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Flow speed within the Antarctic ice sheet and its controls
inferred from satellite observations
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Abstract Accurate dynamical models of the Antarctic ice sheet with carefully specified initial conditions
and well-calibrated rheological parameters are needed to forecast global sea level. By adapting an inverse
method previously used in electric impedance tomography, we infer present-day flow speeds within
the ice sheet. This inversion uses satellite observations of surface velocity, snow accumulation rate, and
rate of change of surface elevation to estimate the basal drag coefficient and an ice stiffness parameter
that influences viscosity. We represent interior ice motion using a vertically integrated approximation to
incompressible Stokes flow. This model represents vertical shearing within the ice and membrane stresses
caused by horizontal stretching and shearing. Combining observations and model, we recover marked
geographical variations in the basal drag coefficient. Relative changes in basal shear stress are smaller. No
simple sliding law adequately represents basal shear stress as a function of sliding speed. Low basal shear
stress predominates in central East Antarctica, where thick insulating ice allows liquid water at the base
to lubricate sliding. Higher shear stress occurs in coastal East Antarctica, where a frozen bed is more likely.
Examining Thwaites glacier in more detail shows that the slowest sliding often coincides with elevated basal
topography. Differences between our results and a similar adjoint-based inversion suggest that inversion
or regularization methods can influence recovered parameters for slow sliding and finer scales; on broader
scales we recover a similar pattern of low basal drag underneath major ice streams and extensive regions in
East Antarctica that move by basal sliding.

1. Introduction

To predict how much Greenland and Antarctica will contribute to sea level rise, and how quickly, we must
first develop ice sheet models that accurately represent the present-day flow of the ice. This motivates efforts
to combine models of ice sheet flow with the many observations available from satellites, aircraft, and field
campaigns [Church et al., 2013; Vaughan et al., 2013]. In Antarctica, these observations include measurements
of surface elevation, bed elevation, surface velocity, snow accumulation rate, and the rate of change of sur-
face elevation [e.g., Le Brocq et al., 2010; Fretwell et al., 2013; Rignot et al., 2011; Arthern et al., 2006; Pritchard
et al., 2009]. Here, using an inverse method described by Arthern and Gudmundsson [2010], we assimilate these
observations into a class of ice flow model that allows efficient, depth-integrated approximations to Stokes
flow to be applied in all areas of the ice sheet [Goldberg, 2011]. The assimilation of data into the model serves
two purposes: first, it provides an initial state for the Antarctic ice flow model that can be used as a start-
ing point for predictive modeling; second, it provides an analysis of the velocity at all depths within the ice,
allowing us to investigate the factors that are controlling the ice flow.

The key reason for assimilating observations from satellites, aircraft, and field campaigns is that model pre-
dictions will only be useful if they are based on accurate information. This includes accurate initial conditions,
boundary conditions, and parameters in the model. The important model parameters include the ice viscos-
ity and the basal drag coefficient. The viscosity characterizes the resistance of the ice to deformation and may
itself depend upon the rate of deformation if the rheology is nonlinear. The drag coefficient characterizes the
slipperiness of the sediment or rock beneath the ice; the drag coefficient multiplied by the basal sliding speed
gives the basal shear stress that acts to resist sliding. The drag coefficient may itself be a function of the basal
sliding speed if the basal drag is nonlinear. Nonlinear drag laws can represent either resistance to flow around
obstacles [Weertman, 1964], the lubricating influence of subglacial water-filled cavities [Lliboutry, 1968; Fowler,
2010], or the failure of subglacial sediment at a particular yield stress [Bueler and Brown, 2009; Schoof , 2010].
In addition to sliding speed, the drag coefficient may depend upon other spatially variable quantities, such as
obstacle size or water pressure.
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Both the viscosity and basal drag coefficient strongly influence how fast the ice flows. Together with the ice
thickness, they control the flux of ice across the grounding line, where the ice goes afloat [Schoof , 2007]. They
also determine how far and how fast perturbations at the coastal margins of the ice sheet can propagate into
the interior [Williams et al., 2012]. As a consequence, it is important to specify both the viscosity and basal drag
coefficient accurately in simulations used to assess the stability of the ice sheet and to forecast its contribution
to sea level rise. Accurate specification of the initial state and parameters is particularly important whenever
small inaccuracies in the present state can become amplified as the forecast interval extends further and
further into the future. This situation could arise if the ice sheet is dynamically unstable to perturbation, or
close to a critical threshold where such an instability could take hold [Schoof , 2007; Joughin et al., 2014].

The thickness of the ice sheet can reach several kilometers, but most of the available satellite observations do
not identify quantities within its bulk, but at its upper surface. This raises the question of how the observations
of the upper surface can be used to accurately infer the subsurface flow.

One way to obtain information from beneath the surface is to use inverse methods. In this approach, the
basal drag coefficient, ice viscosity, or other parameters associated with ice flow beneath the surface are var-
ied. These “control” parameters are adjusted until they attain optimal values that minimize the discrepancy
between the predictions of the model and the observations at the upper surface. Since their introduction to
glaciology by MacAyeal [1992] there has been ever increasing interest in using inverse methods to infer condi-
tions at the base of the ice sheets, or deep within the ice. Satellites have assisted these advances by enabling
widespread coverage of ice flow velocity [e.g., Rignot et al., 2011], elevation changes [e.g., Pritchard et al., 2009],
and other surface observations.

A variety of approaches to invert for unknown parameters are now used in glaciology. Methods based on opti-
mal control theory, often using adjoint equations, provide an efficient way to adjust model parameters so that
the misfit with the observations is minimized [MacAyeal, 1992]. Rather than formulating the adjoint equations,
automatic differentiation of computer programs can be used to derive the adjoint of the computer code that
represents the model [Heimbach and Bugnion, 2009]. The optimal control theory approach can also be used
when the observations are distributed through time [Arthern and Hindmarsh, 2003; Goldberg and Heimbach,
2013; Larour et al., 2014]. Other methods in use include Bayesian estimation [Berliner et al., 2008; Raymond and
Gudmundsson, 2009], ensemble-based Monte Carlo methods [Tarasov et al., 2012], and the ensemble Kalman
filter [Bonan et al., 2013]. A variety of iterative approaches to the inversion have also been developed [Arthern
and Gudmundsson, 2010; Pollard and DeConto, 2012; van Pelt et al., 2013].

Inverse methods have been used to infer basal drag coefficients [MacAyeal, 1992; Vieli and Payne, 2003; Joughin
et al., 2004] and the viscosity of floating ice shelves [Rommelaere and MacAyeal, 1997; Larour et al., 2005; Vieli
et al., 2007; Khazendar et al., 2007]. A complicating factor is the nonlinearity of the ice rheology and the non-
linearity of drag laws. Using surface data alone, it is difficult to uniquely identify many different parameters
in a drag law without ambiguity, so inverse methods have tended to rely on very simple drag laws, rather
than comprehensive modeling of the interactions of sediment and water within the subglacial environment.
Nevertheless, the general approach of minimizing the misfit to observations has been used to characterize
the non-Newtonian rheology of ice or sediment, or nonlinear sliding laws at the base of the ice [Joughin et al.,
2004; Arthern and Gudmundsson, 2010; Jay-Allemand et al., 2011; Petra et al., 2012].

Most of the early glaciological applications of inverse methods used simplified models appropriate for ice that
is sliding over very slippery sediment or water [Morland and Johnson, 1980; Muszynski and Birchfield, 1987;
MacAyeal, 1989]. This limited their application to floating ice shelves or ice streams. Ice shelves can be modeled
as free slip on the lower boundary. Ice streams can be modeled as a special case of Navier slip [Navier, 1823],
under a restrictive assumption that basal drag is low enough that the horizontal velocity varies little with
depth [e.g., MacAyeal, 1989; Joughin et al., 2004].

More recently, there has been a generalization of glaciological inverse methods to Stokes flow [Maxwell et al.,
2008; Raymond and Gudmundsson, 2009; Arthern and Gudmundsson, 2010; Morlighem et al., 2010; Schafer et al.,
2012; Gillet-Chaulet et al., 2012]. This has opened up the use of inversion for the whole range of basal drag
conditions, and thus the entirety of the Antarctic and Greenland ice sheets.

Models of Stokes flow can be computationally expensive, so Morlighem et al. [2013] have applied optimal
control methods, based upon adjoint equations, for a computationally cheaper approximation to Stokes flow
in Antarctica [Blatter, 1995; Pattyn, 2002]. An even more efficient class of vertically integrated models has been
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developed recently [Hindmarsh, 2004; Bueler and Brown, 2009; Schoof and Hindmarsh, 2010; Goldberg, 2011].
These models can be applied to both slippery and nonslippery basal conditions. Similar equations have been
implemented by Perego et al. [2012] and Cornford et al. [2013]. These vertically integrated models represent
the vertical profile of velocity implicitly, and the profile can be reconstructed explicitly if required. Thus, these
approximations retain many of the advantages of the model considered by Blatter [1995], Pattyn [2002], and
Morlighem et al. [2013], but they are even more efficient computationally. This efficiency has motivated us to
apply one of them here to an inversion of the basal drag, viscosity, and three-dimensional velocity structure
in Antarctica.

Although similar in overall concept, there are differences between this study and other recent inversions of
basal drag in Antarctica [e.g., Pollard and DeConto, 2012; Morlighem et al., 2013]. First, the system of equations
we have used to describe the ice flow [see Goldberg, 2011] is different from these studies. Second, our
approach to the inverse problem differs from the heuristic approach used by Pollard and DeConto [2012] and
the adjoint-based approach used by Morlighem et al. [2013]. We apply an inverse method previously used
for electric impedance tomography, a technique used in medical imaging and nondestructive testing, and
demonstrate that this method can be applied to glaciology on a continental scale. Some background to the
inverse method used to recover the basal drag coefficient and the ice viscosity is given in section 2. Third,
we have made use of a wider variety of satellite observations, including the rate of snow accumulation and
the rate of change of elevation from satellite altimetry, and this can provide information about ice flow even
where the horizontal velocity has not been measured [Williams et al., 2014; Larour et al., 2014].

By simultaneously solving for the basal drag coefficient and the velocity at depths throughout the ice sheet,
we can gain a better understanding of the processes operating within and underneath the Antarctic ice
sheet. In particular, we can evaluate the success of different sliding parameterizations in explaining these
geographical variations.

2. Background to the Inversion

Our algorithm is based on inverse methods developed for use in electric impedance tomography [Calderon,
1980; Kohn and Vogelius, 1984; Chaabane and Jaoua, 1999]. These methods are governed by the Laplace
equation and allow structures internal to a body to be revealed from measurements of electric current and
voltage on its outer surface. An analogous approach can be used to identify the drag coefficient and the
ice viscosity when the ice flow is governed by the equations of incompressible Stokes flow [Arthern and
Gudmundsson, 2010]. In this application it is not electrical measurements, but mechanical stresses and veloc-
ities that are known at the surface, and the viscosity and basal drag beneath the surface that are identified
rather than the electric impedance. The main technical advance of this paper is to demonstrate that this
method can also be applied to the vertically averaged approximation to Stokes flow used in our ice sheet
model. Thus, the viscosity and basal drag coefficient can be recovered without the expense of solving the
Stokes system.

As described by Arthern and Gudmundsson [2010] the inversion relies upon successive solutions of the
momentum equations employed by the ice flow model. These provide the velocity field within the ice for
any given geometry. The inversion is an iterative approach that minimizes a cost function representing the
mismatch between the model and the data. At each iteration, incremental adjustments to the basal drag
coefficient and the ice viscosity are made. To compute these adjustments, two separate velocity fields are eval-
uated. These correspond, respectively, to two alternate boundary conditions applied at the upper surface, first
a Neumann (stress free) boundary condition and then a Dirichlet (prescribed velocity) boundary condition.

Solving first with Neumann then with Dirichlet boundary conditions allows the gradient of the cost function to
be evaluated [see Arthern and Gudmundsson, 2010]. Once the gradient is available, this reveals how to adjust
the basal drag coefficient and the ice viscosity to obtain a better agreement with the data at the next iteration.
After multiple iterations the eventual result is that basal drag and viscosity are identified such that when the ice
sheet model is run with a stress-free upper surface, it produces velocities that agree closely with the satellite
observations.

A summary of the model equations for the Neumann problem is given in section 3. Section 4 specifies the
Dirichlet problem for the given satellite measurements. For our vertically integrated model the application of
Dirichlet boundary conditions at the upper surface is not as straightforward as it is for Stokes flow and requires
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the approximate solution of a saddle-point problem. We emphasize that our labeling of the Neumann and
Dirichlet problems refers specifically to the boundary condition on the upper surface, while other physically
motivated boundary conditions apply at lateral and basal surfaces of the domain.

Section 5 presents expressions for the rates of heating caused by mechanical dissipation for both the
Neumann solution and the Dirichlet solution. These expressions are used in the iterative scheme to solve
for the basal drag coefficient 𝛽 and the depth-averaged ice viscosity 𝜂̄, as described in section 6. We defer
all details of the numerical computations to a series of appendices in Text S1 in the supporting information.
Results of the inversion are presented in section 8.

3. The Neumann Solution

To begin with, we give a brief overview of the equations used in the Neumann calculation. This is the standard
ice sheet model. It has a stress-free upper boundary condition, as described by Goldberg [2011]. The model
is a variation of a depth-integrated model analyzed by Hindmarsh [2004] and Schoof and Hindmarsh [2010].
Details of the derivation of these equations and the accuracy of the approximations employed are provided
by Goldberg [2011] and Schoof and Hindmarsh [2010].

We use superscript N to identify quantities from the Neumann calculation. We use a Cartesian coordinate
system x, y, and z (positive upward). The momentum conservation equations for the depth-averaged velocity
components ūN(x, y) and v̄N(x, y), in the x and y directions, respectively, are [Goldberg, 2011]

𝜕x

[
4𝜂̄h𝜕xūN + 2𝜂̄h𝜕yv̄N

]
+ 𝜕y

[
𝜂̄h𝜕xv̄N + 𝜂̄h𝜕yūN

]
− 𝜏N

bx = 𝜌igh𝜕xs and

𝜕y

[
4𝜂̄h𝜕yv̄N + 2𝜂̄h𝜕xūN

]
+ 𝜕x

[
𝜂̄h𝜕yūN + 𝜂̄h𝜕xv̄N

]
− 𝜏N

by = 𝜌igh𝜕ys.
(1)

In these equations, 𝜌i is the density of ice, g is gravitational acceleration, 𝜂̄(x, y) is depth-averaged viscosity,
h(x, y) is ice thickness, s(x, y) is surface elevation, and 𝜏N

bx and 𝜏N
by are the basal drag in x and y directions.

The boundary conditions where the ice meets water at the lateral margin of the ice sheet are

−1
2
𝜌wgh2

wn̂x = ∫
s

b
𝜎N

xx n̂x + 𝜎N
xyn̂ydz

= 2𝜂̄h(2𝜕xūN + 𝜕yv̄N)n̂x −
1
2
𝜌igh2n̂x + 𝜂̄h(𝜕yūN + 𝜕xv̄N)n̂y and

−1
2
𝜌wgh2

wn̂y = ∫
s

b
𝜎N

yyn̂y + 𝜎N
xyn̂xdz

= 2𝜂̄h(2𝜕yv̄N + 𝜕xūN)n̂y −
1
2
𝜌igh2n̂y + 𝜂̄h(𝜕yūN + 𝜕x v̄N)n̂x .

(2)

This assumes continuity of depth-integrated stress across the lateral boundary. The tensor components 𝜎N
xx ,

𝜎N
yy , and𝜎N

xy define stresses within the ice from extension in x and y directions and lateral shearing, respectively.
The water density is 𝜌w , and the ice draft (i.e., the thickness of ice beneath the water level) is hw(x, y), which
may be zero for land-terminating sections of the margin. Assuming the water level lies at z = 0 we define
hw = max(h − s, 0). The water is assumed to be in hydrostatic equilibrium and exerts a normal stress on the
boundary, but no shear stress. The x and y components of the unit vector normal to the lateral margin are nx

and ny . The base of the ice is at z = b(x, y). At lateral boundaries identified as rock, a no penetration condition
is applied, so the ice must flow around mountains and nunataks.

Viscosity 𝜂(x, y, z) is defined implicitly as follows [see Goldberg, 2011]:

𝜂 = 1
2

B
[
(𝜕xūN)2 + (𝜕yv̄N)2 + (𝜕x ūN)(𝜕yv̄N) + 1

4

(
𝜕yūN + 𝜕xv̄N

)2 + 1
4
(𝜕zuN)2 + 1

4
(𝜕zvN)2 + 𝜖2

] 1−n
2n
, (3)

in which n = 3 is the exponent in a nonlinear Glen flow law, 𝜖 = 10−5 a−1 is a regularization parameter
that imposes a transition to a linear rheology at small strain rate, and B(x, y, z) is a temperature-dependent
coefficient that determines the stiffness of the ice. For typical temperatures, the value 𝜖 = 10−5 a−1 implies
a transition to a linear rheology when effective stress drops to about 10 kPa, similar to the effective stress at
which such a transition has been inferred near ice divides [Pettit et al., 2011].
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The reason that equation (3) is an implicit definition for viscosity 𝜂 is that the strain rates for vertical shear
themselves depend on viscosity. To the level of approximation used in the model, all horizontal gradients in
vertical velocity w are neglected, so vertical shear can be approximated as

𝜕zuN ≈ 𝜕zuN + 𝜕xwN = 𝜎N
xz∕𝜂, 𝜕zvN ≈ 𝜕zvN + 𝜕ywN = 𝜎N

yz∕𝜂. (4)

Vertical shear stresses 𝜎N
xz(x, y, z) and 𝜎N

yz(x, y, z) are assumed to vary linearly with depth:

𝜎N
xz = 𝜏N

bx(s − z)∕h and 𝜎N
yz = 𝜏N

by(s − z)∕h. (5)

Equation (3) includes the softening effects from vertical shearing and membrane stresses. For a nonlinear
rheology with n = 3, the exponent takes the value (1 − n)∕(2n) = −1∕3. In that case, given estimates of s,
h, B, 𝜏N

bx , 𝜏N
by , 𝜕x ūN, 𝜕yūN, 𝜕xv̄N, and 𝜕yv̄N, the viscosity 𝜂 can be found by solving a cubic equation obtained by

substituting equations (5) and (4) into equation (3) and rearranging. Integration over depth is then carried out
by numerical quadrature to obtain the depth-averaged viscosity 𝜂̄(x, y),

𝜂̄ = 1
h∫

s

b
𝜂dz. (6)

Numerical quadrature can also be used to estimate some useful integrals 𝛼(x, y) for 𝛼 = 0, 1, and 2, defined
as follows:

𝛼 = ∫
s

b

1
𝜂

( s − z
h

)𝛼
dz. (7)

A Robin (or Navier slip) boundary condition at the lower boundary linearly relates the basal drag 𝝉
N
b to basal

velocity uN
b via a multiplicative drag coefficient 𝛽 , so that

𝝉
N
b = 𝛽uN

b , (8)

with

uN
b (x, y) =

[
uN(x, y, b)
vN(x, y, b)

]
and 𝝉

N
b (x, y) =

[
𝜏N

bx
𝜏N

by

]
. (9)

Integrating equation (4) once to obtain the velocity as a function of depth and again to obtain the
depth-integrated velocity, we obtain expressions for the surface velocity uN

s (x, y),

uN
s (x, y) =

[
uN(x, y, s)
vN(x, y, s)

]
= uN

b (1 + 𝛽1), (10)

and the depth-averaged velocity,

ūN =

[
1
h
∫ s

b uN(x, y, z)dz
1
h
∫ s

b vN(x, y, z)dz

]
= uN

b (1 + 𝛽2), (11)

in which1 and2 are defined by equation (7). The effective drag coefficient 𝛽eff is defined by Goldberg [2011]
such that the basal drag 𝝉

N
b = 𝛽effūN, giving

𝛽eff = 𝛽

1 + 𝛽2
. (12)

Sometimes it will be more convenient to use a shorthand notation for equation (1),

(ūN)ūN = f , (13)

in which

 =
[
𝜕x4𝜂̄h𝜕x + 𝜕y 𝜂̄h𝜕y − 𝛽eff 𝜕x2𝜂̄h𝜕y + 𝜕y 𝜂̄h𝜕x

𝜕y2𝜂̄h𝜕x + 𝜕x 𝜂̄h𝜕y 𝜕y4𝜂̄h𝜕y + 𝜕x 𝜂̄h𝜕x − 𝛽eff

]
and f =

[
𝜌igh𝜕xs
𝜌igh𝜕ys

]
. (14)
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A discretized finite difference approximation to equation (13) is described in Appendix A in Text S1. Because
the depth-averaged viscosity 𝜂̄(x, y) depends on ūN(x, y) and v̄N(x, y), equation (13) is nonlinear. Starting from
an initial guess of 𝜂̄ and 𝛽eff, solving equation (13) to find ūN(x, y) and v̄N(x, y) and then recomputing 𝜂̄ and
𝛽eff as described above forms the basis of an iterative method for solving equation (13). At each subsequent
iteration l = 2, 3, ..., the operator(ūN

l−1) is evaluated using ūN
l−1 derived at the previous iteration and equation

(13) solved to provide a new estimate ūN
l . This cycle can be repeated until the norm of the residual of equation

(13) is smaller than some tolerance, expressed as a fraction of the norm of f .

For any depth-averaged velocity ūN, accumulation rate a(x, y), and basal melt rate mb(x, y) the evolution of
ice thickness h is given by

𝜕th = a − mb − ∇ ⋅ (ūNh). (15)

The rate of change of surface elevation is then

𝜕ts = 𝜓𝜕th, (16)

with 𝜓(x, y) = 1 for grounded ice, and 𝜓(x, y) = (1 − 𝜌i∕𝜌w) for floating ice, to account for hydrostatic com-
pensation. Equations (15) and (16) assume constant density 𝜌i within the column but could be generalized by
the addition of terms to account for the lower density of firn within the upper layers of the ice sheet and the
possibility that this density varies over time [Arthern et al., 2010].

4. The Dirichlet Solution

To use the algorithm described by Arthern and Gudmundsson [2010], we must be able to solve an analogous
problem with velocity prescribed at the upper surface of the ice sheet as a Dirichlet boundary condition. In
this section we describe the application of the Dirichlet boundary condition to the vertically integrated model.
The momentum equations can be written in a more general form as

𝜕x

[
4𝜂̄h𝜕xūD + 2𝜂̄h𝜕yv̄D

]
+ 𝜕y

[
𝜂̄h𝜕xv̄D + 𝜂̄h𝜕yūD

]
− 𝜏D

bx + 𝜏
D
sx + h𝜕x𝜎

D
s = 𝜌igh𝜕xs and

𝜕y

[
4𝜂̄h𝜕yv̄D + 2𝜂̄h𝜕xūD

]
+ 𝜕x

[
𝜂̄h𝜕yūD + 𝜂̄h𝜕xv̄D

]
− 𝜏D

by + 𝜏
D
sy + h𝜕y𝜎

D
s = 𝜌igh𝜕ys,

(17)

with lateral boundary conditions,

−1
2
𝜌wgh2

wn̂x = ∫
s

b
𝜎D

xxn̂x + 𝜎D
xyn̂ydz

= 2𝜂̄h
(

2𝜕xūD + 𝜕yv̄D
)

n̂x −
1
2
𝜌igh2n̂x + 𝜎D

s hn̂x + 𝜂̄h
(
𝜕yūD + 𝜕xv̄D

)
n̂y and

−1
2
𝜌wgh2

wn̂y = ∫
s

b
𝜎D

yyn̂y + 𝜎D
xyn̂xdz

= 2𝜂̄h
(

2𝜕yv̄D + 𝜕xūD
)

n̂y −
1
2
𝜌igh2n̂y + 𝜎D

s hn̂y + 𝜂̄h
(
𝜕yūD + 𝜕x v̄D

)
n̂x .

(18)

As before, a no penetration condition is applied at mountains and nunataks. The main difference compared
to the Neumann calculation outlined above is that in the Dirichlet solution the upper surface is no longer
guaranteed to be stress free. Instead, the stress at the surface is that needed to satisfy the imposed Dirichlet
boundary condition from the satellite data. In general, the Dirichlet solution therefore has a normal stress at
the surface, which can be approximated for small slopes by

𝜎D
s (x, y) = 𝜎D

zz(x, y, s), (19)

and we also have both basal and surface shear stresses,

𝝉
D
b (x, y) =

[
𝜏D

bx
𝜏D

by

]
and 𝝉

D
s (x, y) =

[
𝜏D

sx

𝜏D
sy

]
. (20)

We retain the assumption that shear stress varies linearly with depth so that

𝜎D
xz = 𝜏D

sx +
(
𝜏D

bx − 𝜏
D
sx

)
(s − z)∕h and

𝜎D
yz = 𝜏D

sy +
(
𝜏D

by − 𝜏
D
sy

)
(s − z)∕h.

(21)

ARTHERN ET AL. FLOW SPEED IN THE ANTARCTIC ICE SHEET 1176



Journal of Geophysical Research: Earth Surface 10.1002/2014JF003239

Vertical shear is then approximated as

𝜕zuD ≈ 𝜕zuD + 𝜕x wD = 𝜎D
xz∕𝜂 and 𝜕zvD ≈ 𝜕zvD + 𝜕ywD = 𝜎D

yz∕𝜂. (22)

We do not recompute viscosity 𝜂(z) but simply reuse the viscosity field that was computed for the Neumann
solution. This choice is somewhat heuristic but practically convenient. The rationale is that we are ultimately
seeking to arrange that the Neumann solution, based on the Neumann viscosity, agrees with the Dirichlet
solution, so forcing both simulations to have the same viscosity at intermediate steps during the inversion
should not influence the final outcome. Additionally, it is the Neumann viscosity that is more relevant to any
forward calculation using the model.

Integrating equation (22) once to obtain the velocity as a function of depth and again to obtain the
depth-integrated velocity, we obtain

uD
s = uD

b (1 + 𝛽1) + 𝝉
D
s (0 − 1) and

ūD = uD
b (1 + 𝛽2) + 𝝉

D
s (1 − 2),

(23)

in which 1 and 2 are defined by equation (7), and the basal and surface velocities are

uD
b (x, y) = uD(x, y, b) and uD

s (x, y) = uD(x, y, s). (24)

We have also used the basal boundary condition,

𝝉
D
b (x, y) = 𝛽uD

b , (25)

to derive equations (23). Eliminating uD
b from equations (23) gives the following expression for the surface

velocity uD
s ,

uD
s = ūD + 𝝉

D
s , (26)

in which
 =

1 + 𝛽1

1 + 𝛽2
and

 = 0 − ( + 1)1 +2.

(27)

Equations (23), (25), and (27) also allow the momentum equation (17) to be rewritten as follows:

(ūN)ūD − h∇(𝜌igs − 𝜎D
s ) +𝝉

D
s = 0. (28)

We have written (ūN) in equation (28) to emphasize that viscosity is derived from the Neumann calculation.

The data that we have available to prescribe the velocities at the surface consist of (i) the measured horizontal
velocity u∗

s (x, y) at the surface of the ice sheet from satellite interferometric radar [Rignot et al., 2011], (ii) the
measured mass accumulation rate a∗(x, y) [e.g., Arthern et al., 2006], and (iii) the measured rate of change of
surface elevation 𝜕th∗(x, y) from satellite altimetry [Wingham et al., 2006; Pritchard et al., 2009]. For the Dirichlet
simulation, the horizontal surface velocity is given by the observations, so we impose

uD
s = u∗

s (29)

as a constraint. Also, from mass conservation, the horizontal divergence of the ice flux for grounded ice is

∇ ⋅ (ūDh) = a∗ − 𝜕th∗, (30)

which provides a further constraint on the Dirichlet solution. A discrete finite difference approximation of
equations (28), (26), (29), and (30) with boundary conditions (18) is described in Appendix A in Text S1. The
discretized system takes the form of a saddle-point problem [Benzi et al., 2005].
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5. Heating Rates

To apply the algorithm described by Arthern and Gudmundsson [2010] for the vertically integrated model, it is
convenient to evaluate the depth-integrated heating rates per unit area Qf (x, y) caused by frictional heating
at the base and Qi(x, y) from internal deformation. The internal heating rate Qi(x, y) is the sum of heating
Qv(x, y) caused by vertical shearing in the ice and Qm(x, y) caused by membrane stresses from lateral extension
compression and shearing. To the level of approximation used by the forward model, these are

QN
f = 𝛽 ||uN

b
||2
,

QN
i = ∫

s

b
2𝜂 ||eN||2

F dz = QN
v + QN

m,

QN
v ≈ ∫

s

b
𝜂 ||𝜕zuN||2

dz = ||𝝉N
b
||2 2, and

QN
m ≈ 𝜂̄h

[
4(𝜕xūN)2 + 4(𝜕yv̄N)2 + 4(𝜕xūN)(𝜕yv̄N) + (𝜕yūN + 𝜕xv̄N)2

]
.

(31)

For the Dirichlet solution, the heating rates are approximated as follows:

QD
f = 𝛽 ||uD

b
||2
,

QD
i = ∫

s

b
2𝜂 ||eD||2

F dz = QD
v + QD

m,

QD
v ≈ ∫

s

b
𝜂 ||𝜕zuD||2

dz = ||𝝉D
s
||2 0 + 2𝝉D

s .(𝝉
D
b − 𝝉

D
s )1 + ||𝝉D

s − 𝝉
D
b
||2 2, and

QD
m ≈ 𝜂̄h

[
4(𝜕xūD)2 + 4(𝜕yv̄D)2 + 4(𝜕xūD)(𝜕yv̄D) + (𝜕yūD + 𝜕xv̄D)2

]
.

(32)

In these equations, ||eN||F and ||eD||F are the Frobenius norms of the strain rate tensors from the Neumann
and Dirichlet simulations, respectively, and |||uN

b
||| and |||uD

b
||| are the magnitudes of the basal velocities. Similar

notation is used for the magnitude of stresses |||𝝉N
b
|||, |||𝝉D

b
|||, etc.

6. Inversion for the Basal Drag Coefficient and Ice Stiffness

We solve for the basal drag coefficient 𝛽 and the ice stiffness coefficient B that controls the viscosity using the
algorithm described by Arthern and Gudmundsson [2010], which iteratively minimizes the Kohn and Vogelius
cost function JKV(𝜂, 𝛽),

JKV = ∫Ω
2𝜂 ||eD − eN||2

F dV + ∫Γb

𝛽 ||uD − uN||2
dS. (33)

In equation (33) the volume integration is over the ice volume Ω and the surface integration is over the base
of the ice sheet Γb. This cost function represents the mismatch between the Neumann and Dirichlet velocity
fields (it can be viewed in abstract as the heat that would be dissipated by a hypothetical flow field obtained by
subtracting the two velocity fields). Expressions from Arthern and Gudmundsson [2010] provide the gradient of
this cost function, and an iterative algorithm for its minimization. At each iteration, the Neumann and Dirichlet
problems were solved numerically as described in Appendix A in Text S1, and the heating rates evaluated
using expressions in section 5 and Appendix D in Text S1.

The basal drag coefficient was updated as follows:

𝛽n+1(x, y) = 𝛽n(x, y) + 𝛼𝛽
(||uN

b
||2 − ||uD

b
||2
)
, (34)

where 𝛼𝛽 is a positive parameter that determines the step size. Using a constant 𝛼𝛽 would correspond to
minimization by a steepest descent method. However, following Schafer et al. [2012], a convenient alternative
choice is

𝛼𝛽 =
𝛽n|||uD

b
|||p

(|||uN
b
|||p
− |||uD

b
|||p)

(|||uN
b
|||2
− |||uD

b
|||2) . (35)
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This quantity is positive everywhere, and for finite |||uD
b
||| can be made arbitrarily small as p → 0. The reason for

this choice is that the update to 𝛽 can be written simply as

𝛽n+1(x, y) = 𝛽n(x, y)

(
QN

f
(x, y)

QD
f
(x, y)

)p

. (36)

The initial guess 𝛽0(x, y) was set to 1 × 10−4 Pa m s−1 for floating ice and 1 × 104 Pa m s−1 for grounded ice,
and we used p = 0.1.

Arthern and Gudmundsson [2010] also provide the following rule for updating the viscosity

𝜂n+1(x, y, z) = 𝜂n(x, y, z) + 𝛼𝜂
(||eN||2

F − ||eD||2
F

)
, (37)

where 𝛼𝜂 is a positive parameter that determines the step size. We choose

𝛼𝜂 =
2h𝜂n(x, y, z)𝜂̄n(x, y)(

QD
i

)q

[(
QN

i

)q −
(

QD
i

)q(
QN

i

)
−
(

QD
i

) ]
, (38)

which is positive everywhere, and for finite QD
i can be made arbitrarily small as q → 0. Integrating equation

(37) with respect to depth then gives

𝜂̄n+1(x, y) = 𝜂̄n(x, y)

(
QN

i (x, y)
QD

i (x, y)

)q

. (39)

Strictly, this applies only for a linear rheology. Nevertheless, at each iteration, we updated the ice stiffness
coefficient B(x, y, z) heuristically as follows:

Bn+1(x, y, z) = Bn(x, y, z)

(
QN

i (x, y)
QD

i (x, y)

)q

. (40)

The initial guess B0(x, y, z) was derived from ice temperatures T(x, y, z) [Pattyn, 2010] using temperature
sensitivity from Paterson [1994],

B0 = A
− 1

n
0 and A0 = Arefe

−EA

(
1

RT
− 1

RTref

)
, (41)

with n = 3, Aref = 1.55 × 10−17 Pa−n yr−1, EA = 58, 600 J mol−1, R = 8.314 J mol−1 K−1, Tref = 263 K. A value
q = 0.1 was used for ice shelves.

When the ice is grounded, simultaneous estimation of viscosity and drag coefficient is ill posed, and prior
information is needed to regularize the problem [Arthern and Gudmundsson, 2010]. One way of introducing
prior information is to select a value of q such that B departs from the initial guess B0 only by an amount con-
sistent with some assumed prior uncertainty. We experimented with three different values q = [0, 0.01, 0.1].
For q = 0 viscosity on the grounded ice was not updated at all, so only the drag coefficient was estimated. For
q = 0.1 we observed that B differed from the initial guess B0 in places by 5 orders of magnitude. For q = 0.01
estimates of B on grounded ice remained roughly within an order of magnitude of the initial guess B0.

There is some ambiguity to the recovered values of B on grounded ice, and it is difficult to be precise about
prior uncertainty in B, but, given the uncertainties in temperature, ice-damage, crystal fabric, grain size, and
impurity content, an order of magnitude uncertainty in B seems possible. We therefore used q = 0.01 on
grounded ice for the results presented in section 8. This allows some adjustment of the B away from the initial
estimate B0, while remaining consistent with a prior judgment of an order of magnitude uncertainty in that
estimate. We make some further remarks about this procedure in section 8.
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Figure 1. The flow speed at the upper surface from the ice sheet model
after assimilation of satellite observations and inversion for basal drag
coefficient and viscosity.

7. Surface Relaxation

Appendix E in Text S1 describes a
numerical scheme for evolving the
geometry of the surface, based on the
equations for continuity (15) and sur-
face elevation change (16). This requires
many solutions of the Neumann prob-
lem to evaluate the velocities at each
time step, and we found it useful to use
an iterative approach with a multilevel,
wavelet-based preconditioner inspired
by Vasilyev and Kevlahan [2005]. This
approach uses a basis of lifted wavelets
to approximate the velocity field
[Sweldens, 1998]. This wavelet decom-
position is used to define an adaptive
grid that can represent the velocity field
without wasting computational effort
in regions where the velocity field is
smooth. Further details are provided in

Appendices F and G in Text S1. We used this approach to investigate the sensitivity to relaxing the surface of
the ice sheet [e.g., Gillet-Chaulet et al., 2012]. For simulations with surface relaxation, we applied an adjusted
accumulation rate of arelax = a∗ − 𝜕th∗ for a set period of time (2000 years) and then reverted to the observed
accumulation rate a∗. For the grounded portion of the ice sheet the basal melt rate mb(x, y) was assumed
negligible. The thickness of floating ice shelves was not altered. The surface relaxation brings the flux diver-
gence into much better agreement with the observations of accumulation rate a∗ and rate of elevation
change 𝜕th∗. The price paid for this agreement is that the surface elevation and horizontal velocities agree
less well with the satellite observations. Results before and after surface relaxation are presented below.

8. Results and Discussion

We solved for the basal drag coefficient 𝛽 and ice stiffness B in Antarctica using the methods described
above. Various data sets were used in this inversion: ice thickness, surface elevation, and bed elevation at
5 km grid spacing from the ALBMAP data set [Le Brocq et al., 2010]; snow accumulation rates from Arthern
et al. [2006]; rate of change of surface elevation from satellite laser altimetry [Pritchard et al., 2009] and radar

Figure 2. Changes in the cost function JKV (crosses, left scale) and the
root-mean-square discrepancy between data and model velocity at the
surface (circles, right scale). Values are shown for each iteration during
the inversion.

altimetry above 2000 m elevation in East
Antarctica [Wingham et al., 2006]; inter-
nal ice temperatures from Pattyn [2010];
and horizontal flow velocities from
Rignot et al. [2011]. The 5 km ALBMAP
grid spacing defined the model
resolution.

Figure 1 shows the horizontal speed
at the upper surface of the ice sheet
from the Neumann solution. This is
the standard ice flow model with a
stress-free upper surface. The inversion
has allowed many features of Antarctic
ice flow to be represented in the model,
including the fast-flowing ice streams
and the rapid flow of ice shelves. The
model gives a spatially continuous rep-
resentation of the ice flow in Antarctica.
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Figure 3. The difference between the model velocities and the satellite velocity observations: (a) before surface
relaxation and (b) after surface relaxation. White areas have no valid data for the comparison.

The use of observations of accumulation rate and the rate of change of elevation provides information, even
where the horizontal velocities are not measured [Williams et al., 2014].

Figure 2 shows the iteration by iteration reduction of the cost function. The variation in root-mean-square
(RMS) discrepancy between the model surface velocities and the satellite observations is shown on the same
plot. There are points during the inversion where the RMS mismatch is increasing while the Kohn and Vogelius
cost function is decreasing, then the RMS mismatch reduces again until both the cost function and the RMS
discrepancy finally reach a level at which they stagnate. A similar stagnation has previously been seen for
synthetic noisy observations [Arthern and Gudmundsson, 2010].

Figure 3 shows the mismatch between the horizontal speed from the model and the satellite measurements
after 20 iterations. There are some locations where a mismatch persists; but, as would be expected for a suc-
cessful inversion, the percentage mismatch in flow velocity is generally small. The greatest differences are seen
on the ice shelves. Figure 4 shows the mismatch for the rate of elevation change. Here the greatest mismatches
are seen on fast-flowing ice. The comparison was not performed for regions shown white in Figures 3 and 4,
either because they are floating or because they have no satellite data. Figures 5 and 6 show histograms of
the mismatch which show the magnitude of the mismatches before and after surface relaxation more clearly.
Figure 6 shows that the mismatch in the rate of elevation change is substantially reduced after applying the
surface relaxation.

Figure 7 shows the fields of basal drag coefficient recovered using the inverse method described above. The
lowest values for the drag coefficient correspond to regions where the underlying sediment is slippery. These
values can be compared to those recovered by Morlighem et al. [2013] who plot values of the square root of
drag coefficient 𝛽 . To assist comparison with results of Morlighem et al. [2013], we also provide a plot of the
square root of 𝛽 in Figure S1 in the supporting information. Our values of 𝛽 are slightly higher in central regions
of East Antarctica, but mainly where the sliding speed is anyway very small. Our values exhibit more spatial
variability from place to place, which may reflect differences in the inversion method, or in the approach to

Figure 4. The difference between the model and the satellite observations of the rate of elevation change: (a) before
surface relaxation and (b) after surface relaxation. White areas have no valid data for the comparison.
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Figure 5. Histogram of the absolute difference between the model velocities and the satellite velocity observations on a
logarithmic scale: (a) before surface relaxation and (b) after surface relaxation.

regularization. On the faster sliding ice streams we recover values below 100 Pa m−1 a, with a spatial pattern
very similar to that identified by Morlighem et al. [2013].

It is worth emphasizing that although we invert for the drag coefficient 𝛽 in a linear sliding law, this drag
coefficient 𝛽 could itself be a function of the local sliding velocity if the sliding law is nonlinear. To test whether
geographical variations lend any support for a nonlinear sliding law, we plot the basal drag coefficient against
basal sliding speed on a logarithmic scale (Figure 8). The basal drag coefficient can change by a factor of 1010

depending upon location. Contours of the basal shear stress (the product of the drag coefficient and the basal
sliding speed) are also shown in Figure 8. If all the plotted data lay precisely along one of these contours, then
basal drag could be characterized by specifying a uniform basal shear stress, which would simplify modeling
[e.g., Bueler and Brown, 2009; Schoof , 2010]. At first glance the glaciological rule of thumb that basal shear
stress is roughly 1 bar or 100 kPa has some merit. Even so, the basal shear stress varies by more than 3 orders
of magnitude from less than 1 kPa to more than 1 MPa, so the basal drag cannot be represented well either
by a uniform drag coefficient or by a uniform yield stress throughout Antarctica.

The geographical variations in basal shear stress are shown in Figure 9. There is a general pattern of higher
basal shear stress around the margins of East Antarctica and lower values in the interior. In central East
Antarctica, the ice is thick enough to insulate the ice and geothermal heating allows the basal temperature
to reach the pressure melting point [Pattyn, 2010]. The water produced acts to lubricate the base of the ice
sheet, lowering basal shear stress. As an example, low basal shear stress is recovered at the location of Lake
Vostok in East Antarctica, where the ice is known to be afloat. Nearer the margins the ice is thinner, and it is
more likely that the ice sheet is frozen to its base [Pattyn, 2010], producing high basal shear stress. In West
Antarctica, the basal shear stress is low for ice streams that are known to be underlain by water-saturated
sediment [e.g., Vogel et al., 2005].

Figure 10 shows the basal shear stress normalized by the ice overburden 𝜌igh, plotted against a nondimen-
sionalized sliding velocity ub∕u∗, where u∗ = l∗B−n

b (𝜌igh)n, with ice stiffness at the bed Bb from our inversion,
and l∗ = 1 m. A simple nonlinear sliding law as proposed by Weertman [1964] would appear in Figure 10 as

Figure 6. Histogram of the absolute difference between the model and the satellite observations of the rate of elevation
change on a logarithmic scale: (a) before surface relaxation and (b) after surface relaxation.
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Figure 7. The basal drag coefficient in Antarctica from the
inversion.

a straight line if factors such as obstacle size
and spacing were assumed uniform through-
out Antarctica. The scatter in Figure 10 shows
that such a simple polynomial sliding law
cannot represent basal drag in Antarctica
unless geographical variation in the geom-
etry or spacing of controlling obstacles is
allowed.

Theories of subglacial cavitation [Lliboutry,
1968; Schoof , 2005; Fowler, 2010] predict that
basal shear stress 𝜏b should not only be
a function of basal sliding velocity ub but
should also depend on the basal water pres-
sure pw . A theoretical investigation of cavita-
tion led Schoof [2005] to propose a drag law
that can be written as

𝜏b

𝜌igh
= C[r−n + u∗

ub
]−1∕n, (42)

where drag 𝜏b acts in the opposite direction to the sliding velocity ub, u∗ = l∗B−n
b (𝜌igh)n is a velocity scale, l∗

is a length scale associated with cavity depth, C is a dimensionless constant smaller than the maximum bed
slope, and r = N∕(𝜌igh) is the ratio of effective pressure defined by N = 𝜌igh − pw to the ice overburden 𝜌igh.
If we assume that points near the upper envelope of our observations have sufficiently low water pressure
that the effective pressure is approximately equal to the overburden, so that r ≈ 1 [cf. Jay-Allemand et al.,

Figure 8. The basal drag coefficient from the inversion plotted
against sliding velocity at the bed on a logarithmic scale.

2011], then our results are approximately con-
sistent with a sliding law of the form (42), with
l∗ = 1 m and C = 1. Contours of r derived using
these values are plotted. Values from grid cells
where subglacial lakes have been identified by
Wright and Siegert [2012] are plotted in red. These
generally correspond to low values of r predicted
by the theory, as would be expected for ice that
is floating or very close to floatation. Based on
these contours, many locations in Antarctica not
identified as subglacial lakes are also predicted
to have low effective pressure, close to floatation,
provided that l∗ = 1 m and C =1 are taken as rep-
resentative values. We should point out though
that in addition to variations in r, geographical
variation in the parameters l∗ and C might also be
expected, so these results do not uniquely con-
strain the basal water pressure. Nevertheless, from
theory and observations it seems likely that vari-
ations in the effective pressure could be responsi-
ble for much of the geographical variation in basal
shear stress shown in Figure 9.

In summary, the geographical variations in slip-
periness from our inversion are not represented
well by a linear sliding law, a Weertman sliding
law, or a uniform yield stress, unless geographical
variations in parameters are allowed. There is evi-
dence that variation in subglacial water pressure
may control these geographical variations. Better
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Figure 9. The basal shear stress in Antarctica from the inversion.

models of the subglacial hydrological
system, and independent information
about the geometry of the bed, will
be needed to physically characterize
all the factors controlling basal drag
without ambiguity. In the meantime,
simplified models of basal drag cali-
brated using inverse methods represent
a clear advance over simple sliding
laws with geographically uniform coef-
ficients. Furthermore, these inverse
methods presently provide the only
spatially distributed estimates of basal
drag and basal velocity that are suitable
for testing more complicated models of
the subglacial environment.

Figure 11 shows the ratio of horizontal
flow speed at the bed to horizontal flow
speed at the upper surface. Values close

to unity give an indication of where the ice sheet is sliding freely over water or slippery sediment with little ver-
tical shearing within the ice. This is generally the case for fast-flowing ice streams, but the ratio also approaches
unity in parts of East Antarctica, revealing regions there where the motion in is dominated by sliding. Lower
values indicate stronger vertical shearing within the ice. On broad scales, similar features to those recovered
by Morlighem et al. [2013] and Sergienko et al. [2014] are seen in this map. The locations of the subglacial lakes
identified by Wright and Siegert [2012] are also shown on this plot.

Figure 12 shows the depth-averaged ice viscosity from the inversion. As mentioned above, values of ice stiff-
ness B on grounded ice were allowed to vary within an order of magnitude of the initial guess by selecting
a particular value for the step-size parameter q. The results shown are for a value of q = 0.01. We have not
assumed that ice stiffness is known perfectly on the grounded ice because this seems likely to overestimate
the ice stiffness in shear margins where ice becomes damaged. Allowing ice stiffness B to depart from the
initial guess on grounded ice may also compensate for errors caused by uncertainty in ice temperatures.

Figure 10. The basal shear stress from the inversion, normalized by
overburden pressure and plotted against nondimensional sliding
velocity at the bed on a logarithmic scale. Contours of r, the ratio of
effective pressure to overburden, predicted by a theory of cavitation
[Schoof , 2005] are shown. Values from grid cells where subglacial lakes
have been observed by Wright and Siegert [2012] are shown in red.

Varying q on grounded ice while keep-
ing p fixed alters the relative tendency
to adjust either B or 𝛽 during the inver-
sion. For the same number of iterations
a smaller value for the step-size param-
eter q, such as q = 0.001, would con-
strain the ice stiffness B to be closer to
the initial guess B0 and compensating
changes would then be made to the
basal drag coefficient 𝛽 . On the float-
ing ice shelves the basal drag can be
assumed negligible, so these viscosities
can be estimated more reliably than
those on grounded ice. The inversion
allows the model to represent damaged
zones produced by shearing at the mar-
gins of floating ice shelves.

Figure 13 shows a higher-resolution
example of our inversion applied to
Bedmap2 data for the surface elevation
and ice thickness [Fretwell et al., 2013].
This limited-area inversion covers Pine
Island and Thwaites and Smith glaciers
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Figure 11. The ratio of flow speed at the bed to flow speed at the
surface of the ice sheet. Triangles show subglacial lakes identified by
Wright and Siegert [2012].

and was performed at a higher resolu-
tion of 2 km. A zero-flow constraint was
applied at the ice divide. Movie S1 in
the supporting information shows mul-
tiple slices through the ice, revealing
the complex velocity structure in this
region. Where the flow speed is fastest,
it does not change much between sur-
face and the bed. In these regions, mod-
els that neglect vertical shearing [e.g.,
Joughin et al., 2014] should give reliable
results. However, the fast-sliding regions
are interleaved with regions of slower
sliding. These often coincide with high
points in the bed elevation, possibly
because thinner ice provides less insula-
tion and the bed remains frozen. Alter-
natively, basal topography might affect
the subglacial hydrology or availability
of sediment. To model the evolution of

the entire ice sheet will require models (as described by this study or Goldberg, [2011]) that can represent
vertical shearing in the slowly sliding regions as well as stretching and lateral shearing where sliding is fast.

9. Conclusions and Further Developments

By using inverse methods, we have estimated the basal drag coefficient and the ice stiffness in Antarctica.
These are key parameters needed to initialize forecasts of how the ice sheet will evolve in future. Our
motivation is to provide more realistic dynamical simulations of how the ice sheet changes over time and
improve forecasts of the contribution that Antarctica will make to global sea level.

We have shown that an algorithm originally developed for electric impedance tomography [Kohn and
Vogelius, 1984; Chaabane and Jaoua, 1999] and adapted to Stokes flow [Arthern and Gudmundsson, 2010] can
be used with vertically integrated models [Goldberg, 2011] to invert for the basal drag coefficient and the
viscosity of the ice.

The basal drag coefficient is extremely variable from place to place. Our recovered values change by factors
exceeding 1010 depending upon location. The relative variations in basal shear stress are smaller. However, no

Figure 12. Depth-averaged viscosity in Antarctica from the inversion.

simple sliding law prescribing basal
shear stress as a function of basal veloc-
ity is able to represent its variations.

In general, basal shear stress is lower
in central East Antarctica, and close to
previously identified subglacial lakes,
where thermal insulation by thick ice
allows the basal ice to reach the pressure
melting point. This is consistent with
theories of cavitation that predict that
subglacial water pressure should pro-
vide an important control on basal drag.
Basal shear stress is higher in coastal
East Antarctica where basal ice is more
likely to be frozen [Pattyn, 2010].

Our recovered velocities support the
finding that extensive regions in East
Antarctica move by basal sliding rather
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Figure 13. A cutaway three-dimensional view through Thwaites
glacier showing flow speeds. The upper half of the cutaway figure
shows the surface flow speed plotted at the level of the surface
elevation. The lower half shows the basal sliding speed plotted at the
basal elevation. Regions of slow basal sliding often correspond to
regions where the bed is elevated. Contours at 100 m intervals
indicate surface elevation. A vertical slice through Thwaites glacier
(shaded) illustrates how the ice thickens toward the interior of the
ice sheet.

than internal deformation [cf. Morlighem
et al., 2013; Sergienko et al., 2014]. On broad
scales our approach recovers basal drag
coefficients similar to an adjoint-based
method [Morlighem et al., 2013]. There are
differences on finer scales, and these may
be related either to the differences in the
inverse methods used, differences in the
models, or differences in the approaches to
regularizing the inversion.

Additional work will be needed to fully
characterize the state of the ice sheet with-
out ambiguity. This applies especially to
the regularization of the inversion, which
can affect the recovery of features at short
spatial scales, and to the simultaneous
inversion of basal drag coefficient and ice
viscosity on grounded ice, so that damaged
zones in the shear margins of ice streams
can be represented. Since the available
data do not allow unique determination of
basal drag and viscosity on grounded ice
without additional assumptions, and since
these parameters will affect the forecast of
the ice flow in any forward simulation, it will
be important to explore different ways of
regularizing this ill posedness, and the con-
sequences that this has for simulations of
the future.

The approaches described here could be developed further. The higher-resolution inversion using Bedmap2
data shown in Figure 13 could be repeated elsewhere in Antarctica. The internal ice temperatures from
Pattyn [2010] provide a reasonable estimate of temperatures, but a more consistent procedure would be to
solve for temperatures using the exact velocity field that we derive from the inversion. Even then, uncertainty
in the geothermal heating would mean that temperatures are uncertain. More recent satellite altimetry from
CryoSat-2 [McMillan et al., 2014] could also be introduced. As the length of time spanned by the instrumen-
tal record becomes longer, it will become important to include the temporal dimension in the initialization
procedure [e.g., Goldberg and Heimbach, 2013; Larour et al., 2014].

The results of our inversion provide insight into the flow of the Antarctic ice sheet. They highlight the impor-
tance of the subglacial hydrology and the thermal regime in controlling basal drag in Antarctica. It seems
possible that basal shear stress could vary in time if the basal water pressure responds to subglacial lake
drainage or rearrangement of the hydrological system, so efforts to model the subglacial hydrology in Antarc-
tica and how it evolves may become increasingly important. In West Antarctica, the association between
regions of slow basal sliding and regions where the bed is elevated suggests that the influence of the under-
lying topography on the thermal or hydrological regime is an important factor in controlling the basal drag.
The relative importance of thermal and hydrological controls on these variations in sliding merits further
investigation. The information about the basal sliding from our inversions would assist such studies.
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