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Deficiency or excess of certain trace elements in the soil causes problems for agriculture, including disorders of
grazing ruminants. Geostatistics has been used to map the probability that trace element concentrations in soil
exceed or fall below particular thresholds. However, deficiency or toxicity problemsmay depend on interactions
between elements in the soil. Herewe showhow cokriging from a regional survey of topsoil geochemistry can be
used tomap the risk of deficiency, and the bestmanagement intervention, where both depend on the interaction
between two elements. Our case study is on cobalt. Farmers and their advisors in Ireland use index values for the
concentration of total soil cobalt and manganese to identify where grazing sheep are at risk of cobalt deficiency.
We use topsoil data from a regional geochemical survey across six counties of Ireland to form local cokriging
predictions of cobalt and manganese concentrations with an attendant distribution which reflects the joint
uncertainty of these predictions. From this distribution we then compute conditional probabilities for different
combinations of cobalt andmanganese index values, and so for the corresponding inferred risk to sheep of cobalt
deficiency and the appropriateness of different management interventions. We represent these results as maps,
using a verbal scale for the communication of uncertain information. This scale is based on one used by the
Intergovernmental Panel on Climate Change, modified in light of some recent research on its effectiveness.

© 2014 British Geological Survey (c in a circle) NERC [Year]. Published by Elsevier B.V. This is an open access
article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).
1. Introduction

Geochemistry is an important factor in many problems of soil man-
agement. The availability of particular trace elements in the soil to crops
and grazing livestock can cause problemsof either deficiency or toxicity.
In this paper we consider the example of cobalt (Co) deficiency for
sheep and other ruminants on pastures where the Co status of the
grassmay be inadequate because of soil geochemical factors. Ruminants
depend on rumen bacteria to synthesise their supply of vitamin B12, and
these bacteria require a source of Co. Cobalt deficiency can therefore in-
duce a deficiency of vitamin B12 which in turn causes various metabolic
disorders (Stangl et al., 2000) which lead to conditions such as poor
thrift and ‘pine’ in sheep (Coulter and Lalor, 2008). Small concentrations
of blood vitamin B12 have been found among Irish cattle herds (Mee and
Rogers, 1996), affecting 55% of herds sampled in 1993.

At farm-scale a decision on possible interventions to manage trace
element deficiency or excess may be based on local soil information
obtained by sampling the soil. However, at regional scale it would be
possible to identify broader areas where there is a risk of a problem
and where particular interventions are indicated. This information
a circle) NERC [Year]. Publish
could be used both to identify regions where problems can be expected
and to show where farmers would be advised to undertake local soil
sampling to diagnose whether their particular soils require interven-
tion. Such information is provided by systematic regional soil geochem-
ical databases, which are available in many countries. In six counties of
Ireland shown in Fig. 1 (Donegal, Sligo, Leitrim, Cavan, Monaghan and
Louth) geochemical data on the topsoil are available from the
recently-completed Tellus Border survey (Knights, 2013; Knights and
Scanlon, 2013). Within the six counties of the Tellus Border survey are
found 27% of all sheep farms and 22% of all sheep in Ireland, so the Co
supply from the soil in this region is of considerable economic
importance— data from Central Statistics Office (2012).

The mapping of trace element concentrations from topsoil geo-
chemical data must take account of the considerable spatial variability
which may be expected as a result of the multiple factors, operating at
different spatial scales, which influence the concentration of trace ele-
ments in the soil. Because of this spatial variability, local predictions
are subject to uncertainty. This can best be quantified through a
geostatistical analysis in which the spatial variability of variables of
interest is modelled explicitly and the local predictions are formed as
an optimal combination of neighbouring observationswhichminimises
and explicitly quantifies the mean squared error of the prediction
(Webster and Oliver, 2007).
ed by Elsevier B.V. This is an open access article under the CC BY license
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Fig. 1. Boundaries of the six Irish counties included in the Tellus Border survey. The inset map shows the whole of Ireland. Ordnance Survey Ireland Licence No. EN 0047213 ©Ordnance
Survey Ireland/Government of Ireland. Units on the axes are metres relative to the origin of the Irish National Grid.
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Geostatistical mapping by spatial prediction from regional data on
soil geochemistry has been used to delineate areas at risk of trace ele-
ment excess or deficiency (e.g. Van Meirvenne and Goovaerts, 2001;
von Steiger et al., 1996; Webster and Oliver, 1989; Yang et al., 2008).
What these studies have in common is that a toxicity or deficiency is
inferred by comparing the predicted concentration of an element with
a threshold value for that element. In practice, however, toxicity or
deficiency of an element in soil depends not only on the absolute
concentration of that element, but also on interactions with other
elements and maybe on other factors of soil chemistry such as the pH
Table 1
Soil indices for total Co and Mn and corresponding management classes for pasture Co deficien
Taken from Coulter and Lalor (2008).

Soil Co index Total Co concentration upper limit, mg kg−1

1 3

2 5

3 10

4 N10

a Apply Cobalt sulphate (21% Co) at 3 kg ha−1 to one quarter of the grassland area every 4
b Apply Cobalt sulphate (21% Co) at 2 kg ha−1 to one quarter of the grassland area every 4
c Treat animals directly by oral Co drench, Co bullet or vitamin B12 injection.
or redox potential (Kabata-Pendias, 2001). Cobalt deficiency for grazing
ruminants is a case in point.

It has long been recognised that Co deficiency in grazing ruminants
can be linked to geochemistry and the underlying geology (Thornton
andAlloway, 1974). However, the relationship is complex, and deficien-
cies may be found in plants growing on soils where the parent material
has large Co concentrations. In particular it is known that Co in soil may
be strongly associated with manganese oxide minerals (Jarvis, 1984),
and it has been shown that this can reduce availability to plants (Li
et al., 2004). Predictive relationships for available Co therefore include
cy for grazing sheep under the Teagasc system.

Total Mn concentration upper limit, mg kg−1

600 1000 N1000

High risk
Soil treatmenta

Low risk High risk
Soil treatmentb Animal treatmentc

No risk No risk Low risk
Animal treatmentc

No risk No risk No risk

years (annually at high pH).
years (annually at high pH).
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manganese (Mn) as a covariate (Suttle et al., 2003). In Ireland advice
about Co from Teagasc, the state agriculture and food development au-
thority, is based on a consideration of soil index values for both Co and
Mn which are shown in Table 1 (taken from Coulter and Lalor, 2008).
The risk of Co deficiency, given the total Co and Mn concentrations in
the soil, and appropriate interventions (fertiliser applications to the
soil at different rates, or direct administration of supplements to the
livestock) are indicated for particular combinations of the two sets of
index values.

Webster (1994) used geostatistical methods to map Co concentra-
tions in soils of a part of south-east Scotland and to map the probability
that the concentration fell below a particular threshold. However, as was
seen above, the assessment of risk of Codeficiency cannot be based on
the Co concentration alone. It is necessary to model the joint spatial var-
iation of both Co andMn in order tomake appropriate geostatistical pre-
dictions of the risk of Co deficiency. In this paperwe undertake cokriging
of transformed Co and Mn concentrations, and then sample from the
joint prediction distribution for the two variables to derive local esti-
mates of the probability that particular combinations of the Co and Mn
index values occur. This allows us to compute quantities such as the
probability that there is no risk of Co deficiency at a site, or that a partic-
ular intervention is indicated.We represent these results using a scale for
the communication of uncertain information used by the Internation-
al Panel for Climate Change (Mastrandrea et al., 2010).

2. Materials and methods

2.1. The Tellus Border data

The sampled region is shown in Fig. 1 and is a little over 13,000 km2

in extent. Topsoil samples were collected from 3475 sites across the
geochemical survey area, at a target density of 0.25 samples per km2.
The sampling procedure was systematic and purposive, in the sense of
de Gruijter et al. (2006). One sample site was selected from each
2 × 2-km grid square on the Irish National Grid. A sample site was cho-
sen as close as possible to the centre of the square, and no closer than
250 m to any edge of the square. Sample sites were no closer than 100
m to features such as roads, tracks, pylons, buildings and water bodies
shownon theOrdnance Survey Irelandmap sheets at 1:50,000. Forested
land was avoided, and field sampling teams avoided disturbed ground
such as tips or spoil heaps, although ploughed land was sampled.

The soil sampling protocol at each site entailed collection of a com-
posite sample from five auger holes, collected at the corners and centre
of a 20 × 20-m square on the ground. Each core was 15 cm long, collect-
ed after removal of surface litter. An Edelman (Dutch-type) one-piece
combination auger with a 5-cm diameter flight was used. A wide
range of land use types were sampled, principally agricultural pasture
and tillage, and rough grazing and moorlands (particularly on upland
areas) which is sometimes commonage. At 81 of the sample sites a
duplicate sample was collected by the same protocol 20 m from the
initial sample site.

Samples were collected in paper bags and dried prior to sample
preparation. Samples for multi-element analyses were dried and disag-
gregated by hand, and then sieved to pass through 2 mm using Sefar®
Nitex® nylon sieve mesh of 2 mm aperture. The sub-2 mm fraction
was milled using an agate planetary ball mill to produce a sample of
predominantly b53 m fraction. A 1-g sub-sample of the milled material
was treated by two-acid (ratio of 2:1 HNO3:HCl aqua regia variant)
sample digestion, and the digestate was analysed for concentrations
of a range of major, minor and trace elements by multi-element ICP
(-OES/-MS) analysis (Knights, 2013). The laboratory reports detec-
tion limits for the elements computed as three times the standard
deviation of results from quality control blanks. For Co and Mn
these were 0.1 mg kg−1 and 2 mg kg−1 respectively. None of the
data on Co were smaller than the detection limit and just 2 of the
data for Mn (Knights, 2013).
2.2. Soil indices and management decisions

Table 1 represents the Co andMn indices used by Teagasc for advisory
purposeswith respect tomanaging risk of Co deficiency in sheep (Coulter
and Lalor, 2008). The threshold concentrations of the elements which
define the indices are total concentrations from aqua regia variant extrac-
tion of the soil. We therefore assumed that the Tellus Border soil data on
Co and Mn concentrations could be used directly to identify the Co and
Mn indices in this table. The table reflects the interaction of the total Co
and Mn concentrations in controlling the Co available to grazing sheep.
Thus, for example, the risk of deficiency on a Co index 2 soil is low if
the Mn concentration is less than 600 mg kg−1, but high when the Mn
concentration is larger, because of the tendency for Mn oxides to reduce
Co availability. The risk of Co deficiency in grazing sheep is never high
when the Co index is 3 or 4, regardless of the Mn concentration, because
of the amount of soil Co that sheep obtain directly through soil ingestion.
Coulter and Lalor (2008) report that ingested soil may account for up to
25% of the stomach-contents of sheep.

We note that, in Table 1, Co index 1 soils with Mn concentrations
larger than 600 mg kg−1 are not given an interpretation, and neither
are Co index 2 soils with Mn concentrations more than 1000 mg kg−1.
Because Co and Mn concentrations are positively correlated, these
combinations are very rare, only 16 (i.e. c. 0.5%) of the Tellus Border ob-
servations fall into these three categories. For the assessment of uncer-
tainty we assumed that in all cases the risk of Co deficiency would be
high, because the concentration of Co is less than 5 mg kg−1, and that
animal treatment would be indicated in these conditions.

2.3. Exploratory data analysis

Because the exploratory data analysis affects decisions on the statis-
tical treatment of data, some results are reported in this section. Fig. 2
shows histograms of the log-transformed data on Co andMn concentra-
tions for the whole Tellus Border region and Fig. 3 shows the spatial
distribution of the untransformed values of Co and Mn concentrations
as a classified post-plot in which the classes are percentiles (quintiles)
of the data values. The post-plots suggested marked variations, particu-
larly in topsoil Co, between two broad geological subregions. The first,
designated A, comprises soils formed over either Lower Palaeozoic
(Ordovician–Silurian) sedimentary strata or glacial tills derived pre-
dominantly from these rocks. Subregion B consists of all other parent
materials in the Tellus Border region. The subregions were defined
from two sources: first, the all-Ireland 1:1,000,000-scale bedrock
geology map (Geological Survey of Ireland, 2014) and second, the
Teagasc subsoil geological parent material maps (mapped superficial
deposits) — Fealy et al. (2009), Teagasc (2006). Concentrations of
both Co and Mn are larger in subregion A than in subregion B, and
the variability is smaller in subregion A. The spatial distribution of
the subregions is shown in Fig. 4.

Table 2 presents summary statistics for both elements in both subre-
gions, including the octile skewness which is a robust measure of the
asymmetry of the distribution of data (Brys et al., 2003). In all cases a
Box–Cox transformation of the data was considered. This takes the form

z ¼ yζ−1
ζ

ζ≠ 0;

¼ ln yð Þ ζ ¼ 0;
ð1Þ

where y is a value on the original scale and z is a transformed value.We
used the Box–Cox procedure from the MASS package (Venables and
Ripley, 2002) for the R platform (R Core Team, 2013) to find the likeli-
hood profile of the ζ parameter and selected the value with maximum
likelihood. In subregion A the transformation gave rise to data with
symmetrical distributions (Fig. 5, Table 2) with conventional coefficient
of skewness less than 1 and octile skewness less than 0.2 (Lark et al.,
2006), possibly with some outliers in the upper tail of the distribution
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Fig. 2.Histogramof log-transformed data from across Tellus Border region: (a) Co, (b)Mn.
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for Co. However, in subregion B the data on Co had a negative octile
skew after the Box–Cox transformation. For this reason a normal-
scores transformation was computed for both variables in subregion
B. Under this transformation,widely used in geostatistics (e.g. Goovaerts,
1997; Journel and Huijbregts, 1978), a datum which corresponds to
the pk th quantile of the empirical distribution of the data is replaced
with the same quantile of a standard normal distribution. Histograms
of the transformed data for subregion A are shown in Fig. 5. Histograms
of the normal-scores transformed data for subregion B are not shown
since these necessarily correspond to a standard normal distribution.

Because of the clear differences between the subregions with
respect to the summary statistics and the transformations it was
decided to undertake geostatistical modelling and prediction within
the subregions separately.
2.4. Cokriging and uncertainty

The next step in the analysis of the data was geostatistical predic-
tion from the observations to a regular grid of target sites. This was
done by ordinary cokriging — see, for example, Webster and Oliver
(2007) — using a robustly estimated and validated linear model
for the coregionalisation of the transformed data on Co and Mn
concentrations.
2.4.1. The linear model of coregionalisation
The cokriging prediction of a variable is the best linear unbiased

prediction conditional on neighbouring observations of the variable
and of the coregionalised variable(s). The cokriging method is based
on auto-variogram functions, which describe the spatial variability of
the variables of interest, and the cross-variogram which describes
their joint spatial variation. It is assumed that the observed values
of two variables at location x, zu(x) and zv(x), are realisations of intrin-
sically stationary random functions, Zu(x) and Zv(x) (Webster and
Oliver, 2007), so the auto-variogram can be defined as:

γu;u hð Þ ¼ 1
2
E Zu xð Þ − Zu x þ hð Þf g2
h i

ð2Þ

where E[⋅] denotes the statistical expectation of the term in brackets
and h is a lag vector which defines a separation in space between two
observations. In this case there was no evidence for anisotropy in
the observations (directional dependence of the variograms), and so
all estimation andmodellingwere donewith respect to the lag distance
h = |h|. The cross-variogram is similarly defined as

γu;v hð Þ ¼ 1
2
E Zu xð Þ − Zu x þ hð Þf g Zv xð Þ − Zv x þ hð Þf g½ �: ð3Þ

Variogramsmust be estimated from the data, zu(xj),zv(xj)j= 1,2,…,n
for discrete lags. The standard estimator is based on the method-of-
moments estimator (Webster and Oliver, 2007), which for the cross-
variogram is

γ̂u;v hð Þ ¼ 1
2N hð Þ

XN hð Þ

i¼1

zu xið Þ − zu xi þ hð Þf g zv xið Þ − zv xi þ hð Þf g: ð4Þ

However, it is known that themethod-of-moments estimator is sus-
ceptible to the effects of outlying observations in the data (e.g. Cressie
and Hawkins, 1980; Lark, 2003); which may be marginal outliers, ap-
parent in the histogram, or observations that are unusual in the context
of their neighbours in space. Outliers can inflate estimates of the
variograms, which will affect the measures of uncertainty attached to
the cokriging predictions. For this reason we used both the method of

moments estimator in Eq. (4) and a robust estimator, γ̂M
u;v hð Þ, developed

by Lark (2003). The robust estimator reduces the effect of outlying
observations on the auto- and cross-variogram estimates. Each set of
estimates was then fitted with a linear model of coregionalisation
(LMCR) (Journel and Huijbregts, 1978) which is a model which allows
the calculation of values of the auto- or cross-variogram for any partic-
ular lag interval. The LMCR is commonly recommended for modelling
the auto- and cross-variograms (Webster and Oliver, 2007) because it
ensures that all modelled linear combinations of the observations
have non-negative variances. The LMCR was fitted to each of the
sets of estimates by weighted least squares using the optimisation
procedure of Lark and Papritz (2003).

It was then necessary to chose between the LMCR fitted to the
method-of-moments estimates of the auto- and cross-variograms and
the LMCR fitted to the robust estimates. To do this we followed Lark
et al. (2012) and cross-validated the models by ordinary kriging of the
values of the two transformed variables using the auto-variograms
from the each fitted LMCR. For each observation the cross-validation
procedure returns a prediction and a kriging variance of the prediction
derived from all the remaining observations. The standardised squared
prediction error can then be computed, for variable zu at location x as

θu xð Þ ¼ fzu xð Þ−eZu xð Þg2
σ2

K;u xð Þ ; ð5Þ

where eZu xð Þ is the kriging prediction of zu(x) and σK,u
2 (x) is the kriging

variance. With normal kriging errors and valid kriging variances θu is



Fig. 3. Classified post-plot of the original data on (a) Co and (b) Mn topsoil concentration. The categories are quintiles (20th percentiles) of the data values.
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expected to have aχ2 distributionwith 1 degree of freedom. In the pres-
ence of outliers themean value of θu over the observations is not a good
indicator of the validity of the kriging variances because the outliers
may tend to inflate both the (non-robust) variogram estimates and
the kriging errors. For this reason Lark (2000) recommended that the
median of θu over all observations is used as a diagnostic, the expected
value of this variable for the χ1

2 variable is 0.455. This is now used as a
diagnostic in robust spatial statistics (e.g. Lu et al., 2012; Pringle, 2013;
Zimmermann et al., 2013).
2.4.2. Cokriging prediction
Once a LMCR for transformed Co and Mn was selected it was then

used to predict these variables at locations on a 500-m interval grid
across the Tellus Border region. The ordinary cokriging prediction of
variable Zu at location x0 is given by

eZu x0ð Þ ¼
XN
i¼1

λu
u;izu xið Þ þ

XN
i¼1

λu
v;izv xið Þ; ð6Þ



Fig. 4. Parentmaterial sub-regions of the Tellus Border region. Subregion A (black) is Lower Palaeozoic (Ordovician–Silurian) sedimentary strata or tills derived predominantly from these
rocks. Subregion B (grey) comprises all other parent materials.
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where the values of λu,iu and λv,iu are ordinary cokriging weights. The su-
perscript, u, in each case indicates that theweight is for the prediction of
Zu, and the subscript u or v indicates whether the weight is applied to
observed values of the transformed Co and Mn concentrations respec-
tively at the ith neighbouring location. A cokriging predictor of Zv is de-
fined similarly. Given a set of values of the cokriging weights and the
LMCR onemay define C(x0)— a 2 × 2 covariancematrix of the cokriging
errors of Zu(x0) and Zv(x0) such that C(x0)[1,1] is the expected squared

error of eZu x0ð Þ, C(x0)[2,2] is the expected squared error of eZv x0ð Þ and
C(x0)[1,2] = C(x0)[2,1] is the expected product of the errors of eZu x0ð Þ
and eZv x0ð Þ (Pawlowsky-Glahn and Olea, 2004). The weights λu,i

u and
Table 2
Summary statistics of the data on Co and Mn for subregions A and B before and after
the Box–Cox transformation. The maximum-likelihood estimator of the parameter, ζ of
the Box–Cox transformation is also reported, and the number of observations, n, in
each subregion.

Statistic Untransformed data Transformed data

Co Mn Co Mn

Subregion A
Mean 12.3 551.4 7.97 9.06
Median 12.5 499.0 8.15 9.1
Standard deviation 4.1 299.1 2.51 1.08
Skewness 0.51 2.02 0.13 −0.08
Octile skewness −0.1 0.20 −0.13 −0.05
ζ 0.79 0.12
n 815 815

Subregion B
Mean 5.1 434.2 1.12 3.35
Median 3.4 166.0 1.33 3.34
Standard deviation 6.6 931.4 1.45 0.43
Skewness 9.73 6.12 −0.06 −0.04
Octile skewness 0.41 0.69 −0.21 0.03
ζ 0.13 −0.18
n 2660 2660
λv,iu ,i= 1,2,…N are foundwhichminimise the value of C(x0)[1,1] subject
to the constraint that∑i = 1

N λu,iu =1 and∑i = 1
N λv,iu =0. Theweights for

the ordinary cokriging estimate of Zv(x0) are found in the same way.
In this study we undertook cokriging of transformed Co and Mn

concentrations using the cokriging programme COKB3D from the
GSLIB Fortran library (Deutsch and Journel, 1992).

2.4.3. Uncertainty
It is assumed that the co-kriging predictions of variables Zu and Zv at

location x0 are jointly normally distributed with mean equal to the
unknown true values, zu(x0) and zv(x0) and covariance matrix C(x0) as
defined above. Given this, it is possible to draw a sample from this
distribution by computing

η ¼ Lε; ð7Þ

where η is a vector containing the samples of the variables Zu(x0) and
Zv(x0), ϵ is a vector containing two independent values drawn from a
standard normal random variable and L is the upper-triangular factor
of C(x0) in its Cholesky decomposition

C x0ð Þ ¼ LLT; ð8Þ

(where superscript T denotes the matrix transpose) which can be com-
puted because C(x0) is positive definite if both variables have positive
variances. The simulated values in η can be back-transformed to the
original scales of measurement.

In this study our objective is to produce a map of the interventions
indicated for themanagement of the risk of cobalt deficiency for grazing
sheep. At some unsampled location, x0 the soil concentrations of Co and
Mn are unknown, but from the cokriging and simulation procedures
described above one may draw a sample from the joint distribution of
the transformed values of these variables. For any sample it is then pos-
sible to identify the corresponding cell in Table 1 by comparing the sam-
ple values with the transformed values of the thresholds for the Co and
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Mn indices. These thresholds can be found for Box–Cox transformed
values by direct application of Eq. (1), and for the normal-scores trans-
formed variables by linear interpolation between observations in the
original dataset. By repeated sampling from the joint distribution at x0
onemay estimate the conditional probability that any particular combi-
nation of Co andMn indices from Table 1 occurs at that location, by the
proportion of the sample for which the random values correspond to
that combination. This provides an estimate of the conditional probabil-
ity that the particular corresponding management intervention would
be indicated at x0 if the true Co and Mn concentrations were known.

This procedure was followed for locations on the 500-m grid for
which cokriging predictions had been derived. At each location the
Cholesky decomposition of the covariance matrix was obtained with
the CHFAC subroutine in the IMSL library (Visual Numerics, 2006).
Five thousand realisations of the random variate ηwere then generated
with the RNMVN subroutine from the IMSL library, and from these a
probability estimate was assigned to each management scenario for
Co deficiency in Table 1: no risk; low risk, soil treatment at 2 kg ha−1 in-
dicated; low risk, animal treatment indicated; high risk, soil treatment
at 3 kg ha−1 indicated; high risk, animal treatment indicated. In addi-
tion, each simulated value was back-transformed to the original scale
of measurement (by algebraic inversion of the Box–Cox transform in
the case of subregion A, and by inversion of the original normal-scores
transform using linear interpolation in the case of subregion B). The
mean of all realisations of the back-transformed values was treated as
an approximation to the conditional expectation of the concentration of
the element at the grid node. This could be mapped as an expectation-
type prediction of the concentration.

2.4.4. Representing uncertain information
From the output of the procedures described above one can map

directly the probabilities of particular management scenarios. These
probabilities will indicate where particular interventions are likely to be
required by the landmanager, and also where further soil sampling is re-
quired in order to resolve uncertainty about local conditions and make a
more robust decision. This information can be used by individual land
managers to decide whether to undertake an intervention, or to sample
the soil on their farm for analysis. It can also be used strategically or com-
mercially, e.g. by regional advisors to decide where producers should be
encouraged to consider interventions or local, targeted, soil sampling.

The raw probability maps are not necessarily useful for non-
specialists, it is well-known that numerical probabilities are often mis-
understood by a target audience (Galesic and Garcia-Retamero, 2010;
Spiegelhalter et al., 2011). For this reason the Intergovernmental Panel
on Climate Change (Mastrandrea et al., 2010) uses a standard verbal
scale for the attachment of probabilistic information to uncertain out-
comes. If the probability of an outcome is Po and Po≥ 0.66 then the out-
come is described as ‘Likely’. This may be intensified to ‘Very likely’ if Po
≥ 0.9 and to ‘Virtually certain’ if Po ≥ 0.99. If 0.33 ≤ Po b 0.66 then the
outcome is described as ‘About as likely as not’. If Po b 0.33 then the out-
come is described as ‘Unlikely’. This may be intensified to ‘Very unlikely’
if Po b 0.1 and to ‘Exceptionally unlikely’ if Po b 0.01.

The IPCC verbal scale for communicating uncertainty about unknown
outcomes has been evaluated in empirical studies and criticised as a re-
sult. Harris and Corner (2011) showed that the interpretation of a verbal
uncertainty for some outcome could be biased by the severity of that out-
come. Considerable variability has been found among individuals in their
interpretation of the verbal scale and a tendency to over-estimate the un-
certainty attached to a prediction (Budescu et al., 2009). Budescu et al.
(2009) recommend that some numerical information is conveyed along
with the verbal scale. They also propose that any ambiguity in the inter-
pretation of quantitative statements about an outcome (e.g. what is a
‘large’ event?) should be distinguished from the uncertainty attached to
whether that outcome occurs or not. It is also important to specify, as
far as possible, the sources of uncertainty in statements about outcomes.

Given these results, we report the geostatistical predictions as fol-
lows. First, we use the basic IPCC scale with intensifiers, but we also indi-
cate the corresponding probabilities (as percentages) as recommended
by Budescu et al. (2009). Second, we make it clear that the source of
uncertainty in these predictions is the spatial variability of soil Co and
Mn. The outcome under consideration is therefore that a particular soil
management scenario would be indicated if the soil properties were
knownwithout error, possible uncertainty about the implications of par-
ticular soil conditions for the Co status of grazing livestock is excluded.
Third, we frame the management outcomes without the use of quanti-
fiers which are potentially ambiguous (Budescu et al., 2009) or which
may introduce severity bias (Harris and Corner, 2011). Specifically we
did not refer to the ‘low’ or ‘high’ risk of a cobalt deficiency indicated
for particular combinations of Co and Mn indices in Table 1. Rather we
consider the following possible outcomes:

1. ‘Soil Co andMn indicate a risk of Co deficiency’ (the Co andMn index
correspond to any cell in Table 1 not designated ‘None’).

2. ‘Soil Co and Mn indicate that soil treatment at 3 kg ha−1 Cobalt
sulphate is required.’

3. ‘Soil Co and Mn indicate that soil treatment at 2 kg ha−1 Cobalt
sulphate is required.’

4. ‘Soil Co andMn indicate that animal treatment is required to avoid Co
deficiency.’
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3. Results

The estimated variograms and fitted LMCRs for the two regions, and
robust andmethod-of-moments estimators, are shown in Fig. 6. Inmost
cases, and always at the shorter lag distances, the robust estimator
produces smaller estimates than does the method of moments. The
mean and median standardised squared prediction errors from
cross-validation by ordinary kriging of each element are reported
in Table 3a. The median values are closest to 0.455 for the model
fitted to the robust estimator, except for Mn in subregion A. The mean
values are somewhat larger than 1.0 for the robust estimator, which is
Fig. 6. Auto- and cross-variograms of transformed Co andMn concentrations bymethod of mom
(b) region B. Solid lines show the fitted LMCR.
expected because of inflation of the numerator of Eq. (5) by outlying ob-
servations. For this reason the models fitted to the robust estimator
were used in further analyses. The summary statistics of the cross-
validation errors in Table 3b, and their histograms (Fig. 7) suggest that
these errors may reasonably be treated as normal variables, with some
outlying values. Note that the histograms in Fig. 7 have the probability
density functionswith robust parameters (median and absolutemedian
deviation from the median) overprinted.

Fig. 8 shows the conditional expectations of topsoil Co and Mn con-
centrations across the Tellus Border region. Note the large concentra-
tions of both elements within subregion A, predominantly Co. Louth,
ents estimator (solid disc,●) or the robust estimator (open circle,○) for (a) region A and



Table 3a
Statistics on θ, standardised squared prediction error, from cross-validation of themodels fitted to themethod ofmoments and robust variogram estimates for transformed concentrations
of Co and Mn.

Estimator Subregion A Subregion B

Method of moments Robust Method of moments Robust

Co Mn Co Mn Co Mn Co Mn

Mean θ 0.98 1.02 1.45 1.30 0.95 0.98 1.56 1.46
Median θ 0.33 0.44 0.50 0.53 0.32 0.31 0.53 0.48
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Co. Monaghan and eastern Co. Leitrim. Larger concentrations of Mn are
also found in eastern parts of Co. Sligo and north and west Co. Leitrim.
The smallest concentrations of Co are found in Co. Donegal,
particularly in the west, and over much of the west of Co. Sligo.

The management classes designated by Teagasc and shown in
Table 1 are mapped in Fig. 9(a) where the most probable class is delin-
eated. Note that class ‘No risk’ and ‘High risk, soil treatment 1’ are the
classes of maximum probability over almost all the region, class ‘Low
risk, soil treatment 2’ is indicated at fewer than 0.1% of the nodes of
the kriging grid, a small cluster in the south of Co. Sligo. Fig. 9(b)
indicates the uncertainty attendant on these indicated classes, the prob-
ability of the class of maximum probability is indicated. The class of
maximum probability may have a large probability (e.g. in most of sub-
region A, and in much of the west of Co. Donegal), but it can be as small
as 0.28, particularly in zones of transition between geochemically con-
trasting areas. This shows that, while over much of the western Tellus
Border area it is most likely that the risk of Co deficiency is high, as indi-
cated by the soil, there can be significant uncertainty due to the spatial
variability of the geochemistry of the soil. This variability is predomi-
nantly caused by variation in the Mn concentrations (Fig. 2). As noted
above class ‘Low risk, soil treatment 2’ is the most probable class in a
small area of Co. Sligo, but Fig. 9(b) shows that the probability that
this class is indicated there is still small, if larger than for any other class.

Given this, we now turn tomaps produced specifically to convey the
uncertainty about the risk of Co deficiency, and the indicated interven-
tion, given topsoil Co and Mn concentrations at unsampled sites. Note
that we consider here only the uncertainty due to the fact that Co and
Mn concentrations are spatially variable, and have been interpolated
to the nodes of the 500-m grid, which are not directly sampled. We do
not attempt to account for any uncertainty about how grazing livestock
can respond to local soil conditions. Fig. 10 shows themap of probability
that topsoil Co and Mn concentrations indicate a risk of Co deficiency.
The red colours indicate that this is ‘likely’ on the IPCC scale, with the
intensifiers distinguished by variations of hue. Similarly blue colours
indicate where the risk of deficiency is unlikely, and grey where it
is ‘about as likely as not’. The actual probabilities are also indicated
(as percentages) on the colour scale, in accordancewith the recommen-
dations of Budescu et al. (2009). Fig. 11 uses the same scale to display
the probability that the intervention indicated by local soil conditions
Table 3b
Summary statistics of cross-validation kriging errors (kriging with the models fitted to
robust estimates).

Statistic Subregion A Subregion B

Co Mn Co Mn

Mean 0.005 0.000 0.000 0.000
Median −0.007 −0.017 0.057 0.036
St Dev 2.115 0.956 0.770 0.796
Skewness −0.621 0.091 −0.587 −0.422
Octile skew 0.026 0.072 −0.105 −0.038
is soil treatment 1 (application of Co fertiliser at 3 kg ha−1), and
Figs. 12 and 13 show the probabilities for soil treatment 2 and animal
treatment. Animal treatment is as likely as not to be indicated in a
small area in south-west Donegal where Mn concentrations are locally
large, but otherwise is unlikely to be indicated. Note that animal treat-
ment may be a suitable intervention anywhere where Co is deficient.
When we say here that animal treatment is indicated we mean that
animal treatment rather than a soil treatment is necessary because of
the combination of Co andMn indices (Coulter and Lalor, 2008). Animal
treatment may be more appropriate than soil treatment over areas of
commonage where producers do not have ownership or tenancy of
the land. Commonage accounts for 17% of land in Co. Donegal, but rather
less (0–3%) in other counties of the Tellus Border region (Central
Statistics Office, 2012).
4. Discussion

These results show how data from a regional geochemical survey,
through an appropriate multivariate geostatistical analysis, can be
used to map variations in the concentrations of topsoil Co and Mn
against recognised thresholds, and so the susceptibility of grazing
sheep to Co deficiency. At any unsampled location there is uncertainty
about the true concentration of Co andMn, and so the management in-
tervention. This is due to the spatial variability of these properties. This
uncertainty can be represented bymapping the probability that pasture
soils have Co andMn concentrations expected to lead to deficiency, and
mapping separately the probabilities that particular interventions
would be deemed appropriate, given the soil information.

As noted above, we have considered uncertainty due to soil variabil-
ity, given the Teagasc index values. Further work is necessary to address
the uncertainty in these diagnostic concentrations, given the environ-
mental factors that affect trace element concentration in forage and
resulting availability to the rumen microflora and the variability of
animal responses. It is known that response to animal treatment on pas-
tures where the soil has small Co concentrationsmay be variable, and it
is possible that this reflects differences in the rumen fermentation
(Gruner et al., 2004). One possible area for future research is to combine
regional geochemical data with comparable data on flock blood vitamin
B12 concentrations both to refine the diagnostic values and to quantify
their uncertainty. Such a studywould need to account for the difference
in sample support between the soil and physiological data. Another
approach would be to elicit opinions from experienced veterinarians
and other consultants on the probability of the occurrence of vitamin
B12 deficiency over a range of soil conditions, management systems
and breeds.

The information presented in this study could be used for various
purposes. At a regional scale it can be used for an overall assessment
(e.g. by county) of the importance of Co deficiency for farmers, particu-
larly where sheep and cattle production are economically important.
This could be used to target extension work, or to help the veterinarian
in the interpretation of diagnostic results from particular flocks so
as to decide whether Co deficiency is the most likely explanation of
problems.
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Fig. 7. Histograms of cross-validation errors (kriging with the models fitted to robust estimates). The continuous curves are normal probability densities, with robustly estimated
parameters.
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Locally the information could also be used for decision making.
For example, in a location where it is judged ‘exceptionally unlikely’
that Co is deficient then the costs of local soil sampling, let alone any
intervention, are unlikely to be justified. Similarly, if it is ‘virtually
certain’ that Co is deficient then itmay be decided to take an appropriate
intervention without costly local soil investigation. Where there is
greater uncertainty — for example, where it is only ‘likely’ that there is
a deficiency, or ‘as likely as not’, then local soil sampling should be
undertaken to support a decision on a particular farm.

The joint probability distribution for Co and Mn concentrations
could be used in a formal decision analysis to compute the expected
loss to a farmer of alternative decisions, and the benefits of additional
soil sampling to reduce local uncertainty. This would require further in-
formation about the costs of alternative interventions, and the costs to
farmers of lost production which could be attributable to Co deficiency.
Let LI(s) denote the net loss incurred by a producer as a result of follow-
ing intervention I at a location where soil conditions are described by s,
a vector containing values of variables such as total concentrations of
Co and Mn. The loss represents total costs to the producer of following
the intervention given the actual soil conditions (variable costs of
implementing the intervention and any disbenefits resulting from
the intervention) over any benefits from following the intervention.
The expected loss to the producer who follows intervention I at a
location where the joint probability distribution for the Co and Mn
concentrations is f(s) would be given by

LI ¼
Z

LI sð Þ f sð Þ ds; ð9Þ

where the integral is over both variables in s. One may then select
an intervention on the basis of, for example, minimum expected
loss. The value of additional soil information obtained locally to re-
duce the uncertainty about local soil conditions could then be esti-
mated by calculating the expected loss under a new distribution
fn(s) conditional on the local information. As a first approximation,
with the shortest lag distance in the empirical variograms at about
1000 m, the nugget (co) variances for Co and Mn would provide
reasonable values from which to estimate the joint density func-
tion of the farm mean Co and Mn estimated by simple random sam-
pling at specified intensity. On this basis one might compare the
marginal costs of additional soil sampling effort and its marginal
benefit in order to decide how much effort it is rational to deploy
locally.
5. Conclusions

Measured topsoil Co and Mn concentrations show marked spatial
variation in the region of the Tellus Border survey in Ireland. This
was modelled geostatistically for two distinct geological domains,
subregions A and B. The geostatistical models were used to generate
cokriging predictions of topsoil Co and Mn and to compute conditional
probabilities that the concentrations at unsampled sites indicated a
risk of Co deficiency for grazing livestock, and that particular manage-
ment interventions are appropriate. While over most of the Tellus
Border region the most probable situation is either that there is no
risk of Co deficiency, or that there is a high risk with soil treatment an
appropriate intervention, the uncertainty about this designation is
variable and may be large. It has been shown how the probabilities
obtained from the geostatistical model can be represented visually on
a verbal scale, accounting for recent research on the effective communi-
cation of uncertainty.



Fig. 8. Cokriging predictions of the conditional mean concentration in topsoil of (a) Co and (b) Mn.
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Fig. 9.Map of (a) most probable management class and (b) probability of themost probable management class. N.B. Class ‘Low Risk, Soil Treatment 2’ is the most probable class over a very restricted area in the south-west of Co. Sligo, indicated by a
circle in panel (a).
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Fig. 10.Map on verbal probability scale (with probabilities indicated as percentages) of the probability that local topsoil Co andMn concentrations would indicate a risk of Co deficiency.
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Fig. 12.Map on verbal probability scale (with probabilities indicated as percentages) of the probability that the intervention indicated by local soil conditions is soil treatment 2
(application of Co fertiliser at 2 kg ha−1).

Fig. 13.Map on verbal probability scale (with probabilities indicated as percentages) of the probability that the intervention indicated by local soil conditions is animal treatment because
of the concentration of Mn in soil.
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