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Abstract 15 

Globally, the legume-rhizobia symbiosis, contained within specialised organs called 16 

root nodules, is thought to add at least 30 Tg N annually to agricultural land. The 17 

growth and functioning of a modern white clover (Trifolium repens cv. Crusader) and 18 

red clover (T. pratense cv. Merviot) cultivar were investigated in current and future 19 

ozone scenarios in solardomes. Both cultivars developed leaf injury and had significant 20 

reductions in root biomass and root nodule number in response to ozone, with Crusader 21 

also displaying a reduced size and mass of nodules. In-situ measurements of N-fixation 22 

in Crusader by acetylene reduction assay revealed reduced N-fixation rates in a future 23 

scenario with an increased background and moderate peaks of ozone. The implications 24 

for the sustainability of temperate pasture are discussed. 25 

 26 

Capsule: ozone effects on the growth and functioning of clover cultivars 27 

Keywords: clover; nodulation; ozone; nitrogen fixation: pasture; background ozone  28 

Introduction 29 

Nitrogen (N) fixation by legumes (Fabaceae) is of vital agronomic importance. On a 30 

global scale, the legume-rhizobia symbiosis, contained within specialised organs called 31 

root nodules, is thought to add at least 30 Tg N annually to agricultural land (Herridge 32 
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et al. 2008). At present, legume crops account for ~15% of utilised arable land area 33 

(FAO, 2013), constituting the primary source of dietary protein for a substantial 34 

proportion of the human population. Legumes are also an essential component of many 35 

pasture systems; improving the protein content, nutritional value and uptake of forage, 36 

as well as providing ancillary benefits to the structure and long-term fertility of soils 37 

(Parsons & Chapman, 1999). In temperate regions of Europe, Oceania and the 38 

Americas, clovers (Trifolium spp.) are the most important pasture legume. Surprisingly, 39 

given the agricultural importance of clover, little attention has been paid in recent 40 

decades to the fact that Trifolium spp. are amongst the most sensitive known to ground-41 

level ozone pollution (e.g. Hayes et al. 2007). Worryingly, concentrations of 42 

tropospheric ozone have risen in that time over arguably all of the clover-growing 43 

regions of the world (The Royal Society, 2008). The potential for losses in quantity and 44 

quality of pasture forage, with a concurrent need for increased usage of artificial 45 

fertiliser in current and near-future ozone regimes, formed the motivation for this study. 46 

At present, background levels of tropospheric ozone are high enough to damage 47 

sensitive crops across the Northern Hemisphere (Mills et al. 2011a), with a mean 48 

concentration of 30-40ppb representing a doubling of the pre-industrial background 49 

(Vingarzan, 2004). In respect of its threat to agricultural production and food security, 50 

tropospheric ozone is the most important air pollutant (Avnery et al. 2011; Mills et al. 51 

2011a; Wilkinson et al. 2011). Ozone damage occurs in plants via the induction of 52 

oxidative stress, leading to foliar injury, impacts on gas exchange, photosynthesis, 53 

growth and eventual yield (Wilkinson et al. 2011). 54 

Grassland systems and constituent species have been identified as particularly 55 

sensitive to ozone pollution (e.g. Hayes et al. 2007; Mills et al. 2007). Indeed, 56 

numerous studies have highlighted the complex response of managed grasslands to 57 

ozone (for reviews see Bassin et al. 2007 & Fuhrer, 2009), with pasture forage 58 
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susceptible to reductions in quality and yield, as well as shifts in species composition, 59 

with uncertain effects upon  the carbon (C) sink strength of grassland systems (see Mills  60 

et al. 2012). Most previous experiments on ozone effects on clover were conducted in 61 

the 1970s and mid-1990s, usually with ozone profiles exhibiting high peaks and a low 62 

baseline concentration, no longer representative of current ambient conditions in 63 

Europe.  Due to the improved control of precursor emissions, local peak concentrations 64 

of ozone have decreased in Europe in the last 20 years, whilst the baseline has steadily 65 

risen, in part due to the hemispheric transport of ozone precursors from other regions 66 

(Parrish et al. 2012). Furthermore, previous studies often used relatively high ozone 67 

concentrations, delivering unrealistically acute dosages (e.g. Letchworth & Blum, 1976; 68 

Blum et al. 1983). Results from studies with mixed-species swards are highly complex 69 

and range from a gradual reduction in yield of the Trifolium fraction to no overall effect 70 

on botanical composition (e.g. Blum et al. 1983; Rebbeck et al. 1988; Heagle et al. 71 

1989; Fuhrer et al. 1994; Ashmore & Ainsworth, 1995; Pleijel et al. 1996; Nussbaum et 72 

al. 1995; Wilbourn et al. 1995; Gonzalez-Fernandez et al. 2008; Hayes et al. 2009). 73 

Differential sensitivity to ozone induced foliar injury within Trifolium spp. lends utility 74 

for their use as ozone biomonitors (Mills et al. 2011b). 75 

Nodulation in legumes is primarily controlled by long distance root and shoot-76 

derived signalling (termed autoregulation of nodulation (AON)) (Mortier et al. 2012). A 77 

complete understanding regarding the molecular nature of AON signalling, and more 78 

generally, the role of C and N supply in the determination of nodule number, remains 79 

obscure (e.g. Ludidi et al. 2007; Mortier et al. 2012). N-fixation is an energy-intensive 80 

process, and nodules in legumes are a strong sink for assimilates, such that root and 81 

shoot growth may be suppressed in hypernodulating mutants (e.g. Ito et al. 2007; 82 

Yoshida et al. 2010). Superfluous nodulation is regulated by a shoot-derived inhibitor 83 

(SDI), with the long-distance transport and differential concentration of auxin, 84 
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brassinosteroids and jasmonic acid (JA) suggested as likely candidates for the SDI 85 

signal (Mortier et al. 2012). Nodulation is also determined by local hormonal 86 

regulation, with JA, abscisic acid (ABA) and ethylene together acting as local negative 87 

regulators of nodule initiation (Mortier et al. 2012). 88 

Ozone-impacts on nodulation or N-fixation have been shown in several legumes 89 

including soybean (Tingey & Blum, 1973; Reinhart & Weber, 1980; Jones et al. 1985; 90 

Pausch et al. 1996), peanut (Ensing et al. 1985; Cong et al. 2009) and beans (Manning 91 

et al. 1971; Blum & Heck, 1980). Research by Blum & Tingey (1977) does not support 92 

a significant direct influence of ozone on legume root nodules, with reduced 93 

photosynthate translocation suggested by this, and other studies, as the cause for a 94 

reduction in nodule growth (e.g. Tingey & Blum, 1973; Reinhart & Weber, 1980). 95 

Stable isotope studies by Pausch et al. (1996), and Cong et al. (2009), also attribute 96 

ozone impacts on N-fixation to a reduced availability of assimilate.  However, relatively 97 

few studies have directly addressed the impacts of ozone on clover nodulation; still less 98 

having explored the mechanistic basis of these effects, and the potential impacts on 99 

pasture sustainability caused by the current and near-future concentrations of ozone. 100 

Letchworth & Blum (1976) reported a reduction in nodule growth in T. repens in 101 

response to acute exposure in closed chamber studies, although nitrogenase activity per 102 

nodule, and per plant, was not significantly altered. In contrast, Ensing et al. (1982), and 103 

Montes et al. (1983), in open-top-chamber studies, reported ozone-induced reductions 104 

in N-fixation in T. pratense and T. repens respectively. Further, ozone-induced 105 

reductions in total N or % N in T. repens biomass are reported by Letchworth & Blum 106 

(1976), Blum et al. (1983) and Montes et al. (1983), with some studies reporting some 107 

effect upon the crude protein content (e.g. Blum et al. 1983; Fuhrer et al. 1994; Sanz et 108 

al. 2005) and digestibility (e.g. Fuhrer et al. 1994; Sanz et al. 2005; Muntifering et al. 109 

2006; Gonzalez-Fernandez et al. 2008) of Trifolium forage. Ozone impacts may occur 110 
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in earliest root tip development in Trifolium spp. (Vollnes et al. 2010), whilst infection 111 

by rhizobia may afford some level of protection to ozone impacts on growth relative to 112 

non-inoculated controls (Miller et al. 1997). 113 

Given the considerable agronomic importance of clover, there is a need to update and 114 

expand our understanding of the influence of ozone on nodulation and N-fixation in 115 

current clover cultivars. In this study, the effects of ozone on the injury, stomatal 116 

conductance (gs) and biomass accumulation of T. repens and T. pratense cultivars, 117 

recommended for general use in grazed leys (British Grassland Society, 2013) are 118 

assessed, with ozone exposure profiles representing a realistic range of reduced peak 119 

and increased baseline scenarios. The effect of ozone on the nitrogenase activity of the 120 

T. repens cultivar is also determined in-situ, and potential implications for the 121 

sustainability of temperate pasture are discussed.  122 

 123 

Materials and methods 124 

Clover cultivars 125 

T. repens cv. Crusader, a medium-leaved cultivar used for frequent cutting and grazing, 126 

and T. pratense cv. Merviot, used for cutting and finishing autumn stock, (hereafter 127 

referred to as Crusader and Merviot) were sown as seeds into cell trays in compost 128 

(John Innes No. 2; J. Arthur Bowers, Lincoln, UK) in late spring 2012. Seeds were 129 

obtained from a commercial seed supplier, and originated from the UK (Wynnstay 130 

Seeds; UK). Plants were propagated in plug-plant trays in an unheated glass-house, 131 

watered by hand as necessary and thinned when appropriate to one seedling per cell. 132 

After 3 weeks of growth, seedlings of each cultivar were transferred into 5L plant pots 133 

(22cm diameter x 19.1cm depth), filled with sterile topsoil (Gravelmaster, UK), with 4 134 

seedlings arranged evenly in each pot. To introduce a soil microbe population, pots 135 

were inoculated with 200ml of a soil slurry mixture made from approximately 5kg of 136 
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soil from agricultural grassland (Abergwyngregyn, North Wales, UK, 53°14′N, 4°01′W) 137 

and 14L water. Seedlings were grown for a further 4 weeks. On 06/07/2012, 42 pots per 138 

cultivar, selected for consistent size, were then transferred to a series of 7 ‘solardomes’ 139 

(hemispherical glasshouses; 3m diameter, 2.1m high) at the CEH solardome facility 140 

near Bangor, North Wales, with 6 pots of each cultivar per solardome. 141 

 142 

Ozone system and treatments. 143 

Plants were then exposed to a range of ozone treatments based on an episodic profile 144 

recorded at a rural ozone monitoring site (Aston Hill, Wales, UK, 52°50’N, 3°03’W) 145 

with a unique treatment in each solardome. Treatments were designed to reflect future 146 

ozone scenarios, with peak concentrations reduced by more than the background (Figure 147 

1). Treatments were applied to the solardomes randomly. Plants were exposed to the 148 

ozone treatments for a three-month period, starting 11/07/2012 and finishing 149 

03/10/2012.  150 

Ozone was provided to the solardomes by a G11 ozone generator and a workhouse 8 151 

oxygen generator (Dryden Aqua, UK), with ozone added to charcoal-filtered air, and 152 

with concentration determined by a computer-controlled ozone injection system 153 

(LabVIEW version 8.6; National Instruments, Texas, US). Ozone was distributed to 154 

each solardome via PTFE tubing, with the concentration inside each solardome 155 

measured for 5 min every 30 minutes using two ozone analysers (400a, Enviro 156 

Technology Services, Stroud, UK) of matched calibration. In one solardome, ambient 157 

air temperature, photosynthetically active radiation (PAR) and vapour pressure deficit 158 

(VPD) were continuously monitored by an automatic weather station (Skye Instruments 159 

Ltd, Llandridod Wells, UK). Plants were rotated within each dome weekly and watered 160 

twice-weekly, with additional watering when necessary to maintain soil moisture 161 

content at or near field capacity. 162 
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 163 

Ozone injury 164 

After 3 weeks exposure, visible ozone injury and senescence was scored for each 165 

cultivar across each ozone treatment. The number of injured leaves (ozone injury >25% 166 

leaflet area) in a representative quarter of each pot was recorded and expressed as a 167 

percentage of the total number of leaves. 168 

 169 

Stomatal conductance (gs) 170 

Stomatal conductance (gs) of both cultivars was determined at intervals throughout the 171 

growth season across all ozone treatments in naturally fluctuating climatic conditions. 172 

All measurements were made using a porometer (AP4, Delta T Devices, Cambridge, 173 

UK), between 10:00-16:00h, on the abaxial surface of leaves displaying <10% ozone 174 

injury and senescence. Solardomes were visited in random order, and measurements 175 

were made in the presence of ozone. Soil moisture content was determined after every 176 

measurement with a hand-held soil moisture probe and sensor (ML2x ThetaProbe, HH2 177 

Moisture Meter; Delta T Devices, Cambridge, UK).  178 

 179 

Biomass harvest 180 

After 12 weeks of growth, the shoot, root and nodule mass of the plants from each 181 

cultivar was harvested. Shoot biomass was harvested for the entire pot in October. For 182 

rapidly-growing Merviot, a mid-season harvest of shoot biomass was also performed in 183 

late August after 7 weeks exposure by cutting back to 7cm. Below-ground biomass was 184 

determined from a representative quarter of each pot, due only to the extensiveness of 185 

the root system. Furthermore, below-ground biomass was determined in treatments 1, 4 186 

and 7 only, as harvest of the roots took almost 3 weeks; even with cold storage, it was 187 

considered inappropriate to store soil samples for longer than this due to the re-growth 188 
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or decomposition of root material. Nodules were excised from the root system, counted 189 

and weighed. Shoots and roots were dried for a minimum of 48 hours at 60˚C or until 190 

constant mass was achieved. Nodule biomass was air dried and sized into two 191 

categories based on maximum length (<0.1-0.7mm; 0.7->1.5mm). Root biomass, nodule 192 

biomass and nodule numbers per pot were calculated as follows: 193 

 194 

Root biomass pot-1 = (root biomass quarter-1/soil mass quarter-1)*soil mass pot-1 195 

Nodule biomass pot-1 = nodule biomass g root-1*root biomass pot-1 196 

Nodules pot-1 = nodules g root-1*root mass pot-1 197 

 198 

Mass-per-nodule, root:shoot, total biomass and root:total biomass were also determined. 199 

To allow comparison with previously published data, and to facilitate analysis of ozone 200 

effects on a UK scale, biomass variables were expressed to accumulated exposures 201 

above a threshold of 40ppb during daylight hours at canopy height (AOT40, units 202 

ppmh-1 (after Fuhrer (1994)). 203 

 204 

Acetylene reduction assays (ARA) 205 

Assessments of system nitrogenase activity were performed on Crusader in treatments 1 206 

and 7, using a method adapted from Lindstrom (1984). Two weeks prior to the assay, 207 

two sealable 400ml plastic bottles, with the bottom removed and fitted with a gas 208 

septum, were inserted to a depth of 2cm into the centre of each pot. For the assay, a 209 

10% acetylene atmosphere was generated inside one bottle by removing 10% of the air 210 

and immediately replacing it with acetylene gas (BOC, Guildford, UK). The second 211 

bottle acted as a control to determined baseline ethylene generated from the soil. 212 

Acetylene was stored and transported to the solardome facility in inert gas bags 213 

(SUPELCO, Bellefonte, US), which were vented to the atmosphere and flushed through 214 
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with N2 after use. 15 ml gas samples were taken from the bottles at 0, 4 and 8 and 24 215 

hours, with a 1ml sub-sample analysed for ethylene content using a mass-selective 216 

detector (Model 6890, Agilent Technologies, Santa Clara, US). Ethylene peak area was 217 

determined using G17O1DA analytical software (version D.00.00.38; Agilent 218 

Technologies, Santa Clara, US). Two assays were performed, in similar climate 219 

conditions, in the 10th and 11th weeks of exposure. 220 

 221 

Statistical analyses 222 

The precise ozone control system used in the solardomes allowed small changes in 223 

ozone profile to be simulated, facilitating dose-response analyses. We note that the lack 224 

of treatment replication may raise concerns about pseudo-replication. However, we 225 

believe the benefit of using more treatments outweighs this limitation, as published 226 

previously by Mills et al. 2009, Hayes et al. 2012 and others. Air flow rates are matched 227 

between solardomes, and where recorded, climatic conditions did not vary significantly 228 

from solardome to solardome (e.g. leaf temperature, see supplementary information).  229 

For consistency with existing literature, injury and gs, variables were each analysed by 230 

general linear regression, with the 3 week (for injury data) or 12 week AOT40 value for 231 

each treatment applied as the predictor variable. For biomass and ARA variables, 232 

parameters were analysed via one-way analysis of variance (ANOVA) with 12 week 233 

AOT40 values in the former and 10 and 11 week AOT40 values in the latter applied as 234 

a factor. For nodule size, each size category was analysed separately against the 12 235 

week AOT40 value for each treatment. To exclude outliers due to very high or low 236 

PAR, a cohort of gs data for Crusader (n=133) and Merviot (n=104) was selected for 237 

analysis using the 25-75% quartile range of all recorded ambient PAR data for each 238 

cultivar respectively. Post hoc Tukey’s honest significant difference tests were applied 239 

to assess pairwise differences between means where ANOVA revealed a significant 240 
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effect of ozone. Insufficient gs data was collected for the modelling of ozone flux-effect 241 

relationships. All analyses were conducted using R software version 2.15.2 (R Core 242 

Development Team, 2012). 243 

 244 

Results 245 

Ozone concentrations and climate conditions 246 

During the course of the experiment, the seven ozone treatments generated seasonal 24 247 

hr means of 33, 36, 40, 45, 51, 54 & 66ppb and AOT40 values of 0.4, 1.0, 2.7, 5.2, 8.6, 248 

11.5 and 18.5ppm h-1 (Figure 1; Table 1). Ozone concentrations increased in each 249 

treatment during the weekend reaching a maximum peak on Mondays, and a minimum 250 

on Thursdays (Figure 1). The ozone treatments successfully simulated decreasing peak 251 

and background concentrations, with greater reductions in peak than background ozone. 252 

Mean daylight (when PAR >50 µmol m-2 s-1) air temperature and VPD were 21.3○C and 253 

0.84 kPa for the study period, with maxima of 24.6○C and 1.14 kPa.  Mean daytime 254 

PAR was 521 µmol m-2s-1, with an average daily maximum of 814 µmol m-2 s-1. 255 

 256 

Ozone injury and gs 257 

Both Crusader and Merviot displayed highly significant increases in visible leaf injury 258 

with increasing ozone concentrations (p<0.001 and p=0.01 respectively) (Figure 2a), 259 

with Crusader displaying a significantly higher injury rate with increasing ozone 260 

exposure (p<0.001). Baseline injury and senescence were detectable in both cultivars in 261 

the lowest exposure treatment (24hr mean of 33 ppb, AOT40 of 0.4ppm h-1). There was 262 

no relationship between mean gs and increasing ozone in Crusader (r2<0.10; p=0.54) or 263 

in Merviot  (r2=0.21; p=0.09) (Figure 2b).  However,there was a pronounced cultivar 264 

effect, with Merviot displaying significantly higher mean gs rates than Crusader 265 

(p<0.001).  266 
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 267 

Biomass harvest 268 

Both cultivars had highly significant ozone-induced reductions in root biomass per pot, 269 

with a  decrease of 61% in Crusader (p=0.01) and 63% in Merviot (p=0.01) in the 270 

highest ozone treatment 7 relative to the lowest treatment 1 (Figure 3a). End-of season 271 

shoot biomass for each cultivar, and shoot biomass of two individual harvests of 272 

Merviot, did not display any significant responses to ozone (Figure 3b). The reduction 273 

in root biomass also manifested as proportional declines in root:shoot and root:total 274 

biomass ratios for both cultivars (Figure 3c; Table 2). Each cultivar also had  reductions 275 

in nodule number per pot, with a significant decrease of 36% in Crusader (p=0.02) and 276 

reduction of 32% in Merviot (p=0.09) (Figure 3d) in treatment 7 compared to treatment 277 

1. In Crusader, a decreased number of nodules per pot was accompanied by a 40% 278 

reduction in the proportion of larger nodules with a maximum length > 0.7mm (p=0.01) 279 

(Figure 4a). Consequently, Crusader pots had  a 36% reduction in mass-per-nodule 280 

(p=0.04) (Figure 3e) and a 60% reduction in nodule mass per pot (p=0.002) (Figure 3f) 281 

relative to treatment 1. In contrast, nodule size, mass-per-nodule and nodule-mass-per-282 

pot in Merviot were unaffected by increasing ozone (Figure 3e, f, Figure 4b). However, 283 

Merviot displayed increases of 128% in nodule number (p=0.01) and 133% in nodule 284 

mass, per gramme of root material (p=0.02), in the high ozone treatment 7 compared to 285 

treatment 1 (Table 2). Both Crusader and Merviot experienced a decline in total 286 

biomass, with a 13% reduction in the former (p=0.08) and a significant 25% reduction 287 

in the latter (p=0.01). 288 

 289 

ARA 290 

In both assays, a small amount of ethylene was detected after 0 hours, less than 1% of 291 

the amount present at the end of the incubation (not shown). In the week 10 assay, mean 292 
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ethylene evolution per cm2 of soil surface showed a trend for a reduction in treatment 7 293 

after 4 hours incubation compared to treatment 1 (p=0.06, Figure 5a). In week 11, 294 

ethylene evolution per cm2 was significantly reduced in treatment 7 after 8 hours 295 

(p=0.05, Figure 5b). No ethylene was detected in either assay after 24 hours. 296 

 297 

Discussion 298 

This study has updated existing knowledge of the effects of ozone on the growth and 299 

functioning of current clover culivars in present and near-future ozone. We report 300 

increased foliar injury and decreased biomass of a white clover (Crusader) and red 301 

clover (Merviot) cultivar, with Crusader also displaying a consistent reduction in N-302 

fixation in high ozone.. The implications of these effects are discussed below in relation 303 

to options for reduction in peak and background atmospheric ozone concentrations. 304 

In the present study, Crusader and Merviot both displayed a partitioning of ozone 305 

effects, with systemic reductions in below-ground and total biomass, and an absence of 306 

ozone impacts on shoot biomass despite the occurrence of ozone-induced foliar injury 307 

and senescence. The maintenance of growth in the shoots at the expense of root biomass 308 

has been demonstrated previously in Trifolium spp. (e.g. Letchworth & Blum, 1977; 309 

Miller et al. 1997), and is otherwise extensively reported as a common response to 310 

ozone-induced oxidative stress. Foliar injury may similarly occur in chronic ozone 311 

exposures without an effect on above-ground biomass (e.g. in potato; Temmerman et al. 312 

2002). While foliar injury in Trifolium spp. may display closer correlations with ozone 313 

flux in pasture vegetation than when related to accumulated exposure indices (Mills et 314 

al. 2011b; 2011c), clear linear relationships were found with AOT40 values in the non-315 

water limiting conditions of this study. 316 

The overall reduction in nodules-per-pot observed in both cultivars may have arisen 317 

from a general reduction in the translocation of photoassimilates to the root system, but 318 
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more specifically due to an enhanced regulation of nodulation via downstream AON 319 

(Mortier et al. 2012). A reduction in nodule growth in Crusader, manifesting in a 320 

reduced mass-per-nodule and an increased proportion of small, likely non-fixing, 321 

pseudonodules (Figure 4), would also suggest a reduced availability of assimilate in the 322 

root system. This also explains consistent differences in nodule activity (measured by 323 

in-situ ARA) in Crusader between treatments 1 and 7. In Merviot, higher gs rates may 324 

hint at a greater capacity to supply root nodules with assimilates during ozone-induced 325 

oxidative stress (Figure 2), explaining why the growth of individual root nodules was 326 

unaffected (Figure 3e; 4b). 327 

The role of phytohormones in moderating above-ground stress responses to ozone is 328 

well established, (e.g. Rao & Davies, 2001; Wilkinson & Davies, 2009; Cho et al. 329 

2011), though the influence of ozone on their below-ground action and accumulation 330 

remains poorly characterised. In Merviot, the significant increase in nodule density per 331 

gramme of root biomass may suggest a decrease in ethylene sensitivity localised within 332 

the root vasculature to maintain plant growth (Lohar et al. 2009; Mortier et al. 2012; 333 

Chan et al. 2013). Ozone-induced stress ethylene is hypothesised as a general antagonist 334 

for ABA signalling (Wilkinson & Davies, 2009). We therefore speculate that an 335 

increase in nodule density may also have arisen due to a down-regulation in ABA 336 

synthesis and/or signalling, mediated by ozone-induced increases in below-ground 337 

ethylene. The results presented, here support the synthesis of published data by Hayes et 338 

al. 2007, which indicated a lower ozone sensitivity in T. pratense compared to T. 339 

repens, perhaps due to differences in photosynthetic capacity and resilience, and/or in 340 

the production and action of endogenous defence compounds (e.g. Francini et al. 2007).  341 

In subterranean clover (T. subterranean), exposure to comparable mean 342 

concentrations of ozone  affect  forage quality in as little as 30 days (Sanz et al. 2005), 343 

with impacts in T. repens readily apparent after a 3 month period (González-Fernández 344 
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et al. 2008). However, ozone impacts on forage quality, and, in particular, the N and 345 

crude protein content of Trifolium forage, do vary, depending on exposure method and 346 

community composition, and it is unclear from the available literature how well these 347 

parameters lend to assessments of ozone sensitivity within and between Trifolium spp. 348 

(Letchworth & Blum, 1976; Blum et al. 1983; Montes et al. 1983, Fuhrer et al. 1994; 349 

Sanz et al. 2005).  To some degree, ozone impacts on leguminous N-fixation can be 350 

compensated by an increased supply and uptake of soil N in short term exposures (e.g. 351 

Pausch et al. 1996; Cong et al. 2009).  The effect of ozone on forage quality and the soil 352 

N pool, through leaf chemical composition and indirectly via reduced fixation, were not 353 

determined in this study, but are worthy of further study. 354 

The most severe impacts of ozone on clover biomass, nodulation and N-fixing 355 

activity observed in this study occurred in a weekly repeated present-day ozone profile 356 

(treatment 7). Further investigations  are  needed to determine whether these effects 357 

presently occur on a landscape-scale basis, and indeed, whether such impacts translate 358 

to measureable declines in the productivity, and hence the profitability, of pasture. 359 

Nevertheless, on the basis of this study, average reductions in N-fixation, determined 360 

after an 8 hour ARA incubation, may potentially lead to an increased fertiliser usage in 361 

the highest ozone scenario with additional costs to producers, and potentially 362 

detrimental environmental impacts. 363 

 364 

Conclusions 365 

This study has provided for the first time some insight into beneficial effects of 366 

progressive controls on ozone precursors. On the evidence, controls leading to decreases 367 

in peak ozone concentrations by ~30ppb and baseline concentrations by ~10ppb may 368 

increase root nodule biomass of white clover by as much as 45%. Controls on the 369 

emission of ozone precursors have been included in recent multi-model predictions, 370 
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suggesting a globally reduced tropospheric ozone burden by year 2030 in most relative 371 

concentration pathways (RCPs) (Young et al. 2013), with regional concentrations 372 

displaying an increased sensitivity to climate change (Langner et al. 2013). The 373 

potential impacts of ozone on the biomass, nodulation and N-fixation of clover 374 

described in this study thus provide a continuing economic and environmental incentive 375 

for controls on the emission of trans-boundary ozone precursors. 376 
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Figure 1: Average weekly ozone profile for the seven ozone treatments (see Table 1 for 630 
treatment details).  631 
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 632 
 633 
Figure 2: Effects of ozone exposure on (a) mean ozone-induced injury after 3 weeks 634 
exposure; (b) mean gs, from measurements made in weeks 4, 5, 8 & 9 where PAR was 635 
317-849 µmol m-2 s-1 (where white points = Crusader; filled points = Merviot; bars are 636 
standard errors).   637 
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 638 
 639 
Figure 3: Change in (a) root biomass pot-1 (b) shoot biomass pot-1 (c) root:shoot (d) 640 
nodules pot-1(e) mass nodule-1 & (f) nodule mass pot-1  in relation to 3 month AOT40 641 
(where white bars = Crusader; grey bars= Merviot; asterixes (*) denote a difference at 642 
the p=0.05 level after post-hoc Tukey tests).  643 
 644 
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 645 
Figure  4: Effects of ozone on nodule size in (a) Crusader; (b) Merviot (where white 646 
bars = number of nodules between 0.1mm-0.7mm maximum length; grey bars = number 647 
of nodules >0.7mm long; asterixes (*) denote a difference at the p=0.05 level after post-648 
hoc Tukey tests). 649 
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 650 
 651 
Figure 5: Ethylene evolution in (a) week 10 and (b)  week 11 ARAs (where white bars =  652 
low ozone treatment 1;grey bars =high ozone treatment 7;  asterixes (*) denote a 653 
difference at the p=0.05 level after post-hoc Tukey tests). 654 
 655 
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Table 1: Summary of ozone treatments, including minimum and maximum, and climate conditions for the duration of the experiment.  656 

Treatment 1 2 3 4 5 6 7 
24hr mean (ppb) 33 35 40 45 51 54 66 
AOT0 ppmh-1 22 23 27 30 34 36 44 
AOT40 ppmh-1 0.48 1.05 2.74 5.19 8.60 11.53 18.55 
Season min. conc. (ppb) 25 26 29 32 34 33 44 
Season max. conc. (ppb) 53 59 68 78 92 95 107 
Climate (seasonal mean) air temperature (°C) VPD (kPa) PAR (µmol m-2 s-1) 
 24hr 

mean 
Daylight 

mean 
Mean 
Max. 

24hr 
mean 

Daylight 
mean 

Mean 
Max. 

Daylight 
Mean 

Mean 
Max. 

 19 21.3 24.6 0.54 0.84 1.14 521 814 
PAR, photosynthetically active radiation; VPD, vapour pressure deficit  
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 657 
Table 2: Summary of additional biomass data. Values are means and standard errors.. Significant p values are highlighted in bold. 658 
 659 

 660 
 661 
 662 

 Crusader  Merviot  
Treatment 1 4 7    p 1 4 7    p 
Nodule number (g-1 root biomass-1) 23±6.5 14±3.0 33±4.0 0.11 14±1.5 19±2.5 32±8.5 0.01 
Nodule biomass (mg g-1 root biomass-1) 11±2.0 6±1.0 12±2.5 0.56 3.0±0.5 3.0±0.5 7.0±2.0 0.02 
Root: total biomass 0.43±0.02 0.37±0.05 0.20±0.009 0.001 0.26±0.02 0.23±0.04 0.13±0.02 0.008 
Total biomass (g pot-1) 51±1.0 57±2.0 44±0.5 0.08 71±5.0 76±4.0 53±2.0 0.01 
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