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Abstract

Individual wintering strategies and patterns of winter site fidelity in successive years are highly variable among seabird
species. Yet, an understanding of consistency in timing of movements and the degree of site fidelity is essential for
assessing how seabird populations might be influenced by, and respond to, changing conditions on wintering grounds. To
explore annual variation in migratory movements and wintering areas, we applied bird-borne geolocators on Thick-billed
Murres (Uria lomvia, n = 19) and Common Murres (U. aalge, n = 20) from 5 colonies in the Northwest Atlantic for 2–4
consecutive years. Thick-billed Murres ranged widely and among-individual wintering strategies were highly variable,
whereas most Common Murres wintered relatively near their colonies, with among-individual variation represented more
by the relative use of inshore vs. offshore habitat. Within individuals, some aspects of the wintering strategy were more
repeatable than others: colony arrival and departure dates were more consistent by individual Common than Thick-billed
Murres, while the sizes of home ranges (95% utilization distributions) and distances travelled to wintering area were more
repeatable for both species. In consecutive years, individual home ranges overlapped from 0–64% (Thick-billed Murres) and
0–95% (Common Murres); and the winter centroids were just 239 km and 169 km apart (respectively). Over the 3–4 year
timescale of our study, individuals employed either fixed or flexible wintering strategies; although most birds showed high
winter site fidelity, some shifted core ranges after 2 or 3 years. The capacity among seabird species for a combination of
fidelity and flexibility, in which individuals may choose from a range of alternative strategies, deserves further, longer term
attention.
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Introduction

Many seabirds migrate seasonally to wintering areas where

foraging and environmental conditions, affected by natural and

anthropogenic processes, can influence their population dynamics

[1,2]. These influences can be direct, through mortality, or

indirect, through carry-over effects of winter body condition on

subsequent reproduction [3,4]. Individual migratory strategies

appear to vary considerably among species. For example, most

birds from the same breeding population may migrate to the same

region [5,6], or portions of the population may migrate to different

regions [7–9]. Similarly, during successive years individuals may

take one or several different routes to reach these areas [10–14].

Variation in individual movement strategies or winter distribution

can be linked to colony of origin, sex, age, experience, or breeding

status [2,9,14,15]. Thus, information on individual movement

strategies, both within and among years, can highlight the relative

consistency in use of migratory corridors and in discrete wintering

grounds which may need conservation attention [1,7]. Among the

few studies of seabirds that tracked the same birds repeatedly,

some species showed high wintering-site fidelity [1,5,12,14],

whereas in others, individuals shifted wintering locations between

years [16–18]. Furthermore, the degree of flexibility in destination,

travel times, timing of departure to and arrival at wintering sites

can vary by species and is dependent on particular environmental

or energetic constraints [19]. The extent of individual flexibility in

wintering strategies provides valuable insight into selection

pressures within and between populations [10,16,19,20]. Individ-

ual behavioural flexibility will influence the capacity of populations

to cope with rapid climatic and habitat changes [17,21].

The aim of this study was to assess individual consistency in

wintering strategy in two closely related species, Thick-billed

Murre (Uria lomvia) and Common Murre (U. aalge). Both species

are abundant in the northern hemisphere and exhibit contrasting

migratory strategies: Thick-billed Murres tend to migrate longer

distances from high-latitude breeding sites to lower-latitude

wintering areas, whereas Common Murres make much shorter-

distance migrations [22–25]. Even in cases where the species breed
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sympatrically and wintering areas overlap [23], Thick-billed

Murres tend to move more, with wider distributions during spring

[LMT, unpulished data]. Adult survival, breeding success, and

population size have been linked to winter conditions in both

species [26–28], underlining the intense selection pressures and

consequences of behavioural decisions during the nonbreeding

period. Our objective was to determine the degree of consistency

in migration strategies by individuals in successive years by

determining if they 1) arrive or depart colonies on similar dates, 2)

travel the same distances, and 3) winter in the same areas; and 4)

we investigated whether these patterns differed between species.

We discuss implications of varying degrees of repeatability in

particular components of the wintering strategy and their

relationships with migratory connectivity.

Materials and Methods

Ethics statement
Fieldwork was carried out under a Government of Nunavut

Wildlife Research Permit NUN-SCI-08-55, Canadian Wildlife

Service Migratory Bird Banding Permit WAM-10322, and Animal

Care Committee Permits 0800AG01 (Environment Canada) and

WM-01-11 (Memorial University). Newfoundland and Labrador

Parks Division granted access to the Provincial Seabird Ecological

Reserves at the Gannet Islands, Funk Island, and Witless Bay

Islands.

Study Area
As part of a larger study [23], Thick-billed and Common

Murres were captured at 6 breeding colonies spanning 47–74uN
latitude in eastern Canada (Figure 1), during the summers of

2007–2011. These sites held either Thick-billed Murres or

Common Murres, except at the Gannet Islands where the species

breed sympatrically (Table 1). At each colony, birds (confirmed

breeders by the presence of eggs or chicks) were captured from

breeding cliffs and a geolocation-immersion logger (global location

sensor (GLS); British Antarctic Survey Models Mk 5, Mk 7, Mk

13, Mk 15; #3.5 g) was attached to the leg using a band and cable

ties (mass including the logger was #5.4 g, equivalent to #0.6%

body mass). The logger was replaced in birds that were recaptured

in the following year in order to track the same individual

repeatedly; some elusive individuals were retrieved 2–3 years after

the device was attached.

Data processing
GLS data were processed, filtered, and smoothed twice to

determine year-round spatial distribution (refer to [23] for a full

description). Filtered GLS data are archived at www.movebank.

org. Year-round tracks were assessed individually to describe

general winter movement. To determine the timing of the start

and end of annual migration, colony arrival and departure dates

were estimated using immersion (wet/dry) data. The loggers test

for saltwater immersion every 3 sec and log either the total

number of positive tests at 10-minute intervals, or every change of

state from wet to dry and vice versa exceeding .6 sec). The

subsequent pattern of wet/dry activity was particularly helpful in

defining colony attendance, especially colony departure dates in

late summer (when light data from the GLS device is affected by

approach of the vernal equinox [29]), and for detailing colony

attendance at high latitudes when light data is adversely affected

by very long daylengths (i.e one cannot calculate the timing of

sunset when there is no sunset [30]). To reduce the possibility that

observed dry periods were due to extended periods of flight (i.e.

during migration to or from colonies), only those lasting .6 h at

the appropriate time of year were presumed to indicate birds

attending colonies. In the absence of immersion data (in some

cases, GLS devices recorded light but not immersion because the

relevant memory sector was full, or there was partial device

failure), individual locations were mapped in a GIS and colony

departures and arrivals were presumed to reflect dates of final exit

or initial entry of the area within a 185-km radius of the colony

(similar to the mean geolocation error [31]). Due to erroneous

positions generated by light shading at the colony, this approach

was less precise so it was used only when wet/dry activity data was

absent. Comparisons of arrival and departure dates in consecutive

years were standardized according to the mean dates (6 SD), for

each colony in each year. We were thus discerning whether

individual birds were relatively early or late. Colony departure

information on the Gannet Islands was excluded for 2010, when a

polar bear Ursus maritimus was present; but was included for Funk

Island in 2009 and 2010, when an arctic fox Vulpes lagopus was

present at Funk Island [32], as colony attendance timing there was

not detectably affected (LMT unpublished data). As well, despite

differences in life history, colony arrival and departure times did

not differ detectably between male and female Thick-billed

Murres, and differed by only 3 days in Common Murres (LMT

unpubl.data). Sex was therefore not included as an explanatory

variable in individual colony attendance patterns in this analysis.

Spatial calculations
To facilitate comparisons of winter areas, data were restricted to

January (mid-winter) when all birds had reached wintering

grounds and GLS positions were maximally dense, indicating that

birds remained resident in the same area. Centroids of the

locations of each bird in January each year were calculated using

ESRI ArcMap 10.1 (Spatial Statistics Toolbox). Great-circle

distances, straight from the colony of origin to each winter

centroid, were calculated using ArcMap. Distances along migra-

tion paths (i.e from colony to winter area) could not be accurately

measured due to equinox effects on GLS loggers during fall

migration period (see above); straight distances from colony to

wintering area will still allow a relative comparison of the

repeatability of distances to winter centroids. Wintering areas for

each individual in each year were considered to be those within

the 50% and 95% utilization distributions or kernel contours

(KHR), calculated from the GLS point data in January and using

LSCV smoothing, in the ‘‘adehabitatHR’’ [33] package in R

(version 2.15.2 [34]). All KHRs were created using the same

smoothing function. The 50% and 95% KHR are referred to

below as the core and home ranges, respectively. All means are

presented 6 SD.

KHR Overlap
The use of KHR highlighted areas of concentrated use for each

individual in January. Birds were considered to have shifted

distribution from one year to the next when core ranges (50%

KHR) did not overlap.

Overlap of winter ranges (Ao) (for 50% and 95% KHRs

separately) was calculated as the area of KHR in year j that

overlapped the area in year j+1, and subtracted from the total area

(Atot):

Ao~((AjzAjz1){Atot)), ð1Þ

recognizing that in some cases, Ao = 0 (i.e. the area did not

overlap).

Individual Murre Movement Strategies
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As well, to maintain sensitivity to changes in range size between

years (cf. [14]), annual Percent Habitat Overlap (Pj) was also

calculated for each year (e.g. year 1 on year 2, and year 2 on year

1), as:

Pj~Ao=Ai ð2Þ

Figure 1. Study area and colonies. Study area indicating location of colonies of Thick-billed Murres (Prince Leopold, Coats, Digges, and Gannet
islands) and Common Murres (Gannet, Funk, and Gull islands).
doi:10.1371/journal.pone.0090583.g001
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Repeatability statistics
Following approaches by Fifield et al. [14], individual repeat-

ability in consecutive years was calculated for five aspects of

wintering strategy: 1) timing of colony departure and arrival to

determine start and endpoints of migration; 2) distance travelled

between colony and winter (January) centroids; 3) the size (km2) of

individual core (50% KHR) and home ranges (95% KHR); 4)

distance between annual centroids; and 5) percent overlap of

kernel core and home ranges. Repeatability of these aspects was

measured using three approaches: first, using linear mixed-effect

models (lme; with individual and colony set as random factors, and

using conditional R2 values [35]) to assess relationships of variables

(i.e. timing, distance, overlap) between successive years. Second,

an intra-class correlation coefficient (ICC) [36] was used to

quantify among-groups variance (s2
A) and within-individual vari-

ance (s2) components, where repeatability (r) is calculated as:

r~s2
A=(s2zs2

A) ð3Þ

High r scores indicate consistent behaviour, since the greatest

variance occurs among, not within, individuals [36]. Variance

components (s2
A and s2), were derived from lme models for each

colony separately, using R (ICC.lme in library {psychometric}).

Third, inter-centroid distances and KHR overlaps were compared

to randomized distributions (n = 10,000 randomizations) using

Kolmogorov-Smirnov (KS) tests and also comparing the median of

distributions (cf. [14]). Randomized distributions were created by

drawing 10,000 random samples of two KHRs (for overlap) or two

points (for centroids) using a bootstrap resampling function in R,

and calculating the subsequent random overlap, or random

distance (respectively). In addition, randomizations of KHR

overlaps and centroids were created using a larger dataset of

tracked individuals from the same colonies (n = 112; see [23]),

many of which were tracked only once, but which were tracked

during the same range of years as the repeat individuals (2007–

2011). As well, the sample of tracked birds is representative of the

spatial diversity in wintering areas as the larger sample. Because of

inherent differences in movement between them, randomizations

were done separately for each species, and species were considered

separately for each repeatability analysis.

Results

Thirty-nine individuals (19 Thick-billed Murres, 20 Common

Murres) were tracked for 2–4 consecutive years, providing a total

of 87 annual tracks (Table 1). Detailed examples of consistent

monthly movements in consecutive winters for six individual

Thick-billed Murres are provided in Figure 2. Some inter-annual

variation in monthly positions occurred (eg. Figure 2, Digges

20118) but overall, wintering patterns were very similar across

years. Quantitative assessment of travel timing, distances, KHR

sizes, and regional fidelity are presented as follows:

Timing of migration
Relative departure dates of individuals (standardized to annual

means for each colony) were not correlated between consecutive

years in either species (Thick-billed Murres, lme, F1,5 = 1.98,

p = 0.22, R2 = 0.23; Common Murres, lme, F1,11 = 3.7, p = 0.08,

R2 = 0.24; Figure 3a). Similarly, the repeatability (r) of standard-

ized departure dates was low for Thick-billed Murres (r = 0) and

high only for Common Murres from Gannet and Funk Islands

(r = 0.56, 0.82, respectively; Table 2). Departure dates between

consecutive years differed on average by 6.765.3 days (range 2–27

days) in Thick-billed Murres and by 5.764.6 days (range 0–16

days) in Common Murres.

Although standardized arrival dates in consecutive years (year

one vs. year two) were not correlated in Thick-billed Murres (lme,

F1,15 = 0.07, p = 0.93, R2 = 0.001), or Common Murres (lme,

F1,11 = 4.3, p = 0.06, R2 = 0.25; Figure 3b), compared to departure

dates, arrival dates of individuals were generally more repeatable,

but still lower for Thick-billed Murres (r = 0–0.18) than for

Common Murres (r = 0.34–0.64; Table 2). Arrival dates between

consecutive years differed on average by 11.568.1 days (range 2–

35 days) in individual Thick-billed Murres, and by 12.669.3 days

(range 1–32) in individual Common Murres.

Winter centroids
Travel distances. Distances travelled to consecutive winter

centroids were highly correlated, in both Thick-billed Murres (lme,

F1,16 = 3.44, p,0.003, Rc
2 = 0.66; Figure 4a) and Common

Murres (lme, F1,24 = 8.96, p,0.006, Rc
2 = 0.78; Figure 4b).

Similarly, distances travelled to consecutive winter centroids were

repeatable (depending on colony) for both Thick-billed Murres

(r = 0.0–0.46) and Common Murres (r = 0.32–0.61; Table 2). Six

Thick-billed Murres (particularly from Coats and Digges islands)

Table 1. Details of collection of GLS tracking devices among repeat-tracked individuals of Thick-billed and Common Murres at
each study colony.

Species Colony Latitude, Longitude Years Data Collected
Number of Repeat
Individuals

Number of Annual
Tracks

Thick-billed Murre Prince Leopold 74u029N, 90u009W 2008–10 1 2

Coats 62u539N, 82u009W 2007–10 8 17

Digges 62u329N, 77u459W 2008–10 3 6

Gannets 53u569N, 56u329W 2008–11 7 18

Common Murre Gannets 53u569N, 56u329W 2008–11 7 12

Funk 49u459N, 53u119W 2007–11 6 18

Gull 47u169N, 52u469W 2007–11 7 14

Overall 2007–2011 39 87

Data were retrieved 1, 2, or 3 years following deployment.
doi:10.1371/journal.pone.0090583.t001

Individual Murre Movement Strategies

PLOS ONE | www.plosone.org 4 April 2014 | Volume 9 | Issue 4 | e90583



travelled shorter distances in the second winter (Figure 4a); yet a

change in distance travelled (Figure 4; points outlined in red) did

not always indicate a shift in distribution (i.e. no 50% KHR

overlap) between years.

Inter-centroid distance. The median distance between

consecutive winter centroids was small, differing by 239 km (range

22–1212 km) for Thick-billed Murres and 169 km (range 43–

631 km) for Common Murres. Furthermore, in Thick-billed

Murres, the median distance between consecutive winter centroids

was significantly lower for birds tracked in consecutive years

(239.1 km) than the distance between random pairs of centroids

(897.6 km; KS test, D = 0.66, p,0. 0001). Similarly in Common

Murres, the median distance between consecutive winter centroids

was significantly lower for birds tracked repeatedly (169.8 km)

than randomly-paired centroids (333.2 km; KS test, D = 0.51,

p,0. 0001; Figure S1, S2).

Winter distributions
Range sizes. The size of core ranges (50% KHR) was

positively but not strongly correlated between consecutive years, in

either Thick-billed Murres (lme, F1,16 = 3.98, p = 0.06, R2 = 0.17;

Figure 5a) or Common Murres (lme, F1,24 = 0.07, p = 0.93,

R2 = 0.02; Figure 5b), and variance appeared to be higher for

individuals with larger core ranges (Figure 5). Yet repeatability (r)

in the size of core ranges (50% KHR) was relatively higher for

Thick-billed Murres (r = 0.19–0.54) than for Common Murres

(r = 0–0.19; Table 2).

Spatial distribution. Although the majority of individuals

maintained the same migration strategies (see also Figure 2), others

shifted wintering locations between years (Figures 6, 7). For

example, individual Thick-billed Murres from Coats Island

showed consistent annual use of either the northern Labrador

Sea and Davis Strait, or the mid-Labrador Sea, or the southern

Labrador Sea (winters 2008, 2009, 2010); whereas individual

Thick-billed Murres from Digges Island shifted core areas (winters

2009, 2010; Figure 6). The small sample size at Digges (n = 3)

cannot be used to suggest a colony-specific bias in the propensity

of individuals to show site fidelity, but rather to illustrate flexibility

in core winter areas in some individuals. Among Common

Murres, individuals generally followed consistent strategies of

using either nearshore or offshore habitat in consecutive years

(Figure 7). In both species, some individuals exhibited regional

fidelity in the first two years but shifted distribution in the third

(e.g. Gannet Islands, Figure 6, blue KHRs and Figure 7, yellow

KHRs).

Wintering range overlaps. The extent of overlap of

consecutive KHRs was extremely variable, ranging from 0–64%

(home range) and 0–37% (core) in Thick-billed Murres, and 0–

95% (home range) and 0–58% (core) in Common Murres. The

extent of home range overlap was significantly lower in Thick-

billed Murres (lme, F1,31 = 4.31, p = 0.05) and also varied

significantly by colony (F4,31 = 2.79, p = 0.05; but only at Digges

Island, t1,31 = 22.6, p = 0.02) and year (F3,45 = 3.5, p = 0.02). Core

range overlap did not vary significantly by species (F1,44 = 3.06,

p = 0.09), colony (F4,30 = 1.23, p = 0.32) or year (F3,44 = 2.01,

p = 0.12). Extent of overlap was not related to KHR size (linear

regression, F1,35 = 0.13, p = 0.72).

Despite the observed variability in relative overlap of KHRs

between years, the median overlap of both home and core ranges

for each species was significantly greater than that expected by

chance, particularly for Common Murres (Table 3, Figures S3,

S4). Notably, the similar overlaps of year 1 on year 2/year 2 on

year 1 (Table 3) indicate no substantial change in range size across

years. For Thick-billed Murres, median overlap of home ranges

(95% KHR) of both years (46% year 1 on year 2; 48% year 2 on

year 1) were significantly greater than expected by chance (0% for

both years; KS tests, D = 0.64, p = 0.0001; Table 3, Figure S3).

Median overlap of core ranges (50% KHR) in both years (16%)

Figure 2. Examples of repeated positions. Examples of repeated
winter positions of 6 Thick-billed Murres from Coats, Digges, and the
Gannet islands. Consecutive years are presented horizontally for each
individual bird, and numbers (e.g. 76601) identify individuals. Note GLS
records stopped in January for Coats 76601 in year 2; and years for
Coats 80559 are not consecutive, but two years apart.
doi:10.1371/journal.pone.0090583.g002
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was also greater than expected by chance (0%; KS tests, D = 0.47,

p = 0.001 for both years; Table 3).

Similarly, for Common Murres, consecutive home ranges

overlapped more (median 68% for both years; Table 3, Figure

S4), compared to randomized home range overlap (median 28%;

KS test, D = 0.52, p,0.0001 for both years). Overlap of

consecutive core ranges (median 29% year 1 on year 2; 27%

year 2 on year 1; Table 3), was not greater than expected by

chance (median 29%; KS tests, D = 0.11, p = 0.96 in both cases;

Table 3).

Discussion

Individual Thick-billed and Common Murres exhibited a

relatively high degree of consistency in wintering strategies

between years. Many individual murres travelled similar distances

from colonies, repeatedly visited particular areas, and had

similarly-sized core ranges in consecutive winters (less so for

Common Murres). Yet variability, both among and within

individuals, and also among some aspects of the wintering strategy

(i.e. colony arrivals, departures, distances, destinations) [19], may

illustrate some capacity for behavioural flexibility in both species.

Figure 3. Timing of colony departures and arrivals. Consistency in timing of (A) colony departure and (B) colony arrival in consecutive years,
for Thick-billed Murres (TBMU) and Common Murres (COMU). Dates are standardized to colony means, indicating whether early (or late) individuals
were more likely to do the same in successive years.
doi:10.1371/journal.pone.0090583.g003

Individual Murre Movement Strategies
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Colony attendance
The timing of departure and arrival at the colony were

remarkably consistent for some individuals (arriving and departing

on the same day each year), but not for others (up to ,30 days

difference between years). As a result, the relative departure dates

for individuals in successive years were not correlated overall.

Relative arrival dates at the colony each year were more

repeatable for Common than Thick-billed Murres. In other

species, timing of colony departures can be related to breeding

success [5,14,15] and timing of arrivals can be influenced by

energetic investments that carry over from the previous breeding

attempt [38], thus the extent of repeatability in consecutive years

could depend partly on individual breeding outcome. As well,

given that timing of arrival and breeding is strongly linked to

environmental conditions in many seabird species [37,39,40],

variable local environmental conditions, particularly spring ice

conditions near Thick-billed Murre colonies, likely account for low

repeatability across years [14,41]. Although all tracked murres

were confirmed breeders at the time of device deployment, final

breeding outcomes were not confirmed, and could not be used to

account for individual consistency in arrivals or departures. As

well, since colony attendance was mostly determined using GLS

immersion data (dependent on having a dry logger for .6 hours;

see methods), birds staging at sea (wet logger) near the colony

would not be noted as attending. Any variability in the duration of

staging at sea, either pre- or post-breeding, could influence the

observed repeatability of attendance dates.

Studies on other long-distance migrants (Black-Browed Alba-

trosses Thalassarche melanophris [2], Northern Gannets Sula bassana

[14], Bar-tailed Godwits Limosa lapponica baueri [19]) also suggest

that timing is not necessarily repeatable for all components of the

migration cycle (last visit to land, out-migration, periods at

stopover and wintering sites, return migration etc.). That is,

repeatability in timing is important for some events but not others,

and is likely determined by a combination of genetic and

environmental influences [14,41]. These could include environ-

mental cues, annual conditions at staging or stopover sites, and

physiological constraints, particular to the ecology of each species.

For example, ongoing consideration of movement strategies

revealed colony differences in spring stopover sites among

Thick-billed Murres (LMT, unpubl.data). Further study will

provide insight into the degree of individual flexibility at different

stages [19] in the migration cycle of murres.

Wintering site fidelity
Compared to other measures of repeatability, distance travelled

to winter sites was less variable within individuals (i.e. higher

repeatability (r) values denote a decrease in within-individual

variance, s2, compared to among-individual variance, s2
A). This is

unsurprising given that many individuals showed both site fidelity

to particular wintering areas (Figures 2, 5, 6) and remarkable

similarity in the centroids of distribution in January (which in

many cases were closer than the average GLS error of ,185 km

[31]). Notable examples are the Thick-billed Murre from Prince

Leopold Island which twice travelled ,3200 km to a wintering site

in the southern Labrador Sea (Figures 4, 6); two Thick-billed

Murres from Coats Island which left Hudson Bay on the same date

each year to travel to the northern Labrador Sea and Davis Strait

region in two years, or to travel to the mid- and southern Labrador

Sea in two years (Figures 4, 6); and Common Murres from the

Gannet Islands travelling to the southeast Grand Banks in two

years (Figures 2,6).

Regional site fidelity is common among seabirds, particularly

long-distance migrants such as Gray-headed Albatrosses Thalas-

sarche chrystostoma [1], Black-browed Albatrosses [5], Northern

Gannets [14], and South Polar Skuas Stercorarius maccormicki [8].

We recorded a diversity of individual wintering strategies among

and within species (particularly Thick-billed Murres), but varying

degrees of site fidelity, with most individuals repeating and some

switching winter sites between years. Dias et al. [17] demonstrated

that even given remarkable flexibility in wintering sites between

years, individual Cory’s Shearwaters (Calonectris diomedea) chose the

same areas more often than expected by chance. To date, few

studies of nonbreeding site fidelity extend past two years, limiting

the potential interpretation of repeatability. Catry et al. [42] noted

a decrease in repeatability of laying date after 5 years in Great

Skuas (Stercorarius skua), hypothesizing low repeatability (and high

plasticity) of many traits in seabirds, in response to the dynamic

Table 2. Repeatability (r), measured through intra-class correlation coefficients, among wintering parameters of Thick-billed and
Common Murres (calculated separately for each colony).

Repeatability (r)

Wintering Parameter N Thick-billed Murre N Common Murre

Colony departure date (standardized) 17 Coats ,0.01 6 Gannets 0.56

6 Digges ,0.01 18 Funk 0.82

10 Gannets ,0.01 10 Gull ,0.01

Colony arrival date (standardized) 12 Coats 0.18 16 Gannets 0.35

4 Digges 0.00 16 Funk 0.42

14 Gannets 0.04 8 Gull 0.64

Distance to winter centroid (km) 18 Coats 0.40 18 Gannets 0.32

6 Digges 0.46 22 Funk 0.29

20 Gannets ,0.01 14 Gull 0.61

Size of 50% KHR (km2) 16 Coats 0.19 20 Gannets ,0.01

6 Digges 0.29 26 Funk 0.07

18 Gannets 0.54 14 Gull 0.19

High scores of r indicate relatively consistent individual behaviour. N indicates number of repeat measurements.
doi:10.1371/journal.pone.0090583.t002
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nature of the marine environment. A time series of 5–8 years of

stable isotope data from fur seal whiskers (Arctocephalus gazelle, A.

tropicalis) suggested a high degree of individual consistency in the

use of particular water masses across years [43]. It seems that the

degree of repeatability may vary depending on the trait [19]. The

capacity among seabird species for a combination of fidelity and

flexibility, in which individuals may choose from a range of

alternative strategies [12,17], deserves further, longer term

attention. As well, knowing both the variety of alternative

strategies used by individuals, and the propensity of individuals

to repeat particular strategies, will provide insight into the long-

term persistence of important wintering areas for particular

colonies.

KHR size and overlap
Overlap of individual KHRs was much higher than expected by

chance (Figure S3, Figure S4), yet similar to the distance travelled,

the degree of range overlap (95% KHR) between years was

extremely variable among individuals, ranging from 0–64% in

Thick-billed Murres, and from 0–95% in Common Murres.

Figure 4. Repeated distances travelled. Relationship of distance travelled (straight line, in km) from the colony to the January centroid in
consecutive years (year one vs. year two), for (A) Thick-billed Murres and (B) Common Murres. Dotted line represents the hypothetical 1:1 relationship
if distances are the same in successive years. Markers outlined in red indicate birds that switched regions across years.
doi:10.1371/journal.pone.0090583.g004
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Whereas the extent of home range (95%) overlap varied by colony

and year, the extent of core overlap of individuals did not. This

suggests that regional or environmental effects that vary across

years can influence overall home range positioning but does not

significantly influence core habitat locations for most individuals.

Interestingly, the overlap of consecutive individual Common

Murre core winter ranges (50% KHR) did not differ from overlap

expected by chance. This may be due partly to the limited

geographical extent of suitable habitat in particular areas, such as

on the Grand Bank (Figures 6, 7). Between years, although overall

winter ranges remain the same, the time when birds occupy

particular portions of their winter range may vary (e.g. inshore in

December in one year, inshore in January in another). Thus,

slightly different degrees of overlap may have been observed if

other periods were chosen, due to variation in temporal patterns of

winter movement.

Implications for fitness
Phenotypic plasticity, in which a diverse range of behaviours or

strategies are employed by different individuals in a population, is

Figure 5. Repeated home range sizes. Relationship of 50% KHR core range sizes (km2, in thousands) in consecutive years (year one vs. year two),
for (A) Thick-billed Murres and (B) Common Murres. Dotted line represents the hypothetical 1:1 relationship if core sizes are the same in successive
years.
doi:10.1371/journal.pone.0090583.g005
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Figure 6. Repeated core winter areas of Thick-billed Murres. Examples of core winter areas (50% KHR) of individual Thick-billed Murres from four
colonies (Prince Leopold, Coats, Digges, and Gannet islands), tracked across consecutive years. Colors note repeated observations for the same individual, with
cross-hatching to identify the difference between years. To facilitate interpretation in areas of high kernel overlap, only a selection of repeat tracks is shown.
doi:10.1371/journal.pone.0090583.g006
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expected to improve the capacity of the populations to adapt to

environmental changes [44,45]. In the current study, variation in

winter movement patterns stemmed more from between-individ-

ual variation than from annual changes within individuals. This

was particularly true among Thick-billed Murres, which showed

great among-individual variation in spatial use of winter habitat

(Table 2, Figure 6); among-individual variation in winter ranges

among Common Murres was less striking (Table 2, Figure 7).

Figure 7. Repeated core winter areas of Common Murres. Examples of core winter areas (50% KHR) of individual Common Murres from three
colonies (Gannet, Funk, and Gull islands), tracked across consecutive years. Colors note repeated observations for the same individual, with cross-
hatching to identify the difference between years. To facilitate interpretation in areas of high kernel overlap, only a selection of repeat tracks is
shown.
doi:10.1371/journal.pone.0090583.g007
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Individual Common Murres tended to aggregate on the Grand

Banks, where among-individual variation in movement may be

partly bounded by marine isotherms as described by Tuck [46]).

Previous research has indicated that Thick-billed Murres are

dietary generalists, yet as in other cases, this generalist population

is composed of both specialists (each of which adopt a subset of

available strategies) and generalists (each of which employ a larger

range of available strategies) [47,48,49]. We suggest that Thick-

billed Murres may also be generalists in terms of wintering

strategy, with a range of habitats selected by wintering specialists

and wintering generalists. In comparison, Common Murres

exhibit a more restricted (specialist) wintering strategy, and this

phenotypic expression may vary little among Common Murre

individuals.

In concert with increased phenotypic plasticity, Thick-billed

Murres display weaker migratory connectivity; that is, the extent

to which individuals of a population summer and winter in the

same places [50]. This diversity of individual wintering areas has

implications for demographic independence among their respec-

tive populations, i.e. anthropogenic and other environmental

factors influencing birds at particular wintering sites will not affect

all Thick-billed Murre populations equally [23]. In contrast,

Common Murres, with individuals from all three colonies

wintering in a similar location, show much lower plasticity,

stronger migratory consistency (both within and between colonies),

and will be more susceptible to localized disturbances in winter.

Multiple-colony tracking of seabird populations will continue to be

critical in identifying and managing population-level threats on

wintering grounds [2,44,51,52].

Behavioural plasticity that enables individuals to shift strategies

or explore multiple locations in response to variable environmental

conditions likely improves individual fitness [16–18,44], particu-

larly by developing spatial memory [16,53]. Young birds that

disperse further will have knowledge of more alternative wintering

sites [17,54]. While many individual murres exhibited consistent

wintering strategies, some showed flexible use of different areas

between years. Like other cognitively complex species, we suggest

that these long-lived birds (potentially reaching 25+ years of age

[55,56]) may use their spatial memory [57] garnered from years of

experience, to inform and adjust annual movement tactics [17].

Guilford et al. [12] proposed an ‘‘exploration-refinement hypoth-

esis’’ for Atlantic Puffins Fratercula arctica, suggesting that their

migration strategy develops through exploratory movements and

individual learning. Additional capacity for adjusting annual

movements in response to resource availability [53] or variable

environmental conditions [16,19,45] requires further investigation.

How behavioural expression is influenced by environmental

constraints [19], as well as by population density and competition

(cf. [48,49]), will further help discern inter-specific differences in

wintering strategy. Clearly, the advantages of plasticity strongly

depend on the reliability of cues that seabirds use to make

decisions in a stochastic ocean environment.

Supporting Information

Figure S1 Frequency distribution of (A) observed and
(B) randomized distances between consecutive winter
centroids for Thick-billed Murres.

(TIF)

Figure S2 Frequency distribution of (A) observed and
(B) randomized distances between consecutive winter
centroids for Common Murres.

(TIF)

Figure S3 Frequency distribution of of (A) observed and
(B) randomized overlap of 95% KHR (range) for Thick-
billed Murres.

(TIF)

Figure S4 Frequency distribution of of (A) observed and
(B) randomized overlap of 95% KHR (range) for
Common Murres.

(TIF)
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Table 3. Average and median percent overlap of consecutive home and core ranges in January (95% and 50% KHR) of repeat-
tracked Thick-billed and Common Murres, compared to a randomized distribution of overlap between individuals.

% Overlap ± SD (median)

Species Group 95% KHR year 1 on 2 95% KHR year 2 on 1 50% KHR year 1 on 2 50% KHR year 2 on 1

Thick-billed Murre Within-individual 50628 (47) 49632 (48) 18621 (16) 18618 (16)

Randomized 17631 (0) na 16631 (0) na

Common Murre Within-individual 68628 (68) 67627 (68) 36+31 (29) 37+42 (27)

Randomized 32629 (28) na 33630 (29) na

Similar overlap of year 1 on year 2/year 2 on year 1 indicate no change in range size across years. Similar overlap of 50% and 95% randomized overlap indicate
convergence of histograms to 0 (i.e. many random pairs do not overlap at all), regardless of KHR size.
doi:10.1371/journal.pone.0090583.t003
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49. Araújo M, Bolnick DI, Layman CA (2011) The ecological causes of individual

specialization. Ecol Lett 14: 948–958.
50. Esler D (2000) Applying metapopulation theory to conservation of migratory

birds. Conserv Biol 14: 366–372.

51. Frederiksen M, Moe B, Daunt F, Phillips RA, Barrett RT, et al. (2012)
Multicolony tracking reveals the winter distribution of a pelagic seabird on an

ocean basin scale. Divers Distrib 18: 530–542.
52. Fort J, Moe B, Strøm H, Grémillet D, Welker J, et al. (2013). Multicolony

tracking reveals potential threats to little auks wintering in the North Atlantic

from marine pollution and shrinking sea ice cover. Divers Distrib doi: 10.1111/
ddi.12105.

53. Roshier DA, Doerr VAJ, Doerr ED (2008) Animal movement in dynamic
landscapes: interaction between behavioural strategies and resource distribu-

tions. Oecologia 156: 465–477.
54. Baker RR (1980) The significance of the Lesser Black-backed Gull to models of

bird migration. Bird Study 27: 41–50.

55. Gaston AJ, Hipfner JM (2000) Thick-billed Murre (Uria lomvia). In Poole A, Gill
F (eds) The Birds of North America, No. 497. The Birds of North America Inc.,

Philadelphia, PA.
56. Ainley DG, Nettleship DN, Carter HR, Storey AE (2002) Common Murre (Uria

aalge). In Poole A, Gill F (eds). The Birds of North America, No. 666. The Birds

of North America Inc., Philadelphia, PA.
57. Regular PM, Hedd A, Montevecchi WA (2013) Must marine predators always

follow scaling laws? Memory guides the foraging decisions of a pursuit-diving
seabird. Anim Behav 86: 545–552.

Individual Murre Movement Strategies

PLOS ONE | www.plosone.org 13 April 2014 | Volume 9 | Issue 4 | e90583

http://www.R-project.org/

