UK. This was3

conducted specifically when flow was less than mean daily flow (MDF) and where chan-4

nels are in a near natural state. Orthorectified air photos at 25 cm spatial resolution5

were used to measure WW, with the magnitude of the errors in these measurements6

quantified. We used flow information from local gauging stations to ensure that chan-7

nels were below MDF for the days on which the air photos were captured. The root8

mean squared difference between the field and air photo measurements of WW (n=289

sites) was small (0.14 m) in comparison to median WW (3.07 m).10

We created points along sections of channels visible in air photos and used a ter-11

rain model to create drainage catchments for these points and computed their catch-12

ment area (CA). We selected a subset of points (n=472) and measured their WW from13

air photos, and computed landscape-related data for each of their catchments (mean14

slope, mean annual rainfall, land cover type, elevation) and also mean BFIHOST, a15

quantitative index relating to hydrological source of flow. We used a linear mixed model16

to predict WW by including the landscape data (including CA0.5) as fixed effects, plus17

a spatial covariance function estimated by residual maximum likelihood (REML) to18

determine unbiased estimates of the predictors. There was no evidence for retaining19

the spatial covariance function. With the exception of land cover, all the predictors20

were statistically significant and accounted for 76% of the variance of WW. When21

CA0.5 alone was used as a predictor it captured 54% of the variance. The vast majority22

of this difference was due to inclusion of an interaction between CA and hydrological23

source of flow (BFIHOST). As catchment area increases, those channels with larger24

mean catchment BFIHOST values (greater proportion of baseflow contribution) have25

narrower WW by comparison to those with smaller mean BFIHOST for the same CA.26

Improved predictions of channel WW (based on our findings) could be used in channel27

restoration.28
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1 Introduction29

The effective restoration of stream or river channels following various modifications30

requires an understanding of natural channel morphology (Thorne et al., 1996), in-31

cluding the morphology of channel cross sections and channel wetted width (WW).32

For channels in bedrock, scaling relationships have been established where bankful33

width (BW) or wetted width (WW) is a function of discharge or catchment area (CA)34

with exponents of between 0.3 and 0.5 (Whipple, 2004; Faustini et al., 2009).35

For nations with a large number of gauged rivers (such as the United Kingdom36

or New Zealand), power-law relationships have been developed to predict at-a-station37

hydraulic geometry based on data from gauging sites (Booker, 2010) or at natural38

river sections (Booker and Dunbar, 2008) under differing flow conditions. In a study39

based on measurements of discharge and hydraulic geometry at 3600 stations across40

England and Wales, Booker and Dunbar (2008) concluded that ‘hydraulic geometry41

(including WW) is driven by catchment area rather than natural geomorphological42

variations in the streamwise direction, but that geomorphological variation can still43

have a major impact on channel structure’. In a study across the conterminous United44

States, Faustini et al. (2009) found that CA (with exponents of between 0.22 and 0.38)45

explained between 36 and 77% of the variation in BW and that this varied according46

to region. Channel substrate is also likely to influence hydraulic geometry; bedrock47

channels support much higher wall stress than gravel channels (Finnegan et al., 2005)48

so the former will have narrower channels than the latter at the same discharge. Other49

factors which are known to account for variations in WW or bankful channel width50

include elevation, channel slope (Whittaker, 2007), hydrological source, land cover51

type and climate (Booker, 2010; Faustini et al., 2009). In landscapes where few gauged52

measurements are available, it is necessary to use other sources of landscape-related53

data to predict WW. These sources of data may include digital terrain models (for the54

calculation of CA, slope and elevation) or maps of soil, geology, land cover, and climate-55

related information. Rather than relying solely on functions of CA, other sources of56
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landscape information may explain substantially more of the variation in channel WW.57

In the United Kingdom, one source of information relating to hydrological source58

of river flow is referred to as BFIHOST. It is a dataset derived from a combination of59

information on catchment baseflow index (Gustard et al., 1992) and associated maps60

classified by the hydrology of their soil types and substrates (HOST) (Boorman et al.,61

1995). Baseflow index (BFI; Institute of Hydrology, 1980) is the long-term ratio of62

baseflow to total stream flow, representing slower contributions to river flow and is63

often strongly related to catchment geology. There is a BFIHOST value (on a scale of64

zero to one) for every 1km2 of the terrestrial landscape of the British Isles. A value65

of one implies that river flow is entirely related to groundwater sources (no runoff66

contributions), whilst a value of zero implies all flow is from shallow runoff. To our67

knowledge no studies to date have attempted to account for differences in channel WW68

using information such as BFIHOST which is related to hydrological source.69

Remote sensing data are increasingly used to estimate hydraulic features of sur-70

face water bodies; for example, Bjerklie et al. (2005) developed a method from a71

combination of air photos and synthetic aperture radar images to estimate river dis-72

charge for various channels in the USA. In a more recent study, methodologies for the73

extraction of channel (bankful) widths based on freely available high-spatial resolution74

imagery and digital elevation models were demonstrated by Fisher et al. (2013); the75

authors did not estimate channel WW which (we consider) may be more effective based76

on a manual procedure. Where the view of a channel is unimpeded from above, the77

resolution of air-photos is now sufficiently fine (25 cm pixel resolution) to make ac-78

curate estimates of channel WW across the landscape. Such snapshot, instantaneous79

images are collected without regard to recent variations in antecedent rainfall or dis-80

charge. The majority of channels recorded in these images (for temperate climates81

of the United Kingdom) relate to discharges below mean daily flow (MDF; Smakhtin,82

2001), avoiding the highest flows when channel WW is likely to be larger, and more83

variable. Mean daily flow, computed from long-term time series of discharge measure-84
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ments, is heavily influenced by infrequent flood events leading to strongly skewed flow85

distributions (mean flows are typically much greater than median flows). We wanted86

to investigate which sources of climate and landscape-related data could be used to87

make accurate predictions of downstream channel WW measured by air photo when88

channel discharge is below MDF across a landscape with varied topography, geology,89

geomorphology and mean annual rainfall. Although we cannot include flow informa-90

tion as a predictor of WW because our sites do not coincide with gauging stations, we91

wanted to ensure that any significant effects due to variations in flow conditions were92

minimised. Large fluctuations in discharge across the study area (at the time of air93

photo capture) could introduce bias to our predictors for WW. We can use data from94

local gauging stations for the period over which the air photos were captured to check95

whether flow in local channels were less than MDF.96

In general it is not possible to use air photos to measure channel WW across an97

entire landscape or region because vegetation will likely cover some sections of channels.98

We cannot assume that a set of sample data (i.e. estimates of WW) are independent99

random variables; using ordinary least squares (OLS) linear regression could lead to100

biased estimates of a predictor. Such sample data will likely exhibit varying degrees101

of spatial clustering which can also lead to bias in predictors if estimated by OLS.102

To overcome these limitations, we can adopt a model-based analysis where we assume103

the variable is a realization of a random process. We can ensure that estimates of the104

coefficients for any set of landscape predictors of WW are unbiased if we fit the model105

using residual maximum likelihood (REML) whilst accounting for spatial clustering in106

the sample data (Lark and Cullis, 2004).107

The first aim of our study was to determine the magnitude of errors between field-108

based and air photo meaurements of WW for flows less than MDF. If these errors were109

sufficiently small, the second aim was to determine which landscape and climate-related110

data were statistically significant predictors of channel WW for these flow conditions111

for a region of the British Isles which encompasses broad variations in climate, land112
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cover, geology and geomorphology. In particular, we wished to determine whether113

including information on variations in the hydrological source of flow (BFIHOST) was114

a significant predictor of channel WW.115

2 Study region and Methods116

2.1 Study region117

The study region is an area of 2200 km2 (20 km × 110 km) covering part of north118

Wales and western England (Figure 1). It was selected to encompass a broad range of119

bedrock lithology, topography and land cover types. Elevation is greatest to the west120

(>1000 m) and declines towards the east to around sea level (Figure 1a). The region121

has a temperate, maritime climate with mean annual rainfall varying from greater than122

4000 mm in the west (Snowdonia National Park) to 650 mm in the east of the study123

region. There are a series of west to east changes in bedrock geology from Ordovician124

slate, through Silurian Gritstone, to Permo-Triassic Sandstone then Mudstone, and125

also halite (in the eastern most part of the study region). Based on maps from the126

British Geological Survey, there are extensive Quaternary glacial till deposits covering127

(by area) around 50% of the central part of the study region, increasing to 100% to128

the east. During the Holocene, uplift or subsidence rates across the British Isles are129

unlikely to have been sufficiently large (<2 mm yr−1; Shannan and Horton, 2002) to130

have had a major impact on adjustments to channel width.131

We have no quantitative information relating to variations in stream substrate132

for the study region; bedrock channels are common in the low order streams of upland133

settings in the Snowdonia National Park to the west, whilst alluvial stream beds are134

prevalent to the east with its extensive cover of Quaternary deposits and weaker rock135

types. Using vector data extracted from Ordnance Survey MasterMap for inland water136

channels we calculated a declining trend in average drainage density (length of channel137

per unit area) from the west (mean 5.3 km km−2) to the east (mean 3.8 km km−2)138

of the study region. The spatial distribution of BFIHOST values (Figure 1b) shows139
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that the soils and rock types to the west are more runoff-dominated that those to the140

east, but there is a substantial degree of local complexity in this pattern relating to141

hydrological sources.142

2.2 Wetted width data143

Air photos: The channel networks for the study region were extracted directly from the144

‘inland water’ layer of Ordnance Survey MasterMap (©Ordnance Survey) as vector145

features in the GIS package ArcMapTM (ESRI). To determine whether the view of a146

channel section was impeded in the air photo, the channel networks were overlain in the147

GIS above 25 cm pixel aerial photos for all the region (©UKP/Getmapping). These148

air photos are colour (RGB) orthophotos derived from vertical stereo photography, and149

were captured on four dates across the study region: 11 May 2009, 01 June 2009, 24150

April 2010 and 11 October 2011. We visually identified those sections of each channel151

vector which were not visible in the air photos, and these were removed from a copy of152

the vector file. We used ArcToolBoxTM (ESRI) to create a series of points along each153

of the remaining channel vectors at 1 km intervals. We refer to these subsequently as154

unimpeded points.155

We used the ArcHydro extension and a 5 m resolution Digital Surface Model156

(NEXTMap Britain elevation data from Intermap Technologies, Intermap, 2009) to cre-157

ate drainage catchments upstream of all the unimpeded points of the channel network158

(n=2324). We created a set of catchment polygons so we could estimate catchment159

properties from other landscape data (see section 2.5). We then computed the area160

of the catchment draining to each of these points and also transformed the values by161

taking their square root. We chose to apply a minimum threshold CA of 1 km2 for use162

in our study because we considered that the errors associated with air photo based es-163

timates for the smallest catchments (i.e. <1 km2) could lead to false inferences. There164

were 1255 unimpeded points with a CA <1 km2. We sorted the unimpeded points by165

CA and used a routine in the R Environment (R Development Core Team, 2012) to166
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randomly select 50 points within each decile of the ordered distribution. This procedure167

ensured we selected a subset of channel locations that encompassed a broad range of168

CA, which is typically a significant predictor of channel WW. We then made estimates169

of WW at each of these locations from the air photos using ArcMapTM (ESRI). All the170

estimates were made by the same person. After experimenting with a range of scales171

to view the air photos, we found the optimum scale to view the images varied between172

1:200 and 1:250; dependent on local conditions. The wetted channel was defined sub-173

jectively by the same person after having viewed the colour contrast between the water174

surface and either the adjacent exposed bed material or channel bank. At 28 of of the175

500 point locations, there was insufficient colour contrast to accurately define one or176

both edges of the wetted channel, so these locations were excluded and our final dataset177

consisted of 472 estimates. The orientation of the cross-section at which we estimated178

width was determined by adding a temporary linear feature (approximately 10 m long)179

along the centre of the channel. The wetted width was estimated perpendicular to this180

linear feature. To account for some of the local variation we estimated the channel181

WW at three distinct positions around each point; first precisely at the point location182

on the channel, and also 50 cm upstream and downstream, in each case adding a tem-183

porary linear feature (10 m in length) to define the orientation of the cross-section.184

We computed the average of these three values and used this as the estimated WW.185

Tree roots are known to have an impact on channel morphology (Keller and Swanson,186

1979) so our sample data, which exclude sites where trees are close to the bank, may187

be somewhat biased and we cannot account for this effect.188

Field measurements: We selected a subset of sites (Figure 1) for field-based measure-189

ment of channel WW and located them using a handheld GPS with an accuracy of190

±1 m. We had limited resources to undertake field based measurements; to avoid191

large travel distances between individual sites we used a subset of stream sites across a192

smaller part (150 km2) of the study region where we established there was a large range193

in catchment areas (between 1 and 70 km2); we selected 28 sites in this region spanning194
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the full variation in catchment area. We recognize that ideally we would have made195

measurements at more locations across the entire study area. The WW measurements196

were undertaken on 3rd November 2012 using a tape measure during which flow in197

the channels appeared to be low (below MDF) across this part of the study region.198

We measured WW by stretching a tape measure across the full width of the wetted199

channel. We computed the differences (or errors) between the field and air-photo WW200

measurements at each site, and also the root mean squared error (RMSE) and bias201

(whether the sum of the differences were substantially more positive or more negative)202

using the following formulae. For RMSE:203

RMSE =

√√√√ 1

n

n∑
i=1

(ẑi − zi)
2 (1)

where zi is the measured field width (in metres) and ẑi is the width estimated from the204

air photo (also in metres), and where n is the total number of sites. We calculated the205

mean error (ME – or bias) of the differences:206

ME =

n∑
i=1

(ẑi − zi)

n
(2)

using the same notation. We also computed the standard deviation of the error (SDE)207

which is a measure of precision (after removal of the mean error).208

SDE =

√√√√ 1

n− 1

n∑
i=1

(ẑi − zi − ME)2 (3)

2.3 Gauged flow data209

In our analyses we used mean gauged daily river flow data for three gauging stations210

within the study region from the National River Flow Archive (http://www.ceh.ac.uk/data/nrfa/).211

The names of the stations are Cwm Llanerch (grid reference (SH802581), River Alyn212

(grid reference SJ336541), Wistaston Brook (grid reference SJ674552; Figure 1). We213

examined flow variations based on available data for three calendar years (dates be-214

tween 1st January 2009 and 31st Dec 2011) which encompasses the four days on which215
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the air photos were captured (Figure 2) across the region. The discharge measurements216

and their corresponding percentiles on a flow duration curve of these data over this217

three year period are shown for each station in Table 1, and also the mean discharge218

for each station for the same period. For the four dates on which air photos were219

captured, these data show that on each date, flow in each of these channels was be-220

low MDF measured for the 3-year period. We therefore feel justified in assuming that221

estimates of channel WW on these dates from the air photos relate to channel states222

where flow was less than MDF.223

The flow data for the day when our field measurements of channel WW were224

made (3rd November 2012) will not be released by the National River Flow Archive225

(www.ceh.ac.uk/data/nrfa/) for a further six months (September 2013), so we cannot226

provide the associated percentiles on a flow duration curve for these channels on this227

date as part of our study.228

2.4 Landscape and climate data229

BFIHOST: We extracted the 1 km grid values for the BFIHOST data for the study230

region. We used the catchment polygons referred to above to calculate the arithmetic231

mean catchment BFIHOST value (cBFIHOST) for the catchment upstream of each of232

the 472 selected points. We used the cBFIHOST values in the subsequent statistical233

analysis.234

Local and mean catchment slope: We used the 5 m Digital Surface Model (Intermap,235

2009) to compute the slope (in degrees) at each of the 472 channel locations. We also236

computed the arithmetic mean slope for the upstream catchment area using all slope237

values within the catchment polygons.238

Mean annual rainfall: We used data for mean annual rainfall (1961–1990; mm) on a239

5 km grid available from the Met Office (UK). We converted the grid values to point240

locations at the centre of each 5-km grid and calculated the mean of the value in each241

grid. If none of the rainfall points fell inside a catchment, we used the value of the242
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nearest point location as the mean annual rainfall value for that catchment.243

Land cover: We extracted a grid showing the dominant land cover class in each 1 km2
244

pixel from the Land Cover Map 2007 (Fuller et al., 2000) for Great Britain. We245

then extracted the codes for the dominant land cover class for each of the catchment246

polygons, and used this code as a classification for land cover. The dominant classes247

were semi-natural grassland (44%), improved grassland (38%), cultivated land (4%),248

mountain-heath and bog (2%), with other smaller land cover types forming the remain-249

der.250

2.5 Statistical analysis251

In this study we used both linear models and the linear mixed model (LMM) to explore252

which landscape and climate-related data could account for the variation in channel253

WW. Our sample data exhibits a degree of clustering (Figure 1) which can lead to bias254

in predictors if estimated by a linear model using OLS. To overcome these limitations,255

we used the LMM where we assume the variable is a realization of a random process.256

The coefficients for any set of landscape-related predictors (fixed effects) of WW are257

unbiased if the model of the spatial dependence of the error variation (an autocorrelated258

Gaussian variable) are fit using REML; this model of the spatial dependence accounts259

for spatial clustering in the sample data. Here we are referring to spatial clustering260

in the positions of the locations in coordinate space, we have not accounted for the261

locations in relation to their positions on the stream network. This implementation262

of the LMM has been described thoroughly in previous studies and the reader should263

consult the paper by Lark and Cullis (2004) for a complete description.264

We used the ANOVA function in the R environment (R Development Core Team,265

2012) based on model outputs from the LMM’s to test whether there was evidence to266

include each of the fixed effects based on comparing the log-likelihood ratio statistics267

before and after their inclusion in the model. We also tested after inclusion of the268

statistically significant fixed effects whether there was evidence for inclusion of a spatial269
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covariance function. This may be one of several authorized functions (Webster and270

Oliver, 2007). We used the lme function in the R package nlme (Pinheiro et al.,271

2009) which fits LMMs and has an option for including a spatial covariance structure272

(fitted by REML). If our data for channel WW were strongly skewed it can present273

problems for geostatistical analysis because a variogram calculated from such data274

may be strongly biased. To investigate this further, we fit a simple, least squares275

model between CA0.5 (predictor) and the estimates of WW (predictand) data; the276

residuals were close to normally distributed (skewness coefficient = 1.03) so we chose277

to undertake all our analyses on the original, untransformed data.278

We formed a LMM model by including a series of fixed effects (the overall mean,279

CA0.5, cBFIHOST, local (channel) slope, elevation, catchment slope, rainfall and dom-280

inant land cover class); with the exception of land cover class all the predictors were281

statistically significant (P<0.05). We then updated the LMM by including spherical282

and exponential spatial covariance functions fitted by REML. We tested the statistical283

significance of the additional predictor using the ANOVA procedure in the R Envi-284

ronment (R Development Core Team, 2012); there was no evidence for inclusion of the285

spatial covariance functions (P>0.05). Finally we used an OLS regression model to286

estimate coefficients for the various landscape-related predictors. We used the stepwise287

regression function stepaic (Venables and Ripley, 2002) which tests the inclusion of288

predictors based on the Akaike information criterion; the k-value (multiple of the de-289

grees of freedom for penalty) was 2 and the mode of stepwise search was forwards and290

backwards. The set of statistically significant predictors which we subsequently refer291

to as the ‘full model’ were: CA0.5, cBFIHOST, local (channel) slope, elevation, catch-292

ment slope and rainfall. We computed summary statistics and examined histograms of293

the residuals which exhibited some positive skew (skewness coefficient=0.89). We con-294

cluded that the skewness was dominated by a few outliers because the octile skewness295

(Brys et al., 2003) was small (octile skewness coefficient=0.007).296

We made a quantitative comparison between WW estimated from air photos and297
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each model for the prediction of channel WW from catchment characteristics using: i)298

the full model), and ii) only CA0.5 as a predictor (we refer to this as the ‘CA model’).299

We computed the adjusted coefficient of determination (R2
adj) for both the CA and full300

models. We also used the two models to make predictions at all the sites, and from301

these computed the root mean squared error (of prediction) (RMSE) across all sites302

using Equation (1) where zi is the observed width from air photos in metres and ẑi is303

its predicted value, and n is the number of sites. We also calculated both ME and SDE304

using Equations (2, 3) respectively, based on this notation.305

3 Results and their interpretation306

A set of summary statistics for the field-based measurements of channel WW (n=28)307

are shown in Table 2, with statistics for the differences between these measurements308

and those made from the air photos. The WW estimates encompass a broad range309

(0.72–13.3 m) with a median of 3.07 m. The RMSE between the field-based and air310

photo measurements was small (0.14 m) in comparison to the median width, and there311

was very little bias (0.026 m) between the measurements and air photo estimates. We312

therefore consider that estimates from 25 cm pixel air photo are sufficiently accurate to313

undertake a more comprehensive statistical analysis of landscape and climate-related314

predictors of WW.315

Summary statistics of WW at the 472 sites across the study region, and for the316

landscape plus climate-related data for each upstream catchment are shown in Table 3;317

these data are also supplied as as supplementary online material associated with the318

published paper. The maximum difference between each of the three separate local319

estimates of channel WW from the air-photos are shown in Figure 3. This shows that320

the maximum differences tend to increase with increasing channel width, and in most321

cases the differences are small (< 1 m), but that in some cases the differences are322

substantial (> 2 m) which suggests that taking the average of three measurements323

would likely be an effective strategy to account for some of the local variations in WW324
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in the images.325

There is a significant degree of spatial clustering in the selected sites (Figure 1)326

which reflects a combination of downstream channel associations and the distributions327

of aerial obstructions which prevent clear aerial views of the channel. The WW es-328

timates encompass a broad range of channel size (0.49–28 m) with a median value329

(3.7 m) which is similar to that of the 28 sites where field measurements were under-330

taken (3.07 m; Table 2). The median upstream CA from the sites of WW measurement331

was 5.5 km2 and the largest catchment was 89 km2. As one would expect, the range of332

mean catchment BFIHOST values (cBFIHOST; 0.28–0.59) was smaller than the range333

for the 1 km2 values across the study region (0–0.93; Figure 1) because averaging across334

catchments reduces the variation.335

The results from fitting linear models by OLS are shown in Table 4. This model336

suggests that all the various landscape and climate-related predictors of WW are sta-337

tistically significant for prediction of WW (P -values<0.05). In order of decreasing338

importance these were: CA0.5 > CA0.5:cBFIHOST > cBFIHOST > rainfall > local339

slope > catchment slope > elevation.340

The adjusted-R2 values for these two linear models (full model and CA model)341

were 0.76 (76%) and 0.54 (54%), respectively. The vast majority of the difference in342

the proportions of variance explained was due to the inclusion of the interaction term343

(CA0.5:cBFIHOST). Figure 4 shows the measured and predicted WW values for the two344

models; the CA model clearly underpredicts the WW for the widest channels (>13 m)345

by comparison with the full model. The CA model also consistently overpredicts WW346

for the narrowest channels (<2 m), whilst the predictions errors from the full model are347

more evenly distributed. Across the intermediate range of channel widths (2–13 m), the348

predictions errors based on the full model are generally less than those of the CA model,349

but the differences in error predictions are less apparent than for both the larger and350

smaller channels. There is a substantial difference in the RMSEP and for channel WW351

based on the two models; 1.80 m and (CA model) and 1.34 m (full model). The SDE352
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values for the full and CA model were 2.01 and 2.72 m respectively. This suggests that353

including information from other landscape predictors, but particularly hydrological354

source of flow, could substantially reduce errors in estimating channel WW, for flow355

states less than MDF, across complex landscapes.356

Figure 5 shows how the interaction between CA0.5 and cBFIHOST accounts for357

WW; this plot was generated using the visreg2d function in the visreg package358

(Breheny and Burchett, 2012). As catchment area increases, those channels with359

larger mean catchment BFIHOST (cBFIHOST) values have narrower channel WW360

by comparison to those with smaller cBFIHOST for the same catchment area. We361

infer that channel morphology responds to the source and type of flow; those channels362

with greater proportions of flow derived from groundwater or slower throughflow (more363

permeable bedrock and soils) have narrower, and also likely, deeper channel profiles by364

contrast to those channels where hydrographs have more flashy responses dominated365

by shallow runoff.366

4 Discussion367

Our statistical analysis suggests that including information on hydrological source of368

flow can significantly improve predictions of channel WW across a complex landscape.369

The BFIHOST values provide an estimate of the relative magnitude of baseflow con-370

tributions to channels (based on the hydrology of soil and geology) for each 1 km2
371

of the landscape. However, we cannot be certain that the mechanism through which372

cBFIHOST accounts for channel WW is entirely related to hydrological source be-373

cause there are many other factors that control channel WW, including substrate type,374

slope (Finnegan et al., 2005) and sediment supply (Liebault and Piegay, 2001) which375

may also relate closely to cBFIHOST values. To make clear inferences on the precise376

mechanism through which cBFIHOST accounts for the variation in channel WW, fur-377

ther research is required that incorporates quantitative data relating substrate type to378

channel WW using a similar landscape scale analysis as reported here.379
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Analyses of long-term flow series data in relation to flow on dates of air-photo380

acquisition from the three gauging stations across the study region (summarised in381

Table 1) show that there were considerable differences between gauged flow percentiles382

on the same date. For example, on 11th of October Cwm Lanerch and Wistaston Brook383

had flow equivalent to the 69th and 25th percentiles on their respective FDC. We cannot384

assume that all relative flows were the same across the study area; both local climate385

(particularly rainfall) and catchment characteristics (including size, geology and land386

use) will result in differences in runoff on specific dates in relation to long-term flow387

quantities. Wetted width is flow dependent and therefore sensitive to the relative flow388

at which width was observed. Our model estimates a single width based on the state of389

flow on the observation date (which was likely below long-term mean flow). Although390

our width estimates from air photos were made on one occasion from four possible dates391

(with associated variations in flow between sites) our model demonstrated reasonable392

performance in accounting for WW. This suggests that the hydraulic geometry of393

channels in this region have profiles which are more rectangular than either ‘V’ or ‘U’-394

shaped because in the latter the rate of change in WW would be substantial at lower395

flows.396

For much of the globe where there is currently no information relating to hydro-397

logical source of flow (such as BFI values), it may be possible to develop a classification398

system using land cover (vegetation) and geology to estimate such an index. A recent399

study demonstrated that a lithological classification can account for a substantial pro-400

portion of the variation in BFI for a chalk basin in England (Bloomfield et al., 2009).401

The study by Gustard (1993) suggested that prediction of BFI based on a classification402

for a single country was not as successful when extended to larger regions such as West-403

ern Europe. Analyses using data from 114 catchments in Victoria (Australia; Lacey404

and Grayson, 1998) showed that the most important factor for predicting BFI was a405

series of 12 classes comprising combinations of geology and vegetation; a regression on406

the class means accounted for 84% of the variation in BFI. The authors observed that407
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if a catchment consisted of both a single rock and vegetation type, the mean BFI for408

other catchments of this type provide a reasonable estimate, but they recommended409

that the approach needed further testing in catchments with mixed classes.410

The proportion of sedimentary rock in a catchment was also found to be a signifi-411

cant predictor of BFI for a study of 164 catchments in Victoria (Nathan and McMahon,412

1992). Data for vegetation or land cover types are now widely available at reasonable413

resolutions at the global scale (Ramankutty et al., 2008; Zhu and Wallter, 2003), whilst414

geological map data is available for the globe at coarse scales (Hartmann and Moos-415

dorf, 2010) and finer resolutions (1:1 000 000) in more intensively surveyed areas (see416

http://www.onegeology.org). Although indices for BFI have been developed in western417

Europe based on soil groups and drainage classes (Gustard, 1993), the current lack of418

global soil data at a sufficiently fine resolution (e.g. <1:1 million scale) suggests that419

an approach based on combining geology and vegetation classes will likely be more420

comprehensive as it would encompass a greater range of gauged catchments (required421

for estimating BFI values) across the globe. It would then be possible to make a422

comprehensive assessment of hydrological source in controlling channel WW.423

Our findings suggest that the hydrological properties of both soils and bedrock424

geology (or other features which relate to them) are a significant factor in determining425

channel WW. Although considerable research has demonstrated how flow and sediment426

transport influence channel WW, it is not clear how differences in hydrological source427

would influence WW at flows greater than mean flow. It may be possible to relate the428

dates of air photo capture and local gauging station flow information to explore this429

relationship in more detail.430

In our analysis, we used 25 cm pixel resolution air photos to measure channel431

WW for a small region of Wales (and part of England). Air photo coverage at this432

resolution (and BFIHOST values) are available for all the British Isles so it would be433

possible to extend our analysis to determine how the relationships we identified vary434

at a regional scale, whilst ensuring flow less than MDF conditions prevailed (based435
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on local gauging station data) on the date of the airborne survey. We undertook our436

estimates of channel WW from air photos in a GIS using a manual approach. It may437

be possible to automate the extraction of WW estimates from colour infra red (CIR)438

air photos which are available at 50 cm pixel resolution across the British Isles, and use439

super-resolution mapping approaches to measure subpixel waterline boundaries (Foody440

et al., 2005). The magnitude of errors in measuring channel WW from an automated441

extraction procedure would need to be compared against estimates from both finer442

resolution (25 cm pixel) air photos and field-based measurements.443

Based on river habitat surveys across England and Wales between 2007 and 2008444

(Environment Agency, 2010), channels across around 80% of our study region have445

been reported to be close to a ‘near-natural’ state, or not subject to major physical446

modification. Some of the unexplained variability in channel WW likely results from447

past or on-going engineering interventions plus and/or channel maintenance. However,448

only 11% of the rivers across England and Wales were classified as ‘near-natural’ and449

it is unlikely there is sufficient local information on engineered modifications for this450

to be incorporated into predictions of channel WW. The inclusion of BFIHOST data451

in predictions of the ‘natural’ wetted width of a channel could help to improve channel452

restoration or rehabilitation design.453

It is increasingly recognised that freshwater channels account for a sizeable pro-454

portion of the carbon dioxide (CO2) flux to the atmosphere from the terrestrial carbon455

cycle (Butman and Raymond, 2011). Accurate predictions of the WW of small rivers456

are therefore required because CO2 evasion rates are greater from the surfaces of smaller457

(compared to larger) water bodies because the former generally have more turbulent458

flow (Vachon et al., 2010). Any attempt to compute the quantity of CO2 evasion459

from the surfaces of streams at the landscape-scale may be improved if channel WW460

(and therefore surface area) can be predicted more accurately by including data on461

hydrological source of flow.462

5 Summary and Conclusions463
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We used historical gauged flow data from three stations encompassing the four dates464

upon which air photos were captured across our study region for part of Wales and465

western England (with varying geology, geomorphology and climate) to demonstrate466

that flow was likely less than MDF on each date (of photo capture). Across the entire467

study region (2200 km2), WW estimates at 472 sites based on air photos encompass468

a broad range of widths (0.49–28 m) with a median value (3.7 m). A linear mixed469

model fitted to the air photo-based channel WW estimates (predictand) with a range470

of landscape and mean annual rainfall data as predictors (fixed effects) showed that471

there was no evidence for inclusion of a spatial covariance function. One of these472

predictors (BFIHOST) is related to hydrological source of river flow.473

By comparing field-based measurements and air photo (25 cm pixel resolution)474

estimates of channel WW at 28 sites for part of our study region (channel WW range475

0.72–13.3 m), we showed that the root mean squared difference was small (0.14 m) and476

there was very little bias (0.026 m) between the two sets of observations.477

We fit a linear regression model by ordinary least squares to predict channel WW478

and showed that the following were all statistically significant predictors (in order of479

decreasing importance): CA0.5 > CA0.5:cBFIHOST > cBFIHOST > rainfall > local480

slope > catchment slope > elevation. We refer to this as the full model. The adjusted-481

R2 values for two linear models for prediction of WW (full model and another with only482

CA0.5 as a predictor) were 0.76 (76%) and 0.54 (54%), respectively. The vast majority483

of the difference in the proportions of variance explained was due to the inclusion of the484

interaction term (CA0.5:cBFIHOST). The RMSEP and SDE values for the full model485

were 1.34 m and 2.01 m respectively, substantially smaller than the equivalent statistics486

for the CA model (1.80 m and 2.72 m).487

Information relating to hydrological source of flow (such as BFIHOST), could488

substantially reduce errors in estimating channel WW (below MDF) across complex489

landscapes. In this region, as catchment area increases, those channels with larger mean490

catchment BFIHOST (cBFIHOST) values have narrower channel WW by comparison491
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to those with smaller BFIHOST for the same catchment area.492
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List of Figures and Captions596

Figure 1 Maps of the study region and the distribution of sites (n=472) at which597

channel wetted widths were measured: a) elevation, b) BFIHOST values. The red598

discs are sites where wetted widths were measured from air photos, the green discs599

(n=28) are sites where field measurements of wetted width were also undertaken.600

The three gauging stations referred to in the text are shown as orange (Cwm601

Llanerch), yellow (River Alyn) and blue squares (Wistaston Brook), respectively.602

[Supplied in colour for online publication]603

Figure 2 Daily flow measurements at three gauging stations in the study region604

(Figure 1) between 2009 and 2011 : a) River Alyn, b) Wistaston Brook, and c)605

Cwm Llanerch. The vertical red lines shows the dates on which air photos were606

captured across the study region. Supplied in colour for online publication.607

Figure 3 Scatterplot of the maximum difference between three separate measure-608

ments (metres) of channel WW at each stream site (n=472) against the average609

of the three measurements at the same site.610

Figure 4 Scatterplot of measurements (from air photos) and predictions of channel611

WW for linear models with only catchment area as a predictor (CA model; red612

open discs) and all statistically significant predictors (full model; blue open discs).613

[Supplied in colour for online publication]614

Figure 5 Visualization of the interaction between between catchment area (CA0.5)615

and cBFIHOST and its effect on channel wetted width (m) for the study region.616

The greyscale shading shows the regression model predictions of wetted width617

for different combinations of catchment area and cBFIHOST values.618
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Table 2 Summary statistics for field-based measurements (n=28) of channel wetted624

widtha and the same statistics calculated using the absolute differences (n=28) be-625

tween the field measurements and the estimates of wetted width based on air photos626

for the same sites.627

628

Field measurement Absolute difference between wetted widths

wetted width (m) (field measurement and air-photo; m)

Minimum 0.72 0.01

Mean 3.97 0.11

Median 3.07 0.09

St. Dev. 2.92 0.09

Maximum 13.3 0.34

Skewness 1.65 0.93

bRMSE – 0.142

Bias – 0.026

SDE – 0.140

629

a all channels have an upstream catchment area >1 km2 - see text630

b root mean squared error (see text)631

632
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Table 3 Summary statistics for measurements of wetted width at 472 sites and the633

associated catchment or site-related data.634

635

636

aWidth Catch. Area Elevation cBFIHOST Site slope Catch. slope bRainfall

(m) (km2) (m) (◦) (◦) (mm)

Minimum 0.490 1.00 5.60 0.28 0.092 1.90 660

Mean 4.80 14.0 170 0.47 3.70 6.20 1300

Median 3.7 5.5 170.0 0.5 2.7 5.7 1000

Max 28.0 89.0 550 0.59 18.0 8.2 4100

St. Dev. 4.0 19.0 100 0.11 3.50 1.60 750

Skewness 2.20 2.24 0.33 -0.67 1.60 -1.30 1.80

637

a channel wetted width measured from air photo638

b mean annual rainfall639

640
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Table 4 Results of the linear models fitted by ordinary least squares641

642

Estimate Std. Error t-value P -value

Intercept -7.56 1.04 -7.24 < 1.88 × 10−12

aCatch. area0.5 3.77 0.19 19.9 < 2 × 10−16

cBFIHOST 10.8 1.72 6.33 < 2 × 10−16

Catch. area0.5:cBFIHOST -4.96 0.39 -12.8 < 2.0 × 10−16

b Rainfall 8.6 × 10−4 1.8 × 10−4 4.73 < 2.0 × 10−16

Elevation -0.002 9.8 × 10−4 -2.27 0.0234

Catch. slope 0.27 0.07 3.71 0.002

Local slope 0.12 0.028 4.21 < 2 × 10−16

643

a Catchment area0.5
644

b mean annual rainfall (mm)645

646
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Figure 2:
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Figure 3:
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Figure 4:
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Figure 5:
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