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Operationalizing an ecosystem services-based approach using Bayesian Belief 1 

Networks: an application to riparian buffer strips 2 
 3 

Abstract 4 

The interface between terrestrial and aquatic ecosystems contributes to the provision of key ecosystem 5 

services including improved water quality and reduced flood risk. We develop an ecological-economic 6 

model using a Bayesian Belief Network (BBN) to assess and value the delivery of ecosystem services from 7 

riparian buffer strips. By capturing the interactions underlying ecosystem processes and the delivery of 8 

services we aim to further the operationalization of ecosystem services approaches. The model is 9 

developed through outlining the underlying ecological processes which deliver ecosystem services. 10 

Alternative management options and regional locations are used for sensitivity analysis. 11 

We identify optimal management options but reveal relatively small differences between impacts of 12 

different management options. We discuss key issues raised as a result of the probabilistic nature of the 13 

BBN model. Uncertainty over outcomes has implications for the approach to valuation particularly where 14 

preferences might exhibit non-linearities or thresholds. The interaction between probabilistic outcomes 15 

and the statistical nature of valuation estimates suggests the need for further exploration of sensitivity in 16 

such models. Although the BBN is a promising participatory decision support tool, there remains a need to 17 

understand the trade-off between realism, precision and the benefits of developing joint understanding of 18 

the decision context. 19 

Keywords: Bayesian Networks; Ecosystem services; Interdisciplinary research; Valuation 20 

  21 
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1 Introduction 22 

Recent years have seen the growing adoption of ecosystem services-based approaches for analysis and 23 

decision-making with respect to the environment. This approach has also encouraged the development of a 24 

common language across natural and social science disciplines that in turn has led to joint analysis and 25 

assessments. Notable examples of the latter include the Millennium Ecosystem Assessment (MA, 2005) and 26 

the UK’s National Ecosystem Assessment (UK NEA, 2011). However, the increasing prevalence of 27 

interdisciplinary analysis has highlighted the need to further develop common models and tools to explore 28 

our joint understanding of ecosystem services that might better inform management and policy (Martin-29 

Ortega et al., 2015). This is the key issue in the operationalization of ecosystem services as an analytical and 30 

decision making approach. To this end there have been some targeted attempts to foster interdisciplinary 31 

working, such as the UK’s Valuing Nature Network1, which specifically seeks to promote research capacity 32 

on the integration of approaches to the valuation of ecosystem services to support policy and practice.  33 

The complexities and interdependencies among components within and between ecosystems make 34 

describing and quantifying interactions within and across ecosystems a considerable challenge (Heal et al., 35 

2001; Pereira et al. 2005; Carpenter et al., 2009; Maskell et al., 2013). Multiple ecological mechanisms 36 

interact within ecosystems resulting in the delivery of single or multiple services; or a single mechanism 37 

may contribute to multiple ecosystem services. The provision of ecosystem services may also be dependent 38 

on the contributions of many different ecosystems (Defra, 2007), for example good water quality arises 39 

from both terrestrial and aquatic ecosystems. Hence, policy decisions affecting any part of those 40 

interactions can cause changes across multiple services and ecosystems. Given this complexity, from an 41 

economic perspective the value of any ecosystem service may then be determined by its relationship with 42 

other services (UK NEA, 2011). 43 

NRC (2005) reviewed studies attempting to integrate ecological and economic knowledge to value either 44 

single or multiple ecosystem services, concluding that our inability to estimate the ‘true’ value of ecosystem 45 

                                                           
1 The VNN is a UK Natural Environment Research Council funded initiative aimed at bringing together natural and 
social scientists, economists, policy-makers and business interests. http://www.valuing-nature.net/  

http://www.valuing-nature.net/
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services is mainly associated with three factors: i) lack of ecological understanding of how ecosystem 46 

services are being affected by alternative management practices, ii) inadequacy of the existing economic 47 

techniques to quantify the ‘true’ value of multiple ecosystem services, and iii) inability to integrate 48 

ecological and economic knowledge. In order to tackle the methodological challenges of valuing ecosystem 49 

services, there is a growing consensus that integrated studies should be undertaken, which account for the 50 

interactions and non-linear relationships among ecosystem components (Carpenter et al., 2009; Kremen 51 

and Ostfeld, 2005; Tallis and Kareiva, 2005; Turner et al., 2003). Many authors suggest that it is necessary 52 

to develop a more holistic (Turner and Daily, 2008), interdisciplinary valuation approach that integrates 53 

economic and ecological knowledge (Brauman et al., 2007; Hein et al., 2006; O’Riordan et al., 2002; Pagiola 54 

et al., 2004). In other words, there is need for an approach that could quantify the economic value of the 55 

‘ecosystem service cascade’ proposed by Haines-Young and Potschin (2009), integrating the underlying 56 

linkages between services and processes to provide a more accurate estimate of the ecosystem value. 57 

A common problem with developing interdisciplinary models and tools has been to integrate different 58 

scientific and social science disciplines that operate at varying degrees of complexity. Biophysical science 59 

approaches to ecosystems operate over a wide range of scales and complexities including very context 60 

specific field studies (Norton et al., 2012a). Socio-economic approaches, such as non-market valuation, are 61 

often broad-brushed to avoid overburdening survey respondents, whose values we seek, with complex 62 

information. Relevant economic data are also often only available at large scales (e.g. national or regional). 63 

Neither of these scales may match policy or decision-making. Consequently, there is a potential mismatch 64 

of complexity and scales in the use of extant models and data. In order to operationalize an ecosystem 65 

services-based approach researchers and decision makers may need to develop joint models where we 66 

explicitly sacrifice precision in disciplinary approaches to achieve outcomes that are still of use to decision 67 

making.  68 

In this paper we present an interdisciplinary approach based on Bayesian Belief Networks (BBN) in the hope 69 

of provoking discussion and debate about the virtues and limitations of BBNs as a tool to address some of 70 

the integration challenges. The benefit of using BBNs in natural resource management is their usefulness 71 
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for predicting the links between management practices and ecosystem reactions (Clark et al., 2001; Borsuk 72 

et al., 2004), while they can also deal with a large number of interconnected data and integrate different 73 

types of variables (e.g. environmental, economic, social and physical variables) or knowledge from diverse 74 

sources (Bromley et al., 2005). In fact, BBNs have been widely applied in environmental studies including 75 

fisheries assessment (Kuikka et al., 1999; Lee and Rieman, 1997; Pollino et al., 2007); forest restoration 76 

(Haas et al., 1994); climate change problems (Gu et al., 1996; Kuikka and Varis, 1997); habitat restoration 77 

(Rieman et al., 2001); watershed management (Hamilton et al. 2007; Ames et al., 2005; Borsuk et al., 2004; 78 

Bromley et al., 2005; Henriksen et al., 2004) and nitrogen pollution impacts on wetland ecosystem services 79 

(Spence and Jordan, 2013). The review by Landuyt et al. (2013) indicates the excellent conceptual fit 80 

between the structure of BBN’s and the ecosystem service production cascade (Haines-Young and Potschin 81 

(2009), but alludes to limited attempts in the literature to exploit the potential of BBN’s for elucidating the 82 

cascade in particular cases of ecosystem services delivery.  Haines-Young (2011) uses two case studies from 83 

the UK NEA to explore how BBNs could be used to operationalize different components of the cascade 84 

model. This paper seeks to develop this approach by explicitly analysing the effects of one management 85 

mechanism (riparian buffer strips) on the delivery of ecosystem services (in the UK NEA example used by 86 

Haines-Young, different land cover scenarios are explored but not linked to management mechanisms).  87 

Landuyt et al. (2013) note, that BBNs have particular value because of the capacity for using them to 88 

consider the delivery of multiple ecosystem services whilst allowing the integration of multidisciplinary 89 

knowledge. However, they conclude that the integration of decision nodes and valuation into Bayesian 90 

networks remains an important challenge; this paper attempts to address that challenge. 91 

The BBN was developed through a series of workshops under the Valuing Nature Network involving natural 92 

and economic scientists interested in identifying approaches for valuing the provision of ecosystem services 93 

across agricultural and aquatic ecosystems. The choice to focus on water quality and flood risk was based 94 

on workshop discussions around these two high profile services which are a focus of policy with respect to 95 

the European Water Framework Directive and Floods Directive. Buffer strips were identified as a relevant 96 

management instrument, widely employed through various agri-environment schemes for precisely the 97 

delivery of those services (Doody et al., 2012; Haygarth et al., 2009), and used here as a test case. We 98 
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recognise that buffer strips offer a far wider range of services (Stutter et al., 2012) but in recognition of the 99 

potential complexity of valuing all these services, we have focused on the water services only. In the 100 

following section we discuss the issue of complexity and interactions in ecosystem service analysis and 101 

subsequent economic valuation in the context of the approach adopted. We then outline our approach 102 

before describing its specific application to riparian buffer strips. Finally we discuss outputs from this model 103 

and its further potential development. 104 

2 Ecosystem service valuation – complexity, interactions and scale 105 

As Boyd and Banzhaf (2007) argue, there should be a clear distinction between the ‘final ecosystem 106 

services’ that are directly consumed by individuals and the ‘intermediate ecosystem functions’ or processes 107 

that contribute to their delivery. Ecological processes are considered the intermediate biological, physical 108 

and chemical interactions between ecosystem services, rather than end-products. For instance, nutrient 109 

cycling and water flow are ecological functions which interact to deliver the service of water quality 110 

alongside other ecosystem services. Haines-Young and Potschin (2009) use the idea of a ‘service cascade’ to 111 

illustrate the mechanisms that underpin the connections between ecological assets and welfare, and the 112 

series of intermediate stages in which they are linked (Figure 1). This service cascade serves as the basic 113 

template for building the BBN in this study.  114 

FIGURE 1 HERE 115 

In the context of environmental valuation, the classification of ecosystem services into ‘intermediate 116 

processes’, ‘final services’ and ‘benefits’ addresses the problem of ‘double counting’ the values of 117 

ecosystem services (Boyd and Banzhaf, 2007; Fisher and Turner, 2008; Fisher et al., 2009; Fu et al., 2011; 118 

Ojea et al., 2012). For instance, in the case of a wetland, the intermediate functions of nutrient cycling and 119 

water regulation interact to deliver clean water. The actual benefit that humans derive from water 120 

provision may include recreation (e.g. angling, swimming, seeing water in the context of a landscape 121 

(Norton et al., 2012b)) or potable water (Fisher et al., 2009). Although it seems sensible to value the 122 

consumed products (tangible or intangible), the ability to acknowledge and measure the extent to which 123 

the processes underlying their delivery contribute to the final value of benefits is vital. Only in this way, can 124 
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policy decisions affecting environmental management be valued for their impact on ecosystem services and 125 

ultimately the delivery of ecosystem benefits. It is therefore important that integrated models reflect 126 

relationships between final services, underlying processes and generated benefits. 127 

In general, ecosystem service valuation tends to focus on one service at a time (Turner et al., 2003), 128 

disregarding interactions between ecosystem functioning and services. This is in part influenced by the 129 

difficulties faced by ecosystem science in considering multiple ecosystem service delivery, although it is 130 

acknowledged that such an approach is essential for the sustainable management of natural systems (NRC, 131 

2005; Diaz and Rosenberg 2008; Gordon et al., 2008). In addition, the available approaches to undertake 132 

economic valuation of ecosystem services may themselves be inadequate for encompassing the 133 

complexities of natural systems. Valuation approaches vary in the extent to which they directly value 134 

individual or combinations of ecosystem services. Stated preference studies, either by virtue of the 135 

constructed valuation scenario or the good being valued (e.g. public goods and/or cultural services such as 136 

landscape), can be more closely linked to final ecosystem services than revealed preference, market value 137 

or cost based approaches (Barkmann et al., 2008). Marketed goods, such as food, require inputs of man-138 

made and human capital (e.g. manufactured inputs, labour and knowledge) so the contribution of final 139 

ecosystem services to the goods that generate human welfare is less clearly identifiable (Bateman et al., 140 

2011). These issues require care in the interpretation and use of estimated values.  Therefore, benefit 141 

estimates derived via stated preference valuations are likely to be of use in the context of developing 142 

integrated models mirroring the ecosystem service cascade. 143 

Müller et al. (2010) stress the need for an approach which integrates multiple ecosystem services (i.e. does 144 

not focus only on a single service or a limited set of services). Ecosystem services-based approaches would 145 

incorporate the interrelationships between ecological processes across the components of the ecosystem 146 

service cascade; the different spatial and temporal scales; and incorporate stakeholders into the decision 147 

making process (Hein et al., 2006; Martin-Ortega et al., 2015). Conceptually, BBN seem to be particularly 148 

well fitted to address these challenges; they can be designed to fit particular study contexts and hence 149 

consider spatial and temporal scales (albeit with difficulty), and can be participatory through including 150 
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stakeholders in the BBN development. Alternatively, BBNs may be constructed to investigate alternative 151 

management scenarios for generic ecosystems as opposed to ecosystem conditions at a particular location, 152 

i.e. they may be used as a tool to investigate the general effectiveness of policy interventions. This study 153 

considers the latter.  154 

3 Developing an integrated ecosystem-economic model 155 

Our interdisciplinary team of terrestrial and aquatic ecologists, soil scientists and economists held three 156 

workshops. Figure 2 shows the sequence of interdisciplinary workshops that took place during the 157 

development of the BBN model.  The first workshop included a broader group of science and policy 158 

stakeholders, who together with the research team produced very complex mappings of ecosystem process 159 

and service linkages for services in agricultural and freshwater systems. This served to highlight the 160 

complexity of the issues rather than provide a potential approach.  161 

We therefore held a smaller second workshop which focused on the specific management intervention of 162 

riparian buffer strips on agricultural land. Buffer strips provide an excellent subject for study in this context 163 

because they play an important role in interactions between agricultural land and freshwater ecosystems 164 

and while they are used as a policy instrument, many of the policies that directly affect buffer strips are 165 

conceived of and applied independently (Stutter et al., 2012). The second workshop specifically explored 166 

the use of a BBN approach to model the interactions between improving water quality and mitigating flood 167 

risk as two ecosystem services produced by riparian buffer strips, leading to benefits that might be valued. 168 

The aim of the BBN was to explore the effectiveness of different types of riparian buffer strip management 169 

at a regional scale with alternative scenarios relevant to the East and West of England offering contrasting 170 

climatic, topographic and land use conditions. A final workshop was held to review the BBN model and 171 

explore how it could be further developed to integrate the valuation component and to include a wider 172 

range of socio-economic drivers.  173 

FIGURE 2 HERE 174 
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Bayesian Belief Networks (BBNs) represent interactions between a range of variables, which may include 175 

uncertain quantities as a directed acyclic graph which is formed by a series of interconnected nodes that 176 

link actions to outcomes (Barton et al., 2008; Pollino et al., 2007; Borsuk et al., 2004). The nodes represent 177 

the variables of the system, while the linkages among them indicate direct causal dependencies (Pollino et 178 

al., 2007); as they are acyclic these cannot form a closed loop (Bromley et al., 2005). Those nodes that do 179 

not have any conditional dependencies are called ‘parent’ nodes and represent input variables, while those 180 

that are conditionally dependent on at least one other are called ‘child’ nodes. Nodes without child nodes 181 

constitute the output of the system.  182 

The strengths of the causal relationships among the system variables are quantified by conditional 183 

probabilities. These are defined by a set of conditional probability tables (CPTs) that specify the probability 184 

of each variable having a particular ‘state’ considering every possible combination of states of the parent 185 

nodes linked to it (Kjærulff and Madsen, 2005; Kragt, 2009; Pollino et al., 2007; Bromley et al., 2005). The 186 

state of the parent nodes is determined by a marginal (or unconditional) distribution of probabilities 187 

(Pollino et al., 2007; Borsuk et al., 2004) set by the operator. Variables can be determined either as discrete 188 

or continuous (Cain, 2001); with the state of each described by either a numerical value, a verbal 189 

description, or even a true or false statement (Bromley et al., 2005). The probability values can be either 190 

observed data, information elicited from experts or a combination of sources (Pollino et al., 2007). 191 

3.1 Riparian buffer strips 192 

Riparian buffer strips are vegetated strips of land that extend along the side of a watercourse which are set 193 

aside from production by farmers, often under agri-environment agreement (Stutter et al., 2012). Buffer 194 

strips are primarily encouraged in order to exclude nutrients, sediment and other organic matter from the 195 

watercourse (Ramilan et al., 2010), but may also play important roles in flood control, water retention and 196 

infiltration, climate regulation, habitat provision, recreation and amenity (Tabachi et al., 2000; NRC, 2002; 197 

Dwire and Lowerence, 2006; Soman et al., 2007). It is recognised that there is a range of interdependencies 198 

associated with the provision of the ecosystem services outlined above. For instance, decreases in the 199 

infiltration capacity of any riparian area will affect both productive capacity and water quality through 200 
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decreasing nutrient uptake by plant roots, decreasing water storage and increasing surface runoff, thereby 201 

impacting on flood risk, recreational activities, water supply, etc. 202 

The use of riparian vegetation as buffer strips was examined from a perspective of alternative management 203 

practices, i.e. a) grassland; b) natural vegetation; c) mixed (i.e. a and b); or d) no buffer strip. The impacts of 204 

these characteristics of buffer strips are documented in the literature (Siameti, 2012); further 205 

characteristics such as width and vegetation height will modify impacts but we assume these are implicit in 206 

the management of each buffer strip type. The functions provided by riparian buffer strips were 207 

incorporated into their effects on a) runoff rate, b) sedimentation load and c) water temperature. Effects of 208 

alternative land uses (i.e. arable or pasture), soil type, slope, as well as seasonal effects on water 209 

temperature and aquatic vegetation were also taken into consideration. 210 

3.2 BBN construction 211 

The initial stage in the development of a BBN was to construct a conceptual model specifying the cause-212 

and-effect relationships among the system components. This process began during our second workshop. 213 

The conceptual model formed the basis for the directed acyclic graph.  Firstly, the objectives (output nodes) 214 

of the model were defined; in this case: flood risk and water quality. The output nodes represent the 215 

‘physical’ outcomes of the model (services) and are distinct from ‘value’ outcomes (benefits) which are 216 

captured in further utility nodes. We define the output nodes for the BBN as follows: 217 

Flood risk: riparian buffer strips contribute to moderating flood risk either by delaying the passage of 218 

floodwater downstream or reducing surface runoff through infiltration or interception of precipitation..  219 

Water quality: riparian buffer strips may enhance water quality through a number of processes. These 220 

include; direct interception of nutrient containing sediments, interception and infiltration of water, shading 221 

of the watercourse and nutrient cycling within the vegetation. The net effect of such processes is to reduce 222 

the nutrients reaching the associated water and reduce temperatures. 223 

Once the output nodes and the policy tool (node ‘buffer strips”) were defined, development of the BBN 224 

drew on system variables and their interrelationships, as identified in our first and second workshops 225 
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exploring the ecological processes involved in provision of water quality and flood risk specifically relating 226 

to farmland (summarised in Table 1). Given that the lower number of nodes a model has, the more easily 227 

understood it will be by the involved parties (Cain, 2001; Marcot et al., 2006) the challenge was to select 228 

the variables which would provide a realistic representation of terrestrial and aquatic ecosystems whilst at 229 

the same time keeping the model as simple as possible. The variables that were agreed during the second 230 

and third workshops for use in the model can broadly be divided into four groups: states of nature, 231 

terrestrial processes, management intervention and aquatic processes. The states of nature variables 232 

represent the local conditions which determine the variables of the terrestrial and aquatic processes, which 233 

together with the ‘management intervention’ variables indirectly or directly determine the final ecosystem 234 

services, flood risk and water quality. The individual variables have been defined and assessed for their 235 

dependencies in the scope of this study. The definitions and the results of the assessments are summarised 236 

in Table 1. In addition the table includes the assumptions that are used in the parameterization process.  237 

TABLE 1 HERE 238 

Flood risk was modelled as a variable determined by the level of river flow. It is affected indirectly by the 239 

surface runoff rate, the rainfall rate and aquatic vegetation. This is a simplification of a complex system 240 

where river flow is not the sole determinant of flood risk but it reflects our focus on a small number of key 241 

processes. Water quality can be defined by a range of biological, chemical, hydrological and morphological 242 

characteristics, such as levels of dissolved oxygen, pH, temperature, soluble nutrient content, fish 243 

populations etc. (UK NEA, 2011). In this study, Biological Oxygen Demand (BOD) was selected as the water 244 

quality indicator because of its importance as an indicator of biological quality and the availability of 245 

evidence related to factors impacting upon it. Water temperature, water nutrient concentration and 246 

aquatic vegetation coverage are considered to have an indirect impact on water quality through their effect 247 

on BOD, although these factors in themselves can also directly impact on water quality.  248 

The BBN was created using Netica software (Norsys, 2003) and was further developed to include decision, 249 

nature and utility nodes. Decision nodes are associated to factors controlled by decision makers, while 250 

utility nodes represent those variables that need to be optimised (i.e. system outputs). Thus, ‘riparian 251 
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buffer strips’ was depicted as a decision node, while the end-points of the system were connected to a 252 

utility node, ‘satisfaction’. We use the term ‘satisfaction’ due to its link to the economic concept of utility 253 

and also because it is not linked to any specific unit or estimate of value within the current model. The 254 

values for all the other variables were dependent on probability relationships with other variables, 255 

expressed as conditional probability distributions, and were drawn as nature nodes. Our BBN model is 256 

illustrated in Figure 3. 257 

FIGURE 3 HERE 258 

4 Model parameterisation 259 

Once the conceptual network was designed, the next step was to populate each CPT with probability 260 

values. Since the model is generic rather than site-based, the parameterisation process was based on 261 

evaluations of the general patterns of riparian ecosystem functioning relevant to buffer strips, drawn from 262 

the literature and from expert knowledge (see Table 1 assumptions).  263 

All the system components were identified as discrete variables; these were chosen to simplify 264 

parameterisation in absence of data to populate continuous variables. Decision and parent nodes are 265 

deterministic with their states provided by decision makers (Castelletti and Soncini-Sessa, 2007; Cain, 266 

2001); hence, these nodes did not need to be populated in the same way. . The generic probabilities used in 267 

this model were intended to reflect contrasts between the different states of the variables (e.g. low, 268 

medium, high) rather than absolute values. The use of observed data might lead to more robust results, but 269 

as emphasised previously would limit the potential to derive general policy recommendations for 270 

alternative scenarios. We argue that the benefit of the BBN approach in this context lies in developing an 271 

understanding of processes and their interactions as part of a decision support tool. The CPT for Overland 272 

flow is presented in Table 2 as an example of our approach. 273 

TABLE 2 HERE 274 

As we were unaware of any joint valuations of flood risk and water quality, the values used to parameterise 275 

satisfaction were developed by the authors. This was treated as a continuous variable ranging from 0 to 276 



12 
 

100; effectively this was an index of the benefits associated with different combinations of states for the 277 

flood risk and water quality outcomes: low flood risk and high water quality = 100; high flood risk and poor 278 

water quality = 0, other combinations were assigned values in between; these are presented in Table 3. 279 

Although the utility values presented in Table 3 appear to be discrete values, the utility node itself must be 280 

defined as continuous to allow compilation of the network and subsequent estimation of the probability 281 

weighted utilities associated with different management actions in the decision node. Between the upper 282 

and lower bounds of high water quality/low flood risk and poor water quality/high flood risk there is an 283 

inherent trade-off between water quality and flood risk where the benefit of improving one of these can 284 

potentially result in a worse outcome for the other. In determining the values for ‘satisfaction’ we made the 285 

assumption that regardless of water quality status the overall score could not exceed 50 if flood risk was 286 

high; utility lies between 35 and 65 for medium flood risk; and where flood risk is low utility will always be 287 

greater than 50.  288 

To parameterise the CPT states for water quality, we drew on the water quality ladder first introduced by 289 

Carson and Mitchell (1993) that describes water quality on an ascending scale of water-use possibilities. 290 

The worst quality category is associated with severe limitations on use, while improving water quality 291 

allows for a range of activities, such as, for example, boating and swimming. Different forms of the water 292 

quality ladder inspired by this original one have been extensively used in the water valuation literature (see 293 

Baker et al., 2007; Del-Saz-Salazar et al., 2009; Brouwer et al., 2010; Glenk et al., 2011; Ramajo-Hernandez 294 

and Del-Saz-Salazar, 2012; Metcalfe et al., 2012; Schaafsma et al., 2012). Maybe the most advanced of 295 

these, is that by Hime et al. (2009), who produced a generic water quality ladder built on various indicators 296 

of water quality levels, including; fish life, aquatic vegetation, river bank vegetation, substrate composition 297 

and water clarity. This relatively sophisticated ladder has been tested in several European countries 298 

(Bateman et. al 2011) and is the one used in this study. Each of the ecological categories is associated to 299 

different water quality levels, which Hime et al. (2009) define as blue, green, yellow, and red respectively 300 

(from the highest to the lowest quality). Each level of water quality was further linked to the defined states 301 

of BOD as described in Table 1. 302 
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We assume that there is less sensitivity to water quality state with no distinction made between the utility 303 

for the blue and green levels (this reflect the role of inherent characteristics such as substrate type in 304 

differentiating these levels which might not be affected by riparian management); so the BBN will in effect 305 

only reflect the utility associated with changes in the probability of water quality being either poor (red), 306 

moderate (yellow) or good (green and blue). 307 

Once all CPTs were populated with probability values the model was compiled and the decision network 308 

‘solved’. That means that the software performed standard belief updating and calculated the ‘marginal 309 

posterior probability’ for each variable (Marcot et al., 2006), showing the ‘optimal solution’ of the problem. 310 

The inclusion of both decision (management actions) and utility nodes means that when the model is 311 

‘solved’ the utility values associated with each management action are obtained thus allowing the optimal 312 

action to be identified. 313 

TABLE 3 HERE 314 

For each combination of land use and buffer strip management a utility score is calculated as the sum of 315 

the utility values associated with each combination of flood risk and water quality outcome (i.e. Table 3) 316 

multiplied by the probabilities of those outcomes occurring: 317 

𝑈𝑚 =  ∑ 𝑃𝑟𝐹𝑅𝑚𝑠 × 𝑃𝑟𝑊𝑄𝑚𝑠 × 𝑈𝑠𝑆
𝑠=1          (1) 318 

Where Um is the utility associated with management option m; PrFRms is the probability of flood risk 319 

outcome s occurring under management option m; PrWQms is the probability of water quality outcome s 320 

occurring under option m; and Us is the utility associated with combined flood risk and water quality 321 

outcomes s.  322 

4.1 Model scenarios  323 

The BBN was  used to explore the effectiveness of the management intervention at regional scales. The 324 

model was able to explore all possible combinations of our ‘states of nature’ based on the parents nodes: 325 

region (2 states), slope (3 states), season (4 states), land cover (3 states) and soil type (3 states); this would 326 

give 21 x 33 x 41 = 72 possible combinations, although some may be unlikely given the general geographical 327 
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characteristics of the two regions.  For brevity in this paper we evaluate a sub-set of three scenarios 328 

defined using typical combinations of region, land-use, soil type and slope (Table 4).  These three scenarios 329 

were examined under alternative buffer strip management practices with ‘no buffer strips’ being referred 330 

as the ‘status quo’, in which it is assumed that vegetation in the riparian zone is managed for agricultural 331 

production whether grassland or arable such that the ecosystem processes associated with buffer strips are 332 

diminished. In particular the runoff rate and sedimentation load associated with these land uses are 333 

unmodified in the absence of buffer strips. The different buffer strip options ‘no buffer strips’, ‘grassland’, 334 

‘natural vegetation’ and ‘mixed’ can be simultaneously evaluated, i.e. the BBN returns the utility values for 335 

all four. For each given ‘state of nature’ scenario, our aim was to: (i) identify the optimal buffer strip 336 

management practice; and (ii) compare how the system objectives changed between the ‘status quo’ and 337 

the ‘optimal solution’. The BBN can also take seasonal changes (associated with the rainfall rate, vegetation 338 

coverage and temperature) into account, however for the examples we present in the results specific 339 

seasons are not selected which means they represent year-round or average seasonal conditions. From a 340 

decision support perspective this signifies an evaluation of buffer strip performance throughout the year.  341 

TABLE 4 HERE 342 

 343 

5 Results 344 

Table 5 presents the utility or satisfaction values associated with each of the scenarios for the different 345 

buffer strip management options and Table 6 shows the changes in the probabilities of the management 346 

objectives occurring under each of these options. In scenario A, where there is a low level of overland flow 347 

(i.e. East England: low rainfall; light soils with high infiltration capacity; low slope), natural vegetation 348 

proved to be the optimal buffer zone management practice (satisfaction score: 59.37) on arable land (Table 349 

5). The model showed that a moderate level of flood risk was most probable, together with a moderate 350 

(yellow) level of water quality. The results indicate that the optimal solution would affect both system 351 

objectives positively, i.e. the probabilities of low flood risk level and high (blue) level of water quality were 352 

both improved (Table 6).  353 



15 
 

TABLE 5 HERE 354 

TABLE 6 HERE 355 

In contrast to Scenario A, the conditions of Scenario B (Table 5) are associated with a higher level of 356 

overland flow (i.e. West of England: high rainfall; heavy soil with low infiltration capacity; medium slope). 357 

Under this scenario, a moderate level of flood risk and a good (green) level of water quality were most 358 

likely to occur. This result arises because on average there is a higher density of vegetation coverage under 359 

scenario B due to the selected land use, i.e. grassland (see assumptions in Table 1). In this scenario, natural 360 

vegetation also proved to be the optimal buffer strip management practice (satisfaction value: 59.91 – 361 

Table 5). Table 6 shows the changes in the probabilities of the management objectives occurring when this 362 

solution was applied.  Again both flood risk and water quality are positively affected with patterns and 363 

magnitudes similar to scenario A. 364 

The conditions of Scenario C are similar to Scenario B, but with steeper slopes. Again Natural vegetation 365 

was the optimal buffer strip solution, but with less overall utility (score: 59.25 – Table 5) than in scenario B 366 

(score: 59.91 – Table 5). Regardless of the steeper slope, in this scenario the optimal solution led to a 367 

greater improvement in flood control (Table 6) than in the previous scenario. This is because under the 368 

status quo, flood risk is likely to be higher as steeper slopes increase surface flow rates. As a result, riparian 369 

buffer strips have a greater impact on flood control and are hence more effective in areas with steeper 370 

slopes. 371 

For each of the scenario results in Table 5 we also present the percentage change in utility relative to the 372 

status quo situation. This reveals that the application of buffer strips in scenario C has the largest relative 373 

impact on utility, although this scenario is associated with the lowest absolute levels of utility. Given the 374 

underlying assumptions of the BBN parameterisation it is not surprising that ‘natural vegetation’ is the 375 

optimal buffer strip solution in each scenario. However, our model does not consider the costs or 376 

opportunity costs of the buffer strip options; these would be needed to fully evaluate whether the gains in 377 

utility or changes in the probabilities of water quality and flood risk are sufficient to justify particular buffer 378 
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strip options. The changes in utility in Table 5 as represented in percentage terms suggest that each of the 379 

buffer strip options performs relatively better in scenarios B and C compared to A. This is particularly the 380 

case with grassland buffer strips, but less so with natural vegetation or mixed buffer strips. From a policy 381 

perspective this can affect recommendations for both regional targeting of buffer strips and the types being 382 

promoted.  383 

In Table 6 we can observe that the changes in the probabilities of preferred outcomes are higher for flood 384 

risk than for water quality. The increase in the probabilities of low flood risk and reduction in probability of 385 

high flood risk are much larger than changes in probabilities for either high (blue) or poor (red) water 386 

quality status.  387 

 388 

6 Discussion 389 

Our analysis explored a BBN using a framework that is suited to the integration of ecological and economic 390 

knowledge. The model was based on a review of the biophysical relationships between the ecosystem 391 

processes that lead to final ecosystem services and ultimately benefits that can be valued. Essentially we 392 

have unpacked and operationalized the ecosystem services cascade developed by Haines-Young and 393 

Potschin (2009). An important step in this operationalization was the introduction of specific management 394 

actions to which we can attribute utility values. The utility values used were determined for the specific 395 

purpose of this study, and serve to demonstrate the way final services and underlying processes can be 396 

related to an outcome that may be defined either in economic terms or that could be informed from non-397 

monetary approaches such as identifying weights or scores using multicriteria analysis. Specifically, the BBN 398 

demonstrates that the utility associated with buffer strips is dependent on the supporting ecosystem 399 

processes and functions (e.g. soil, vegetation, organisms) and wider geographical and climactic contexts. It 400 

is in principle possible within the BBN to select specific levels of underpinning natural capital or ecosystem 401 

processes (e.g. infiltration, overland flow) and to evaluate their impact on the utility of buffer strip options 402 

in the decision node; in effect this potentially allows us to value those processes and states. There are a 403 

number of interesting consequences of the BBN approach that warrant further investigation. 404 
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As noted by Landuyt et al. (2013), the parameterisation of utility nodes can be informed by monetary 405 

valuation with stated preference methods being described as producing values that are compatible with 406 

BBNs. At first glance, choice experiments may appear to be most suitable for investigations of changes in 407 

multiple ecosystem service delivery because they allow valuation of multiple attributes. However, the 408 

attributes should not be causally related, i.e. benefits associated with a change in one ecosystem service 409 

(attribute) must be assumed to vary independently from other benefits. In cases where benefits are 410 

generated jointly as a result of a management intervention, contingent valuation will be more appropriate.   411 

The BBN model is also open to non-monetary valuation, for example through participatory ranking or 412 

weighting exercises. This approach would be of use where cultural and shared social values are of interest 413 

(UK NEA, 2011). 414 

The nature of the outcomes produced by the BBN highlight an important consideration for valuation. The 415 

water quality and flood risk outcomes of the ecosystem processes represented in the model are 416 

probabilities for different states. This has the advantage of reflecting the inherent uncertainty of such 417 

outcomes in natural systems; however this may be problematic from an economic valuation perspective. 418 

The probabilistic nature of the outcomes raises questions with respect to the formation of values where 419 

those values themselves might also be uncertain (see for example Hanley et al., 2009). For example, if we 420 

were to develop a stated preference study of water quality states, would the willingness to pay for ‘high’ 421 

water quality be reduced where the probability of that outcome is low? And, could that value be lower than 422 

that stated for ‘good’ water quality where that outcome has a higher probability? The combined effects of 423 

outcome and value uncertainty might mean we are unable to differentiate between the values of 424 

outcomes.   425 

The utility values, as currently expressed, refer to particular combinations of outcomes. But the model 426 

omits a necessary step in valuation which is to determine the value associated with moving between those 427 

outcomes, i.e. the management options are not evaluated with reference to a counterfactual. For example, 428 

to determine economic value we might elicit willingness to pay to move from a situation of no buffer strips 429 

to one with natural vegetation buffer strips; under scenario A we would be seeking the value of moving 430 
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from a satisfaction value of 55.4 to one of 59.4. As it stands the BBN does not tell us how the status quo 431 

utility value of 55.4 was determined. Essentially, the BBN approach allows us to ascribe values to states of 432 

the world without consideration of how those states relate to alternative outcomes under different 433 

management or policy interventions (e.g. grass buffer strips versus no buffer strips). However, determining 434 

weights or ‘values’ for outcomes without reference to a counterfactual may be acceptable in a decision 435 

support context; such weights could be determined through participatory research, multicriteria analysis or 436 

expert judgement. If the aim of the model is to quantify monetary or non-monetary values this indicates a 437 

limitation of a fully integrated BBN. It would be necessary to make assumptions about how outcomes shift 438 

across categories. For example, would flood risk status be more likely to move between adjacent 439 

categories, medium to low rather than from high to low? Valuation counterfactuals would need to reflect 440 

the movement of outcomes between categories.  441 

An implication of the probabilistic outcomes is the need to explore thresholds or other non-linearities that 442 

influence preferences and values. For instance, in Scenario C, the optimal management action (grassland 443 

with natural vegetation buffer strips) sees an increase in probability of a low flood risk state from 21.3% to 444 

27.7% with a concurrent decline in a high flood risk state from 32.5% to 24.2% (see Table 5). The question is 445 

whether there is some threshold level of reduction in high flood risk that must be crossed to allow the 446 

benefits of the increased probability of low flood risk to be realised, i.e. is there an acceptable maximum 447 

probability of flood risk being high? For example, the value of an increase in the probability of achieving a 448 

low flood risk state may be contingent on the probability of being in a high flood risk state falling below 449 

some specific level (e.g. 20%). Conversely, there may be thresholds above which the most desirable 450 

outcomes are sufficient to compensate for continuing risks of undesirable outcomes, e.g. low flood risk at 451 

the expense of ‘medium’ water quality levels. Valuation methods generally assume that ecosystem services 452 

are provided at a steady rate (i.e. linearly). However, there are many instances where interrelationships 453 

among the ecosystem services are remarkably non-linear (Farber et al., 2002; Koch et al., 2009; van 454 

Jaarsveld et al., 2005). Further, across multiple ecosystem services, there may be complex and interrelated 455 

non-linearities in preferences. Such non-linearities might reflect lexicographic preferences where there is 456 

no acceptable trade-off between probabilities of desirable and undesirable outcomes.  457 
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The model as formulated shows little apparent variation in utility values (Table 5) and probabilities of 458 

outcomes (Table 6), this reflects our choice of parameterisation for generic scenarios (i.e. two regions 459 

across multiple soil types, slopes and land uses). A more context specific parameterisation of values in the 460 

conditional probability tables may be necessary for studies investigating particular places. This may only be 461 

accommodated through either splitting the model into separate regions or land uses or by considerably 462 

increasing its complexity. The question then becomes one of whether we want to understand the processes 463 

involved or accurately model the outcomes.  464 

Understanding the potential for extending the original BBN to more accurately represent both the 465 

biophysical and socio-economic elements of the system and place raises an important further issue. The 466 

attraction of the BBN approach is its relative simplicity and flexible data requirements. As models increase 467 

in complexity and realism the development task and data requirements become more exacting. Hence, 468 

there is ultimately a further trade-off between precision and usefulness which will depend on the needs of 469 

decision makers. But in situations where it is necessary to develop a joint understanding of ecosystem 470 

functioning, perhaps across multiple stakeholders, the relative simplicity of the BBN approach may be 471 

sufficient to make optimal decisions. 472 

Our BBN model does not explicitly consider the socio-economic determinants of the values in the utility 473 

node. It is well recognised in the valuation literature (e.g. Garrod et al., 2012) that there is heterogeneity of 474 

preferences and that it is determined partly by a number of contextual factors. We propose a possible 475 

extension to the BBN (Figure 4) that incorporates socio-economic factors that might influence ‘satisfaction’ 476 

values for both water quality (income, type of recreational use, availability of substitutes, site amenities) 477 

and flood control (income, proximity). We have not evaluated this model as the additional socio-economic 478 

factors would need to be parameterised through further research (e.g. public workshops or surveys) that 479 

were beyond out project resources. In this extension the utility associated with water quality and flood 480 

control is separated, i.e. both provide benefits independently of one another. Although there are 481 

compelling reasons for joint consideration of utility, the benefiting populations may be different. The utility 482 
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values in the decision node (‘buffer strips’) would still reflect the ‘joint’ value of the outcomes but without 483 

any implicit information on trade-offs between flood risk and water quality. 484 

This extension is not intended to be comprehensive, but would allow us to explore the sensitivity of the 485 

BBN to both bio-physical and socio-economic assumptions. Further extensions could include additional 486 

terrestrial ecosystem services (landscape, biodiversity, recreation etc.) and the socio-economic factors 487 

influencing land manager decision making (Yu and Belcher 2011; Curtis and Robertson 2003). The latter 488 

would be important particularly if considering multiple measures or the relative value of public and private 489 

benefits (e.g. farm incomes) in policy making. This supply-side element of management remains a gap in 490 

ecosystem service evaluation and could add considerably greater complexity to an integrated model as 491 

willingness to adopt buffer strips has been shown to be dependent on a mix of economic, attitudinal and 492 

farm structural factors, in particular where there is interference with production (Buckley et al. 2012). 493 

FIGURE 4 HERE 494 

7 Conclusions  495 

This research has proposed a novel way of operationalizing an ecosystem services-based approach 496 

following the ecosystem services cascade proposed by Haines-Young et al. (2009) for the identification and 497 

assessment of benefits of environmental interventions (in this case, riparian buffer strips). For that we have 498 

tested the potential of BBN as a tool for integrating knowledge across disciplines and dealing with 499 

information gaps and uncertainty. Our research represents a step further in the development and 500 

unpacking of (so far) theoretical frameworks for the conceptualization of ecosystem services delivery.  501 

Interesting issues arise from the use of a BBN approach due to its probabilistic nature, as this both captures 502 

the uncertainty inherent in natural systems and raises questions over their incorporation in valuation and 503 

wider decision making where uncertainties over preferences are pervasive. The way these probabilities 504 

interact with non-linearities, thresholds, uncertainty in valuation and the statistical properties of valuation 505 

estimates (e.g. distributions and confidence intervals) will be key research areas if these approaches are to 506 

be used in interdisciplinary modelling and integrated decision support. Users of such models will also need 507 
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to understand the trade-off between realism, precision and the benefits of developing joint understanding 508 

of the decision context. 509 

Acknowledgements 510 

This research has been developed in the context of the Valuing Nature Network (VNN) project ‘Valuing the 511 

impacts of ecosystem service interactions for policy effectiveness’ funded by the Natural Environment 512 

Research Council (UK). We thank the wider group of academics and stakeholders who were involved in the 513 

first workshop for this VNN and contributed to the refinement of our research goals. Specific thanks are 514 

due to colleagues at The James Hutton Institute (Matt Aitkenhead, Helaina Black, Wendy Kenyon and 515 

Rupert Hough) and the Centre for Ecology and Hydrology (Simon Smart and Francois Edwards) for their 516 

inputs into the research. This research was also supported by the Scottish Government Rural Affairs and the 517 

Environment Portfolio Strategic Research Programme 2011-2016, Theme 1 (Environmental Change: 518 

Ecosystem Services and Biodiversity).  519 

 520 

References 521 

Ames, D.P., Nielson, B.T., Stevens, D.K. and Lall, U. (2005) Using Bayesian networks to model watershed 522 
management decisions: an East Canyon Creek case study, Journal of Hydroinformatics 7 (04): 267–282. 523 

Baker, B., Metcalfe, P., Butler, S., Gueron, Y., Sheldon, R. and East, J. (2007) Report on the Benefits of WFD 524 
Programmes of Measure in England and Wales. Defra, UK. 525 

Barkmann, J., Glenk, K., Keil, A., Leemhuis, C., Dietrich, N., Gerold, G. and  Marggraf, R. (2008) Confronting 526 
unfamiliarity with ecosystem functions: The case for an ecosystem service approach to environmental 527 
valuation with stated preference methods, Ecological Economics 65: 48-62. 528 

Barton, D.N., Saloranta, T., Moe, S.J., Eggestad, H.O. and Kuikka , S. (2008) Bayesian belief networks as a 529 
meta-modelling tool in integrated river basin management - Pros and cons in evaluating nutrient 530 
abatement decisions under uncertainty in a Norwegian river basin, Ecological Economics 66: 91-104. 531 

Bateman, I., Mace, G., Fezzi, C., Atkinson, G., andand Turner, K. (2011) Economic Analysis for Ecosystem 532 
Service Assessments, Environmental and Resource Economics 48(2): 177-218. 533 

Borsuk, M.E., Stow, C.A. and Reckhow, K.H. (2004) A Bayesian network of eutrophication models for 534 
synthesis, prediction, and uncertainty analysis, Ecological Modelling 173: 219–239. 535 

Boyd, J. and Banzhaf, S. (2007) What are ecosystem services? The need for standardized environmental 536 
accounting units, Ecological Economics 63 (2–3): 616–626. 537 



22 
 

Brauman, K.A., Daily, G.C., Duarte, T. andand Mooney, H.A. (2007) The Nature and Value of Ecosystem 538 
Services: An Overview Highlighting Hydrologic Services, Annual Review of Environment and Resources 32(1): 539 
67-98.  540 

Bromley, J., Jackson, N.A., Clymer, O.J., Giacomello ,A.M. and Jensen, F.V. (2005) The use of Hugin to 541 
develop Bayesian networks as an aid to integrated water resource planning, Environmental Modelling and 542 
Software 20: 231-242. 543 

Brouwer, R., Martin-Ortega, J. and Berbel, J. (2010) Spatial preference heterogeneity: a choice experiment, 544 
Land Economics 863: 552–568. 545 

Buckley, C., Hynes, S. and Mechan, S. (2012) Supply of an ecosystem service – Farmers’ willingness to adopt 546 
riparian buffer zones in agricultural catchments, Environmental Science and Policy 24: 101-109. 547 

Cain, J. (2001). Planning improvements in natural resources management: Guidelines for using Bayesian 548 
networks to support the planning and management of development programmes in the water sector and 549 
beyond, Centre for Ecology and Hydrology, Wallingford, UK. 550 

Carpenter, S.R., Mooney, H.A., Agard, J., Capistrano, D., Defries, R.S., Diaz, S. Dietz, T., Duraiappah, A.K., 551 
Oteng-Yeboah, A., Pereira, H.M., Perrings, C., Reid, W.V., Sarukhan, J., Scholes R.J. and Whyte, A. (2009) 552 
Science for managing ecosystem services: beyond the millennium ecosystem assessment, Proceedings of 553 
The National Academy of Sciences 106(5): 1305–1312. 554 

Carson, R.T., Mitchell, R.C. (1993) The Value of Clean Water: The Public's Willingness to Pay for Boatable, 555 
Fishable, and Swimmable Quality Water, Water Resources Research 29: 2445-54. 556 

Castelletti, A. and Soncini-Sessa, R. (2007) Bayesian networks and participatory modelling in water resource 557 
management, Environmental Modelling and Software 22 (8): 1075–1088. 558 

Clark, J.S., Carpenter, S.R., Barber, M., Collins, S., Dobson, A., Foley, J.A., Lodge, D.M., Pascual, M. and 559 
Pielke, J.R. (2001) Ecological forecasts: an emerging imperative, Science 293: 657–660. 560 

Curtis, A. and Robertson, A. (2003) Understanding landholder management of river frontages: the Goulburn 561 
Broken, Ecological Management and Restoration 4: 45-54. 562 

Defra (2007) An introductory guide to valuing ecosystem services, Defra London, UK..  563 

Del-Saz-Salazar, S., Herna´ndez-Sancho, F., Sala-Garrido, R. (2009) The social benefits of restoring water 564 
quality in the context of the WFD: a comparison of willingness to pay and willingness to accept, Science of 565 
the Total Environment 407(16): 4574–4583. 566 

Diaz, R.J. and Rosenberg, R. (2008) Spreading dead zones and consequences for marine ecosystems, Science 567 
321: 926–929. 568 

Doody, D.G., Archbold, M., Foy, R.H. and Flynn, R. (2012) Approaches to the implementation of the Water 569 
Framework Directive: targeting mitigation measures at critical source areas of diffuse phosphorus in Irish 570 
catchments, Journal of Environmental Management 93: 225-234. 571 

Dwire, K.A. and Lowrance, R.R. (2006) Riparian ecosystems and buffers-multiscale structure, function, and 572 
management: introduction, Journal of the American Water Resources Association 42: 1-4. 573 



23 
 

Farber, S., Costanza, R. and Wilson, M. (2002) Economic and ecological concepts for valuing ecosystem 574 
services, Ecological Economics 41: 375–392. 575 

Fisher, B. and Turner, R.K. (2008) Ecosystem services: classification for valuation, Biological Conservation  576 
141(5): 1167–1169. 577 

Fisher, B., Turner, R.K. and Morling, P. (2009) Defining and classifying ecosystem services for decision 578 
making, Ecological Economics 68 (3): 643–653. 579 

Fu, B., Su, C, Wei, Y., Willett, I.R., Lu, Y. and Liu, G. (2011) Double counting in ecosystem services valuation: 580 
causes and countermeasures, Ecological Research 26(1): 1-14. 581 

Garrod, G., Ruto, E., Willis, K. and Powe, N. (2012) Heterogeneity of preferences for the benefits of 582 
Environmental Stewardship: A latent-class approach, Ecological Economics 76: 104-111.  583 

Glenk, K., Lago, M. and Moran, D. (2011) Public preferences for water quality improvements: implications 584 
for the implementation of the EC WFD in Scotland, Water Policy 13(5): 645–662. 585 

Gordon, L.J., Peterson, G.D. and Bennett, E.M. (2008). Agricultural modifications of hydrological flows 586 
create ecological surprises, Trends in Ecology and Evolution 23: 211–219. 587 

Gu, Y., McNicol, J., Peiris, D., Crawford, J., Marshall, B. and Jefferies, R. (1996) A belief network-based 588 
system for predicting future crop production, AI Applications 10(1): 13-24. 589 

Haas, T.C., Mowrer, H.T. and Shepperd, W.D. (1994). Modeling aspen stand growth with a temporal Bayes 590 
network, AI Applications 8(1): 15–28. 591 

Haines-Young, R., (2011) Exploring ecosystem services issues across diverse knowledge domain using 592 
Bayesian Belief Networks, Progress in Physical Geography 35(5), 681-699 593 

Haines-Young, R.H. and Potschin, M.B. (2009) Methodologies for defining and assessing ecosystem services, 594 
CEM (Centre of Environmental Management) Final Report, JNCC.  595 

Hamilton G.S., Fielding, F., Chiffings, A.W., Hart, B.T., Johnstone, R.W. and Mangerson, K.L. (2007) 596 
Investigating the use of a Bayesian Network to model the risk of Lyngbya Majuscula bloom initiation in 597 
Deception Bay, Queensland, Human and Ecological Risk Assessment 13(6): 1271-1287. 598 

Hanley, N., Kriström, B. and Shogren, J.F. (2009) Coherent Arbitrariness: On Value Uncertainty for 599 
Environmental Goods, Land Economics 85(1): 41–50. 600 

Haygarth, P.M., ApSimon, H., Betson, M., Harris, D., Hodgkinson, R. and Withers, P.J.A. (2009) Mitigating 601 
diffuse phosphorus transfer from agriculture according to cost and efficiency, Journal of Environmental 602 
Quality 38: 2012-2022. 603 

Heal, G., Daily, G.C., Ehrlich, P.R., Salzman, J.C., Boggs, J., Hellman, J., Hughes, C., Kremen, C. and Ricketts, T. 604 
(2001) Protecting natural capital through ecosystem service districts, Stanford Environmental Law Journal 605 
20: 333–364. 606 

Hein, L., van Koppen, K., de Groot, R.S. and van Ierland, E.C. (2006) Spatial scales, stakeholders and the 607 
valuation of ecosystem services, Ecological Economics 57(2): 209-228. 608 



24 
 

Henriksen, H.J., Rasmussen, P., Brandt, G., von Bülowb, D. and Jensen, F.V., (2004) Engaging stakeholders in 609 
construction and validation of Bayesian belief networks for groundwater protection, Mimeo, Geological 610 
Survey of Denmark and Greenland (GEUS). 611 

Hime, S., Bateman, I.J., Posen, P. and Hutchins, M. (2009) A transferable water quality ladder for conveying 612 
use and ecological information within public surveys, CSERGE Working Paper EDM 09-01, Centre for Social 613 
and Economic Research on the Global Environment, University of East Anglia. 614 

Hooper B., editor (2005) Integrated River Basin Governance, London:IWA Publishing. 615 

van Jaarsveld, A.S., Biggs, R., Scholes, R.J., Bohensky, E., Reyers, B. Lynam, T., Musvoto, C. and Fabricius, C. 616 
(2005) Measuring conditions and trends in ecosystem services at multiple scales: the Southern African 617 
Millennium Ecosystem Assessment (SAfMA) experience, Philosophical Transactions of the Royal Society B-618 
Biological Sciences 360: 425–441. 619 

Kjærulff, U.B. and Madsen, A.L. (2005) Probabilistic Networks — An Introduction to Bayesian Networks and 620 
Influence Diagrams, Department of Computer Science, Aalborg University and HUGIN Expert A/S. 621 

Koch, E.W., Barbier, E.B., Silliman, B.R., Reed, D.J., Perillo, G.M.E., Hacker, S.D., Granek, E.F., Primavera, J.H., 622 
Muthiga, N., Polasky, S., Halpern, B.S., Kennedy, C.J., Kappel, C.V. and Wolanski, E. (2009) Non-linearity in 623 
ecosystem services: temporal and spatial variability in coastal protection, Frontiers in Ecology and the 624 
Environment 7(1): 29–37. 625 

Kragt, M.E. (2009) A beginners guide to Bayesian network modelling for integrated catchment 626 
management, Landscape Logic Technical Report No. 9, Australian Government – Department of the 627 
Environment, Water, heritage and Arts. 628 

Kremen, C. and Ostfeld, R.S. (2005) A call to ecologists: measuring, analyzing, and managing ecosystem 629 
services, Frontiers in Ecology and the Environment 3: 540–548. 630 

Kuikka, S. and Varis, O. (1997) Uncertainties of climatic change impacts in Finnish watersheds: a Bayesian 631 
network analysis of expert knowledge, Boreal Environment Research 2: 109–128. 632 

Kuikka, S., Hilden, M., Gislason, H., Hansson, S., Sparholt, H. and Varis, O. (1999) Modeling environmentally 633 
driven uncertainties in Baltic cod (Gadus morhua) management by Bayesian influence diagrams, Canadian 634 
Journal of Fisheries and Aquatic Sciences 56: 629–641. 635 

Landuyt, D., Broekx, S., D’hondt, R., Engelen, G., Aertsens, J. and Goethals, P.L.M. (2013) A review of 636 
Bayesian belief networks in ecosystem services modelling, Environmental Modelling and Software, 46: 1-11. 637 

Lee, D.C. and Rieman, B.E. (1997) Population viability assessment of salmonids by using probabilistic 638 
networks, North American Journal of Fisheries Management 17: 1144–1157. 639 

Marcot, B.G., Steventon, J.D., Sutherland, G.D. and McCann, R.K. (2006) Guidelines for developing and 640 
updating Bayesian belief networks applied to ecological modeling and conservation, Canadian Journal of 641 
Forest Research 36 (12): 3063-3074. 642 

Martin-Ortega, J., Jorda-Capdevilla, D., Glenk, K. and Holstead, K. (2015) What defines ecosystem services-643 
based approaches? In: Martin-Ortega, J., Ferrier, R., Gordon, I. and Kahn, S. Water Ecosystem Services: A 644 
Global Perspective. Cambridge University Press, Cambridge. 645 



25 
 

Maskell, L.C., Crowe, A., Dunbar, M.J., Emmett, B., Henrys, P., Keith, A.M., Norton, L.R., Scholefield, P., 646 
Clark, D.B., Simpson, I.C. and Smart, S.M. (2013) Exploring the ecological constraints to multiple ecosystem 647 
service delivery and biodiversity, Journal of Applied Ecology 50: 561-571. 648 

Metcalfe, P.J., Baker, W., Andrews, K., Atkinson, G., Bateman, I.J., Butler, S., Carson, R.T., East, J., Gueron, 649 
Y., Sheldon, R. and Train, K. (2012) An assessment of the nonmarket benefits of the water framework 650 
directive for households in England and Wales, Water Resources Research 48(3): W03526 651 

Millennium Ecosystem Assessment (MA) (2005) Ecosystems and human well-being: a framework for 652 
assessment, Island Press, Washington DC. 653 

Müller, F., de Groot, R. and Willemen, L. (2010). Ecosystem Services at the Landscape Scale: The Need for 654 
Integrative Approches, Landscape Online 23: 1-11. 655 

National Research Council, U.S. (NRC) (2002) Riparian areas: functions and strategies for management, 656 
Washington, DC National Academies Press. 657 

National Research Council, U.S. (NRC) (2002) Riparian area: functions and strategies for management, 658 
Washington, DC National Academies Press. 659 

National Research Council, U.S. (NRC) (2005) Valuing ecosystem services: toward better environmental 660 
decision making, Washington, DC National Academies Press. 661 

Norsys Software Corp. (2003) Netica - Application for Belief Networks and Influence Diagrams, Available at: 662 
http://www.norsys.com/. 663 

Norton, L., Elliott, J.A., Maberly, S.C. andMay, L. (2012a) Using models to bridge the gap between land use 664 
and algal blooms: An example from the Loweswater catchment, UK, Environmental Modelling and Software 665 
36: 64-75. 666 

Norton, L.R., Inwood, H., Crowe, A. and Baker, A. (2012b) Trialling a method to quantify the 'cultural 667 
services' of the English landscape using Countryside Survey data, Land Use Policy 29: 449-455. 668 

Ojea, E., Martin-Ortega, J. and Chiabai, A. (2012) Defining and classifying ecosystem services for economic 669 
valuation: the case of forest water services, Environmental Science and Policy 19-20: 1-15. 670 

O’Riordan, T. and Stoll-Kleemann, S. (2002) Biodiversity, Sustainability and Human Communities: Protecting 671 
beyond the Protected, Cambridge University Press, Cambridge. 672 

Pagiola, S., von Ritter, K. and Bishop, J.T. (2004) Assessing the Economic Value of Ecosystem Conservation, 673 
TNC-IUCN-WB, Washington DC. 674 

Pereira, H.M., Reyers, B., Watanabe, M., Bohensky, E., Foale, S., Palm, C. Espaldon, M.V., Armenteras, D., 675 
Tapia, M., Rinco´n, A., Lee, M.J., Patwardhan, A. and Gomes, I. (2005) Condition and trends of ecosystem 676 
services and biodiversity, In: D. Capistrano, C. Samper, M. J. Lee, and C. Raudsepp-Hearne (Eds) Ecosystems 677 
and human well-being: multi scale assessments, Vol. 4. Findings of the Sub-global Assessments Working 678 
Group of the Millennium Ecosystem Assessment, Island Press, Washington, D.C., USA. 679 

Pollino, C.A., Woodberry, O., Nicholson ,A., Korb, K. and Hart, B.T. (2007) Parameterisation and evaluation 680 
of a Bayesian network for use in an ecological risk assessment, Environmental Modelling andand Software 681 
22: 1140-1152. 682 



26 
 

Ramajo-Hernández, J. and del Saz-Salazar, S. (2012) Estimating the non-market benefits of water quality 683 
improvement for a case study in Spain: A contingent valuation approach, Environmental Science and Policy 684 
22: 47-59. 685 

Ramilan, T., Scrimgoeur, F. and Marsh, D. (2010) Modelling riparian buffers for water quality enhancement 686 
in the Karapiro catchment, in: Australian Agricultural and Resource Economics Society 2010 Conference 687 
(54th), 10-12 February 2010, Adelaide, Australia. 688 

Rieman, B.E., Peterson, J.T., Clayton, J., Howell, P., Thurow, R., Thompson, W. and Lee, D.C. (2001) 689 
Evaluation of potential effects of federal land management alternatives on trends of salmonids and their 690 
habitats in the interior Columbia River basin, Forest Ecology and Management 153: 1–20. 691 

Schaafsma, M., Brouwer, R., Rose, J. (2012) Directional heterogeneity in WTP models for environmental 692 
valuation, Ecological Economics 79: 21-31. 693 

Siameti, I. (2012) Exploring the interaction of ecosystem processes and ecosystem services for effective 694 
decision-making: A case study of sustainable flood management, unpublished MSc thesis, University of 695 
Edinburgh. 696 

Soman, S., Beyler, S., Kraft, S., Thomas, D. and Winstanley, D. (2007) Ecosystem Services from Riparian 697 
Areas: A Brief Summary of the Literature, Prepared for the Scientific Advisory Committee of the Illinois River 698 
Coordinator Council. 699 

Spence, P.L. and Jordan, S.J. (2013) Effects of nitrogen inputs on freshwater wetland ecosystem services – A 700 
Bayesian network analysis, Journal of Environmental Management 124: 91-99.  701 

Stutter, M.I., Chardon, W.J. and Kronvang, B. (2012) Riparian Buffer Strips as a Multifunctional 702 
Management Tool in Agricultural landscapes: Introduction, Journal of Environmental Quality 41: 297-303. 703 

Tabachi, E., Lambs, L., Guilloy, H., Planty-Tabachi, A., Muller, E.  and Decamps, H. (2000) Impacts of riparian 704 
vegetation on hydrological processes, Hydrological Processes 14: 2959-2976. 705 

Tallis, H. and Kareiva, P. (2005) Ecosystem services, Current Biology 15 (18): 746–748. 706 

Turner, R.K. and Daily, G.C. (2008) The ecosystem services framework and natural capital conservation, 707 
Environmental andand Resource Economics 39(1): 25-35. 708 

Turner, R.K., Paavola, J., Cooper, P., Farber, S., Jessamy, V. and Georgiou, S. (2003) Valuing nature: lessons 709 
learned and future research directions, Ecological Economics 46: 493–510.  710 

UK NEA (2011) UK National Ecosystem Assessment: understanding nature's value to society. Synthesis of key 711 
findings, Information Press 2011. Available at: http://uknea.unep-712 
wcmc.org/Resources/tabid/82/Default.aspx 713 

Yu, J. and Belcher, K. (2011) An economic analysis of landowners’ willingness to adopt wetland and riparian 714 
conservation management, Canadian Journal of Agricultural Economics 59: 207-222. 715 

 716 



27 
 

Table 1 Description of BBN nodes and states 

Type of 
node 

Variable Definition States Dependencies Assumptions 

Decision Buffer strip Type of buffer strip installed 
in riparian areas 

• Grassland  
• Natural vegetation  
• Mixed  
• No buffer strip 

 • Grassland buffer strips are uncultivated where land cover is arable and 
ungrazed or uncut where land cover is grassland 

• Natural vegetation would involve planting of trees or shrubs (offering 
shading of water) 

Parent Region  • East England 
• West England 

 • Generic regions which are interacted with season, land cover, soil type 
and slope 

Land cover  • Grassland  
• Arable  
• Natural vegetation 

 • Predominant type of land cover 

Seasons  • Autumn  
• Winter  
• Spring  
• Summer  

  

Soil type  • Sandy (light) 
• Loamy (moderate) 
• Clay (heavy) 

 • Generic soil type reflecting drainage characteristics 

Slope  • Low  
• Medium  
• High  

  

Child Riparian 
management 

The vegetation type and level 
of coverage determined by 
the management 
intervention. 

• Grassland  
• Natural vegetation  
• No riparian 

management 

• Buffer strips • This node allows buffer strips comprised of a mixture of grassland and 
natural vegetation  

Rainfall  • Low  
• Medium  
• High  

• Region 
• Seasons 

• West England is assumed to have higher rainfall rates than East England. 

Vegetation 
coverage  

The proportion of ground 
surface covered by 
vegetation. 

• Zero  
• Low  
• Medium  
• High  
 

• Land cover  
• Seasons 
 

• Grassland: grows all over the year with the highest density during 
spring/summer (i.e. is not much affected by seasonal changes) 

• Arable land: has the highest density during summer, does not grow 
during autumn 

• Natural vegetation: has the highest density during spring/summer, 
moderate density during autumn, the lowest density during winter 

Infiltration 
capacity 
 

The ability of soil and plants 
to absorb water. 
 

• Low  
• Medium  
• High  
 

• Soil type  
• Vegetation 

coverage 
 

• The greater the vegetation coverage, the higher the infiltration capacity 
will be. 

• Sand has high water permeability, while clay is more resistant to water 
infiltration. 

Overland flow  Water that flows across the • Low  • Rainfall  • The higher the rainfall rate, the lower the infiltration capacity and the 
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 land after rainfall. It does not 
include the water volume 
intercepted by vegetation or 
infiltrated by soil and plants. 

• Medium  
• High  
 

• Infiltration 
capacity  

• Slope  
 

steeper the slope, then the higher the overland flow will be and vice 
versa. 

• In order to minimise the number of nodes, evapotranspiration and 
volume of groundwater were regarded to contribute less to overland 
flow volume and were not included in the system. 

Soil erosion 
rate  
 

The rate of soil erosion. 
 

• Low  
• Medium  
• High  
 

• Soil type  
•  Vegetation 

coverage  
• Overland flow 

• Clay is less erodible than sand. 
• Overland flow is assumed to have a greater impact (i.e. low overland 

flow will result in low erosion rate regardless of the soil type and 
vegetation coverage). 

Sedimentatio
n load 
 

The amount of sediments 
that reach water bodies (i.e. 
eroded soil particles that are 
not trapped by riparian 
vegetation).  

• Low  
• Medium  
• High  
 

• Soil erosion rate  
• Riparian 

management 
 

• Grass covered surfaces facilitate greater rates of sediment deposition 
due to their high root density. 

• Sediment load is likely to be higher when no riparian management is 
applied. 

Water 
nutrient 
concentration  
 

The amount of nutrient 
content in stream water. 
Increased levels of nutrients 
in water bodies can cause 
water quality problems such 
as excessive plant growth 
rates (e.g. algae blooms) and 
eutrophication (Hime et al., 
2009). 

• Low  
• High  
 

• Land use 
• Sedimentation 

load 
 

• Arable land is assumed to result always in high water nutrient 
concentration due to use of fertilizers. 

• The greater the sedimentation load, then the higher the water nutrient 
concentration will be (because sediments transport substances such as 
plant and animal wastes, nutrients, pesticides, metals etc.). 

• Nutrient plant uptake is assumed to be fixed regardless of the land-use 
type. 

• Soil type effects are captured indirectly through erosion and 
sedimentation load. 

Aquatic 
vegetation 
 

The volume and density of 
vegetation growing into the 
water bodies. Aquatic 
vegetation is considered to 
have an effect on the velocity 
of river flow. 

• Algae  
• Vascular plants 
 

• Water nutrient 
concentration 

• Seasons 
 

• Under conditions of high nutrient concentration and high temperature 
(spring/summer), algae blooms will occur in water bodies (Borsuk et al., 
2004).  

• The level of nutrients has been assumed to have a greater impact than 
temperature (i.e. despite high temperatures, algae will not bloom unless 
the water nutrient level is high). 

Temperature  
 

Water temperature • Low  
• Medium  
• High  

• Riparian 
management  

• Season  

• Natural vegetation has a decreasing effect on temperature via shading. 
 

Biological 
oxygen 
demand 
(BOD) 
 
 

The amount of dissolved 
oxygen required by 
microorganisms (e.g. aerobic 
bacteria) in the oxidation of 
organic matter. In the scope 
of this study, BOD is used as 
an indicator of water quality. 

• Lower than 4 mgl-1  
• 4-6 mgl-1 
• 6-9 mgl-1  
• Higher than 9 mgl-1 
 

• Aquatic 
vegetation  

• Water nutrient 
concentration 

• Temperature 
 

• High temperatures and high level of water nutrient concentration result 
in algae blooms. This implies increased organic matter and thus higher 
level of BOD (i.e. the process of decomposition leads to oxygen 
depletion). 

• Characteristics such as the surrounding atmospheric pressure and the 
salinity of water regarded to contribute less to BOD and were not 
included in the model. 

Water quality  
 

Suitability of water for 
fishing, swimming, boating, 
or unsuitability for any use 

• Blue  
• Green  
• Yellow  

• BOD  
 

• Each water quality category was converted into a BOD level, as 
following: 

• Blue = 0 - 4 mgl-1, 
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(Hime et al., 2009). • Red  
 

• Green = 4 - 6 mgl-1,  
• Yellow = 6-9 mgl-1,  
• Red = higher than 9 mgl-1 

Runoff rate 
 

The rate of surface water that 
reaches water bodies (when 
soil is saturated and 
infiltration capacity is lower 
than the rainfall rate). 

• Low  
• Medium  
• High  
 

• Riparian 
management  

• Overland flow 
 

• Natural vegetation is assumed to be more effective than grassland in 
reducing runoff.  

• Overland flow is assumed to have a greater impact (i.e. low overland 
flow will result in low runoff rate regardless of the applied riparian 
management). 

• It is assumed that the runoff rate is always likely to be higher when 
riparian management is not applied. 

River flow Volume of water flow in any 
given time period 

• Low  
• Medium  
• High  
 

• Runoff rate 
• Rainfall  
• Aquatic 

vegetation 
 

• The lower the runoff rate, rainfall rate and aquatic vegetation coverage, 
the lower the river flow will be. 

• Compared to algae, vascular plants are assumed to decrease more the 
velocity of river flow. Particular aquatic vegetation characteristics (e.g. 
height, rooting depth etc.) were not taken into consideration. 

Flood risk 
 

Likelihood of a flood event • Low  
• Medium  
• High  

• River flow  
 

• Flood risk has been modelled as a deterministic variable. The higher the 
river flow, the higher the flood risk will be and vice versa. 

Utility Satisfaction  
 

The utility that stakeholders 
will gain from the 
management intervention. 

• Continuous variable 
(scale 0-100) 

 

• Flood risk, 
• Water quality 
 

• It is assumed that the system objectives contribute equally to the 
output of the model (i.e. people will be totally satisfied only when both 
of the model objectives have been fully optimised).  
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Table 2 Conditional Probability Table (CPT) for the ‘overland flow’ node. 

State of parent nodes Probability of overland flow outcome 
Infiltration 

capacity 
Rainfall Slope Low Medium High 

Low Low Low 0.6 0.3 0.1 
Low Low Medium 0.6 0.3 0.1 
Low Low High 0.6 0.3 0.1 
Low Medium Low 0.3 0.6 0.1 
Low Medium Medium 0.1 0.6 0.3 
Low Medium High 0.1 0.3 0.6 
Low High Low 0.1 0.3 0.6 
Low High Medium 0.1 0.3 0.6 
Low High High 0.1 0.3 0.6 
Medium Low Low 0.6 0.3 0.1 
Medium Low Medium 0.6 0.3 0.1 
Medium Low High 0.6 0.3 0.1 
Medium Medium Low 0.3 0.6 0.1 
Medium Medium Medium 0.3 0.6 0.1 
Medium Medium High 0.1 0.6 0.3 
Medium High Low 0.1 0.6 0.3 
Medium High Medium 0.1 0.3 0.6 
Medium High High 0.1 0.3 0.6 
High Low Low 0.6 0.3 0.1 
High Low Medium 0.6 0.3 0.1 
High Low High 0.6 0.3 0.1 
High Medium Low 0.6 0.3 0.1 
High Medium Medium 0.6 0.3 0.1 
High Medium High 0.3 0.6 0.1 
High High Low 0.3 0.6 0.1 
High High Medium 0.3 0.6 0.1 
High High High 0.1 0.6 0.3 
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Table 3 Conditional Probability Table (CPT) of the model utility node.  

Flood risk Water quality Utility value 
Low Blue 100 
Low Green 100 
Low Yellow 75 
Low Red 50 
Medium Blue 65 
Medium Green 65 
Medium Yellow 50 
Medium Red 35 
High Blue 50 
High Green 50 
High Yellow 25 
High Red 0 
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Table 4 Characteristics of three scenarios examined in this study 

Scenario Region Land cover Soil type Slope 

A East England Arable land Light free draining (sandy) Low 

B West England Grassland Heavy poor draining (clay) Medium 

C West England Grassland Heavy poor draining (clay) High 
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Table 5 Utility values for the three scenarios 

Scenario Buffer strip management 
(% increase in utility relative to status quo) 

 Status quo Grassland Natural 
vegetation 

Mixed 

A 55.39 56.71 
(2.4%) 

59.37 
(7.2%) 

58.04 
(4.8%) 

B 55.61 58.23 
(4.7%) 

59.91 
(7.7%) 

59.07 
(6.2%) 

C 54.53 57.42 
(5.3%) 

59.25 
(8.7%) 

58.33 
(7.4%) 
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Table 6 Changes in the probability of outcomes under the optimal solution.  

Scenario Outcome Status Status quo 
(%) 

Grassland 
(%) 

Natural 
vegetation 

(%) 
Mixed (%) 

Change in 
prob. 

Status quo 
to optimal 

A 

Flood 
risk 

Low 27.4 30.7 34.0 32.4 6.6 
Medium 49.0 47.4 47.3 47.4 -1.7 
High 23.6 21.9 18.6 20.3 -5.0 

Water 
quality 

Blue  17.1 17.1 18.8 17.9 1.8 
Green 27.8 27.8 28.9 28.3 1.1 
Yellow 32.3 32.3 31.5 31.9 -0.8 
Red 22.8 22.8 20.9 21.8 -2.1 

B 

Flood 
risk 

Low 23.0 26.1 29.1 27.6 6.1 
Medium 46.7 46.7 47.7 47.2 1.0 
High 30.4 27.3 23.3 25.3 -7.1 

Water 
quality 

Blue  22.5 24.4 25.2 24.8 2.7 
Green 31.8 33.1 32.2 32.7 0.5 
Yellow 28.4 26.9 27.0 27.0 -1.4 
Red 17.4 15.5 15.6 15.6 -1.8 

C 

Flood 
risk 

Low 21.3 24.5 27.7 26.1 6.4 
Medium 46.2 46.7 48.1 47.4 1.9 
High 32.5 28.7 24.2 26.5 -8.3 

Water 
quality 

Blue  22.3 24.4 25.0 24.7 2.7 
Green 31.6 33.1 32.2 32.7 0.6 
Yellow 28.5 27.0 27.1 27.0 -1.4 
Red 17.6 15.5 15.7 15.6 -1.9 

  



35 
 

 

 

Figure 1 Ecosystem service cascade (Adapted from Haines-Young and Potschin 2009) 
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Figure 2 Sequence of interdisciplinary workshops used for BBN development 

 

Workshop 1  
Ecosystem Service 

links 

•Aim: Identify links  between policy objectives, 
ecosystem services and processes 

•  Participants: 30  
• Main outputs: Complex maps of linkages  

Workshop 2 
Management 
interventions 

•Aim: Explore BBN modeling 
approach 

•  Participants: 11 
• Main outputs: Draft model 

diagram 

Workshop 3 
Informal BBN 
development 

•Aim: Integration of valuation component 
• Participants: 8 
• Main outputs: BBN with valuation 

Revised BBN 
model 
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Figure 3 BBN model (Scenario B) of riparian buffer strip management system  
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Figure 4 Expanded BBN incorporating socio-economic drivers of preferences 
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