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[1] The thickness and continuity of oceanic crust is variable. Slow-spreading ridge segments often contain
areas of ‘amagmatic’ or tectonic extension, exposing areas of lower-crust and upper-mantle, and having little
or no recent volcanism. These are interspersed with areas of ‘normal’ volcanic crust generated by ‘robust’
magmatic accretion. Tectonic spreading is accommodated by displacement on low-angle extensional detach-
ment faults, forming Oceanic Core Complexes. Although ‘amagmatic’ extension appears to be common at
slow spreading rates, little is known about the mechanisms that drive the transition from magmatic spreading.
Here, we report results from a detailed study of the Mid-Atlantic Ridge (13°N-14°N) and show, paradoxically,
that despite the presence of several Core Complexes, melt production remains similar along the present-day
spreading axis, which erupts homogeneous ‘normal’ mid-ocean ridge basalt. However, melt production during
formation of the older crust off-axis was derived from substantially lower degrees of melting of a heteroge-
neous mantle. During this magmatically restricted phase, melt production was limited by source composition.
Small volumes of an enriched basalt (M1) were produced, derived from low-fraction melts of enriched
compositional heterogeneities embedded in an otherwise compositionally depleted upper-mantle, which, in
turn, erupted low-fraction incompatible-element-poor basalts (M2). As a consequence of low magma flux,
the crust was thin and insufficient to fully accommodate seafloor spreading. Faulting of this thin crust resulted
in the development of detachment faults and the formation of OCCs. Thus, we propose that periods of low melt
production, resulting directly from depleted, heterogeneous mantle drives the transition from magmatic to
amagmatic spreading.
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1. Introduction from a number of slow-spreading centers have

shown that plate-divergence is often accommodated
[2] The past 15 years has seen a dramatic change in by large displacement extensional detachment fault-
our view of the formation of slow spreading oceanic ~ ing [e.g., Dick et al., 1981; Cann et al., 1997; Smith
crust. Topographic, lithological and geophysical data et al., 2006, 2008; Tucholke et al., 2008; Escartin
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et al., 2008; MacLeod et al., 2009]. This results in
exhumation of a low-angle, domed, foot-wall massif
comprising lower crust and upper mantle peridotite
[e.g., Tucholke et al., 1998; Ohara et al., 2001;
Blackman et al., 2002; Dick et al., 2008] collectively
known as an Oceanic Core Complex (OCC).
Previously, OCCs were known to occur in magma-
poor areas such as ridge segment-ends, adjacent to
ridge-transform intersections [Dick et al., 1981],
and far from the locus of 3D mantle upwelling
[e.g., Tucholke et al., 1998; Escartin et al., 2003].
Recent evidence, however, shows OCCs are also
common at segment centers where they paradoxi-
cally indicate low magma supply or ‘amagmatic’
spreading [Dick et al., 2008; Escartin et al., 2008].
Here, where the proportion of magmatic spreading
(M) is less than tectonic spreading (T), marks a
dramatically change in normal slow-spreading mid-
ocean ridge processes [Buck et al., 2005; Tucholke
et al., 2008]: plate separation and crustal extension
become increasingly asymmetric with the majority
of strain being accommodated on large detachment
faults developed on one ridge flank, while more
‘normal’ rift valley wall faults and abyssal hills
remain on the conjugate flank [e.g., Escartin et al.,
2008]. This asymmetry of spreading and localized
high-strain leads to the exhumation of the lower crust
and upper mantle, resulting in OCC formation and
extensive deformation of the ridge flank.

[3] Despite a growing understanding of how OCCs
develop, questions remain about what initiates
them. In response to numerical models that show
a strong link between melt supply and OCC forma-
tion [Buck et al., 2005; Tucholke et al., 2008], sev-
eral hypotheses have begun to emerge:

(1) Local decreases in mantle temperature beneath
OCC areas lead to significantly lower degrees
of melting compared with magmatic sites. This
would require very small-scale (15-30km)
temperature changes in the mantle.

(2) Anomalies in the thermal and/or mechanical
structure of the crust at OCC areas restrict melt
from reaching the surface, causing magma to
be trapped at depth within the crust as dykes
or gabbro bodies.

(3) Small-scale (15-30km) variations in three-
dimensional mantle upwelling results in greater
melt production beneath magmatic areas com-
pared with OCCs.

(4) Variations in mantle source composition (e.g.,
source depletion and/or dehydration) lead to
lower degrees of melting and insufficient melt
production to sustain volcanism at OCC areas.

[4] These hypotheses are all testable by examining
the geochemistry of volcanic rocks erupted in asso-
ciation with the OCCs. Basalt geochemistry allows
us to investigate the underlying mantle composition
and temperature and estimate variations in its extent
of partial melting and the resulting magma supply.
For this purpose, we have selected a classic portion
of the Mid-Atlantic Ridge, (MAR — between 13°N
and 15°20'N) where a number of OCCs occur
(Figure 1). In particular, we investigate the formation
of a segment-centred OCC (at 13°19’N) and its rela-
tionship to mantle composition, melting and magma

supply.

2. Geology of the 13°N-15°20'N
Segment (MAR)

[5] The 13°19'N OCC is one of four OCCs identi-
fied on the MAR between 13°N and 15°20'N
[Smith et al., 2006]; the other three being centred
on 13°48'N, 13°30’N and 13°02'N. These volcani-
cally starved areas of the ridge segment are sepa-
rated along-strike by 10- to 20-km-long sections
with robust magmatic spreading axes. Differences
in their morphology, volcanic, and tectonic state
have been interpreted as representing different
stages in a life cycle of OCC evolution [MacLeod
et al., 2009].

[6] The OCC at 13°19'N MAR extends for ~11km
along the strike of the spreading axis and is consid-
ered to be in an actively forming stage with contin-
ued tectonic extension along a broad, domed, and
shallow detachment fault overlying a foot-wall core
of serpentinized peridotite (Figure 2) [MacLeod
et al., 2009]. In this area, we sampled basaltic
material both along and across the strike: from a
position just beyond the OCC breakaway (the oldest
part of the detachment fault), across the youngest
parts of the spreading axis, and back into older crust
forming the conjugate wall of the axial valley
(Figure 3). These samples provide an eruptive time
series, from initiation to (near) termination of the
OCC, and fall naturally into three tectonic groups:

1. Breakaway lavas — a cohesive unit erupted ax-
ial and subsequently moved off axis by slip on
the detachment fault.

2. Axial lavas — in situ on the current magmatic
axis.

3. Basaltic talus — hanging wall debris originally
erupted at the spreading axis and subsequently
eroded and stranded on the OCC dome as it
developed.

4. Analytical Techniques.
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Figure 1. ArcGIS processed Simrad EM-120 bathyme-
try map showing the 30 stations dredged along the MAR
(12°60'N-14°N), during Cruise JC007 of the RRS James
Cook (2007). Also sampled are the 13°19'N OCC and
adjacent magmatically-spreading neovolcanic terrains.
Red triangles — axial magmatic sites, blue squares —
axial OCC sites, black circles — off-axis samples. Black
line denotes inferred position of the current axis. For full

detail of dredge locations, see supplementary data.

[71 Whole rock major element analyses were per-
formed by WD-XRF (Phillips Magix Pro). Trace
element data were analyzed by solution ICP-MS
(Thermo X-Series). Volatile data for basaltic glass
were collected using FTIR (Nicolet FTIR Bench).
Pb, Nd, and Sr isotope ratios were analyzed by
TIMS (VG Sector 54), Pb was analyzed using a
double-spike method. For standard reproducibility,
precision, and accuracy data, see supplementary
material.

4. Results

4.1. Axial Lava Geochemistry, 13°N-14°N

[8] Major, trace-element and isotopic data for
basaltic lavas erupted between 13°N and 14°N along

the present-day MAR spreading-axis show a range of
compositions. Mildly alkali, trace-element, and light
rare earth element (LREE) enriched mid-ocean ridge
basalts [known as E-MORB — Hofinann, 1988] are
found in the vicinity of the ‘14°N MAR enrichment
anomaly’ [Hémond et al., 2006], while increasingly
depleted, more normal mid-ocean ridge basalts
(N-MORB) are found progressively southward to-
ward the Marathon fracture zone at 13°N [Donnelly
et al., 2004; Hémond et al., 2006 — Figure 4]. The
E-MORBES are enriched in elements that are incom-
patible during peridotite melting (e.g., Sr, Nb, Nd,
Ce, Zr, U, Pb, Ta and La), however, they also have
lower concentrations of similarly incompatible
elements: Y and Yb. Some lavas have larger amounts
of incompatible element enrichment that extend the
lava compositions into the ocean island basalt
(OIB) field. Although Escartin et al. [2008] argued
that similar geochemical variations could be used to
distinguish between areas of asymmetric (amagmatic)

-« - | Neovolcanic Zone 3

Active Detachment Fault

\ | corrugated Dome
Covered by Hanging
wall Talus

Back-Tilted Volcanics - [ Core Complex Dome | _

Fault Breakaway Ridge [ N

Neovolcanic Zone

Figure 2. Top: sketch map — morphological charac-
teristics of the 13°19'N OCC. Bottom: TOBI/bathymetry
Jimage of the OCC generated by Fledermaus®. TOBI
image modified from MacLeod et al. [2009].
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Figure 3. ArcGIS processed Simrad EM-120 bathymetry map showing the stations dredged on and around the
13°19”’N OCC. Red dots show dredge track start points. For full detail of dredge locations, see supplementary data.

and normal magmatic spreading along the MAR,  spreading ridge, we calculate that these lavas were
these differences in present-day axial basaltic lava  erupted ~0.5-1 Ma prior to the initiation of the
composition are not reproduced here (Figure 5), and  OCC detachment fault.

we find no systematic differences in composition of

axial lavas either opposite to or in between the OCCs. [1o] Two groups of pre-OCC basalts have been

identified: ‘M1’ (LREE enriched E-MORB) and
‘M2’ (LREE depleted N-MORB like lavas). Both
groups are compositionally distinct from the present-
4.2. Pre-OCC Lavas day axial lavas and commonly contain clinopyroxene.
[9] Lavas currently located at the OCC breakaway  In terms of their major element compositions, M2
ridge, and its conjugate on the eastern valley wall  lavas share similarities with the axial basalts, whereas
(13°19'N), were erupted on the spreading axis at ~ MI lavas have significantly higher concentrations of
some time prior to OCC initiation and subsequently ~ Na,O, K,0, P,Os, TiO,, and lower CaO (Figure 5).
moved ~9 km to their present-day off-axis position  They are also enriched in incompatible trace-elements
by seafloor spreading. Using the asymmetric plate  Sr, Nb, Nd, Ce, Zr, U, Pb, Ta, and La (Figure 6) and
separation rates given by MacLeod et al. [2009]  have LREE-enriched profiles with some heavy rare
and a palinspastic reconstruction across the  earth element (HREE) depletion (e.g., low Dy/Yb
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L]
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. _ 015
D 25 | N
5 z
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1.0 T T T 1 0.00 T T : 1
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Figure 4. Basalt major element data versus latitude along the MAR (12°60'N-14°N). Red triangles — axial magmatic
sites, blue squares — axial OCC sites, black circles — off-axis samples. Whole rock major element analyses were per-
formed by WD-XRF (Phillips Magix Pro). For standard reproducibility, precision and accuracy see supplementary data.

982



'Geochemistry
«: Geophysics WILSON ET AL.: MANTLE COMPOSITION DRIVES OCC FORMATION 10.1002/ggge.20046
) Geosystems J N ) £88¢:
A
22 - 14 -
20 &
13 .
$ 18- < .
. £
g:, 16 - g 2 C
3 e e
= ‘ 3 e
< 14 ”
11 4 N . ®
12 - ®
.
10 - 7 . 10 ® ‘ !
5 10 15 5 10 15
MgO (Wt %) MgO (Wt %)
1.0 1 35 -
. @
08 ¢ 3.1 |
® &
§° 06 § 27 .‘ @ ®
o" 04 o"
x Y- & ‘z‘ 231 e
.
021 e 10 1
0.0 : : 15 ’
5 10 15 5 10 15
MgO Wt% MgO Wt%
0.4 - 25 -
g X
0.3 1 2.0 1
.\o °
§,° 02 3 1.5 1
Q =}
o ° it
014 ® 1.0 1
0.0 . 05 . ;
5 10 15 7 12 17
MgO Wt% CaOWt%
@ Off-Axis ‘M1° MORB
e Off-Axis ‘M2' MORB
On Axis OCC MORB
On-Axis Magmatic MORB
& OCCTalus
¢ Average MORB

Figure 5. Major element concentrations of axial magmatic (red field) and axial OCC basalt (blue field), overlain with
off-axis OCC data (M1 — green/black, M2 —— yellow/black). Blue/black diamond shows average MORB data
[Hofmann, 1988]. For Na, P, K and Ti, orange diamonds show the composition of dolerite dyke samples from the
OCC toe at 13°19°N. Error bars liec beneath display markers. Escartin et al. [2008] used geochemical variation in
basaltic glass from the central MAR to distinguish between areas of asymmetric (amagmatic) and normal magmatic
spreading, with asymmetrically spreading sites having more primitive compositions, with higher Na,O and lower
CaO than symmetrical sites. These differences are not reproduced here by the present-day axial basalts. Red triangles

— axial magmatic sites, blue squares — axial OCC sites.

— Figure 7). These features indicate the M1 lavas are
derived from small degrees of mantle melting, and the
depressed Dy/Yb indicates some melting occurred
within the garnet stability field (i.e., depths >60km,
e.g. Yoder and Tilley [1962]). Positive Eu anomalies

(and high AlL,O; vs. Mg#), indicative of plagioclase
accumulation, are absent in the M1 group. They are,
however, common in M2 lavas and ubiquitous in
the axial basalts. Significantly, some relatively unal-
tered dolerite dykes that were emplaced vertically into
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Figure 6. Trace element/ratio plots illustrate bimodality of M1 (green/black) and M2 (yellow/black) basalt composi-
tional groups (13°19'N). Basaltic talus from the OCC (orange) is geochemically similar to M2. Axial data (13°N-14°N)
(magmatic — red, OCC — blue) also shown. Error bars lie beneath display markers. Trace element data were analyzed
by solution ICP-MS (Thermo X-Series). For standard reproducibility, precision and accuracy, see supplementary data.

the tilted and back-rotated mantle peridotite host-rock
forming the core of the OCC 13°19'N OCC footwall
dome, have major element geochemistry comparable
to the present-day axial basalts at the same latitude.
The vertical orientation and lack of high-grade meta-
morphism of these dykes indicates they are late-stage

intrusive bodies emplaced after the footwall had been
uplifted and partially exhumed.

4.3. Isotopic Trends

[11] M1 and M2 lavas also differ significantly from
the present-day axial basalts in terms of their Pb,
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Figure 7. REE plots show axial magmatic (red field)
and axial OCC (blue field) basalts (13°N-14°N). Off-axis
M1 (green) and M2 (yellow) basalt groups from the
13°19°N OCC also shown. Typical N-MORB [Sun and
McDonough, 1989], Global Average MORB [Arevalo
and McDonough, 2009] and MARK E-MORB [Donnelly
et al., 2004] compositions for comparison.

Nd and Sr isotope ratios (Figure 8, Table 1). M1
basalts have high 2°°Pb/***Pb and ®’Sr/*°Sr, low
Nd/"** Nd, more radiogenic 2°°Pb/***Pb ratios
than the local axial lavas and, as a result, lie on a
trend extending off the local isotopic array. The
parameters A*°’Pb/”**Pb and A?°*Pb/2**Pb describe
the distance of a sample from a point on the northern
hemiS]:z)here reference line (NHRL) with the
same “°°Pb/2**Pb (the distance being expressed in
units of 2°’Pb/%Pb and 2”*Pb/*Pb respectively
[Hart, 1984]). M1 lavas have exceptionally low
A?%8Pb/2%Ppp, extending down to less than —40,
and projecting well outside the North Atlantic
MORB array. M2 lavas lie at the less radiogenic-
end of the local Pb isotope compositions, but
are not atypical for North Atlantic MORB as a whole
(e.g., comparative data from PetDB). They also
have low ¥’St/*°Sr and high '**Nd/"**Nd, in keeping
with a time-integrated, incompatible trace-element
depleted composition (e.g., including low Rb/Sr and
Sm/Nd ratios).

[12] Talus, found scattered across the 13°19'N OCC
serpentinized peridotite dome, is thought to origi-
nate as tectonically eroded fragments of basaltic
lava, dragged off from either the OCC breakaway
ridge, the hanging wall at the OCC detachment
fault termination, or both. These fragments of lava
do not show the same range of chemical variation
seen in the in situ off-axis lavas (from the break-
away and its conjugate). Nor do they completely

resemble the adjacent axial volcanics (Figure 6).
Instead, they appear to represent fragments of lavas
erupted during a transition in volcanism from the
M2 small melt fraction lavas to the more ‘normal’
axial lavas.

5. Discussion

[13] The MAR between 13°N and 15°20'N is both
morphologically and geochemically unusual.
MacLeod et al. [2009] show that where there is a
reduction in recent volcanic activity at the spread-
ing axis, the adjacent off-axis magmatic crust is
tectonically thinned and, in places, removed by
large displacement detachment faulting and the
formation of OCCs. The OCCs here are analogous
to those commonly found at ridge segment-ends
where the lithosphere is thought to be thick, cold
and magma-starved. However, models for 3D
mantle upwelling at slow spreading ridges, like
the MAR at 45°N, predict that the segment centers
should be magmatically well supplied and have
thick crust and well-established volcanic spreading
(Lin et al. [1990]).

[14] Various models have been developed to de-
scribe OCC development, usually involving a re-
duction in the contribution of magmatic spreading
(M). However, there are few theories explaining
OCC initiation mechanisms. For example, Escartin
et al. [2008] use MgO vs. Na,O, CaO and FeO con-
centrations in basaltic glass (MAR) to distinguish
between areas of amagmatic (asymmetric) and normal
magmatic (symmetric) spreading. Although basalts
from the present-day axial sites opposite OCCs, be-
tween 13°N and 14°N MAR, have slightly higher
Na and Fe concentrations than their magmatic spread-
ing axial counterparts, the low CaO trend reported by
Escartin et al. [2008] is not found here. Nor is there
any significant compositional (incompatible trace-
element) evidence for systematically reduced melt
fraction, or isotopic evidence for systematically differ-
ent mantle sources, beneath the present-day ridge axis
at sites located opposite the OCCs when compared
with neighbouring magmatically robust spreading
sites. Thus, contrary to Escartin et al. [2008], there
is no convincing correlation between current spread-
ing style and present-day basalt geochemistry in this
section of the MAR.

[15] However, this was not the case 0.5 to 1 Ma ago;
at the time the magmatic crust that was later tectoni-
cally dissected and extended by OCC formation was
being formed. Here, at 13°19'N, off-axis basalts re-
cord magmatic conditions at the spreading ridge-axis
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and 2°®Pb/***Pb respectively [Hart, 1984]. Error bars lie beneath display markers. Pb, Nd and Sr isotope ratios were
analyzed by TIMS (VG Sector 54). For analysis details and standard reproducibility see supplementary data.

just prior to OCC initiation. The bimodal composi-
tions of these lavas (M1 and M2) differ from the
adjacent axial lavas in terms of their major and trace
element compositions and isotope ratios. This sug-
gests that they experienced different extents and
depths of melting and melting path lengths, and/or
local variations in source mantle composition.

[16] Major and trace-element data for the off-axis
MIland M2 lava groups indicate differences that are
not the result of basaltic crystallisation, e.g., some
of the most incompatible trace-element enriched
lavas are also the most primitive (highest Mg#).
Instead, differences within the off-axis lavas indicate
different extents and depths of mantle melting, or
localised variations in mantle source composition.
For example, compared with M2 basalts, the higher
Zr/Y for M1 basalts may indicate lower melt fraction
while the higher La/Sm and Nb/Zr indicate greater
mantle source enrichment [Hofmann, 1988].

[17]1 Lower Yb/Lu and higher Dy/Yb ratios also sug-
gest residual garnet in the M1 mantle source and

hence initial depths of mantle melting (exceeding
~60 km) [Hellebrand et al., 2002]. Such a situation
is analogous to the ‘cold, thick lithospheric lid effect’
invoked for the Romanch Transform Fault to ridge
intersection [Bonnati et al., 2001], where lateral ther-
mal conduction cooled and thickened the lithosphere
suppressing shallow mantle melting. As a result,
the thicker lithosphere causes deeper cessation of
melting and thus the primary magmas are composi-
tionally weighted toward a higher proportion of
melt-fractions derived from the bottom of the mantle
melting column. In contrast to the M1 lavas, the M2
basalts do not show a strong garnet effect, indicating
that the primary magmas are compositionally
weighted toward shallower melt fractions and little,
if any, melting took place in the garnet stability field
(Table 1). Such magmas would result if the litho-
sphere was thinner and hence less cold such that
mantle melting could continue to shallow astheno-
spheric depths.

[18] While the common presence of primitive
(high-Mg) clinopyroxene in the OCC basalts might
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Table 1. Average Major, Trace Element, and Isotopic Basalt Compositions for the 13—14°N Area of the MAR.

M1 M2 Axial M1 M2 Axial
Si0, (Wt%) 48.79 49.71 49.50 Sm 4.97 3.10 3.13
TiO, 1.81 1.40 1.26 Eu 1.70 1.11 1.14
ALOs 14.84 15.22 15.47 Gd 5.24 3.91 3.83
Fe,0; 10.29 10.25 10.45 Tb 0.82 0.69 0.67
MnO 0.16 0.17 0.17 Dy 4.79 4.44 426
MgO 8.60 8.32 8.06 Ho 0.92 0.94 0.90
Ca0 11.04 11.29 11.44 Er 2.48 2.68 2.55
K,O 0.67 0.37 0.32 Tm 0.34 0.40 0.38
Na,O 2.65 237 2.34 Yb 2.13 2.57 2.45
P,0s 0.32 0.18 0.16 Lu 0.31 0.38 0.37
SO; 0.14 0.15 0.19 Hf 3.60 2.14 2.24
Li (ppm) 4.90 5.19 5.11 Ta 1.88 0.53 0.61
Sc 29.13 30.95 38.70 Pb 1.57 0.79 0.87
Rb 13.01 420 6.11 Th 1.75 0.32 0.69
Sr 353.84 140.03 188.02 U 0.62 0.19 0.25
Y 26.32 25.87 25.65 H,O 0.60 0.27 0.38
Zr 167.20 86.17 92.30 206py,204py, 19.32 18.55 18.82
Nb 32.53 7.98 11.21 207py,204py, 15.60 15.51 15.54
Cs 0.18 0.08 0.08 208py,204py, 38.73 38.05 38.36
Ba 192.46 49.67 76.37 d7-4 1.95 0.66 0.59
La 19.18 5.81 7.56 ds-4 —25.27 —0.14 —2.41
Ce 40.13 14.33 17.34 BN/ Nd 0.51 0.51 0.51
Pr 4.97 2.13 2.42 8791/808r 0.70 0.70 0.70
Nd 20.93 10.23 11.11

All data from this study. Major elements expressed in wt %, trace elements in ppm.

indicate deep onset of crystallization (at pressures
~10 kbar), which would in turn be consistent with
a cold and thick lithosphere, alternatively primitive
clinopyroxene also may develop at relatively shallow
depths when the source mantle is highly depleted
(high CaO/Al,0O5) and as a result of melt/olivine
reaction [Suhr et al., 1998; Lissenberg and Dick,
2008; Drouin et al., 2009]. The latter is more consis-
tent with the 13°-14°N MAR mantle peridotite
which is known to be anomalously depleted [Dosso
et al., 1993; Seyler et al., 2007; Godard et al.,
2008; Suhr et al., 2008] and which shows abundant
evidence for melt-rock interaction [Seyler et al.,
2007; Pertsev et al., 2009].

[19] Alternatively, a highly depleted (low Al,O3)
source mantle with some variable enrichment would
be able to produce the variety of ‘garnet effects’
described above for M1 and M2 melts, without the
requirement for variable melt path length or depth
of onset. Isotope data (Figure 8) suggest that basalts
from 13°N to 14°N form by a combination of both
depleted MORB mantle (DMM) with enriched high
pu (HIMU)+Focus Zone (FOZO) sources. HIMU
sources are enriched in U and Th relative to Pb, with-
out an accompanying increase in Rb/Sr. M1 basalts
have high U/Pb and Th/Pb values, but Rb/Sr ratios
lie within the present-day axial basalt array. M1
basalts have trace-element compositions that are

similar in enrichment to HIMU OIB material, but
do not resemble enrichment arising from other
enriched mantle sources (e.g., EMI or EMII — see
Armienti and Gasperini [2007]).

[20] While isotope compositions for both axial and
M2 lavas form arrays between DMM, HIMU, and
FOZO mantle components, M1 basalts lie on a single
trend extending toward HIMU from a point between
DMM and FOZO. This indicates that source
(or melt) mixing, dominated by the most enriched
end-members, generated the M1 lava series. In this
sense, HIMU also appears to contribute more to the
formation of M2 basalts than to the axial array, as
is particularly evident within the A>**Pb/>**Pb vs.
206pp/2%4Ph plot (Figure 8).

[21] Isotope vs. trace-element ratio data (Figure 9)
show that M1 basalts are characterised by having
the most time-integrated enrichment (i.e., having
radiogenic Sr and Pb, and unradiogenic Nd) in
terms of their mantle source, and M2 basalts have
some of the most time-integrated depleted composi-
tions. Good correlations between isotopic ratios and
incompatible trace elements indicate that the M2
compositional array results primarily from varia-
tions in ancient, time-integrated, source enrichment
rather than more recent melting events. Similar
relationships apply to M1 basalts, but these lavas
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form compositional arrays that are discordant to
both axial and M2 lavas, suggesting significant
contributions from different enriched end-member
sources, and a reduced contribution from UDMM
relative to the M2 lavas. This supports the findings
from the isotope data that the formation of M1 mag-
mas can be attributed to mixing primarily between
HIMU and FOZO.

[22] Basaltic talus from the dome of the 13°19'N
OCC, which was erupted at the magmatic axis

and subsequently broken up and deposited on the
detachment surface, has trace element compositions
similar to the M2 basalts. However, it is composi-
tionally distinct from the M1 lavas supporting the
notion that, based on our isotopic data, M1 melts
were produced for only a brief period in time prior
to the initiation of the OCC.

[23] The extreme compositional bimodality of the
13°19'N OCC lavas provides an insight into their
eruption sequence. Broad compositional ranges in

988



Geochemistry
Geophysics

Geosystems g/r

<

WILSON ET AL.: MANTLE COMPOSITION DRIVES OCC FORMATION

10.1002/ggge.20046

MORB are commonly produced where small
amounts of coexisting melt are infrequently tapped
and mixed. However, the distinct bimodality
between M1 and M2 lavas further suggests that these
different melt batches remained isolated from each
other as they percolated through the upper-mantle
and crust. Both the diversity of melt compositions
and their relatively unmixed character are compatible
with low extents of melt production from a
heterogeneous mantle source. We suggest that,
initially, M1 melts were formed when a region of
mantle beneath the ridge axis containing small het-
erogeneities (veins) of more fusible HIMU-FOZO
material (eclogite and/or pyroxenite) was melted.
As a result, the mantle was cooled by both advective
heat loss, as the melts migrated upwards, and by
latent heat of fusion resulting in a hiatus of melting.
Following this hiatus, as mantle upwelling pro-
gressed, small-fraction melting of the now cooler
and ultra depleted MORB mantle (i.e., UDMM) pro-
duced M2 type magmas. This processes generated
the bimodal chemistry, geographical distribution
and temporal evolution of the 13°19'N OCC basalt
types seen today.

5. Geochemical Modeling

[24] To test the idea that M1 and M2 magmas were
derived from different melt fractions and mantle
compositions, we use simple a fractional melting
model [Shaw, 1970; McKenzie and O’Nions,
1991]. The model assumes a range of homogeneous
mantle sources formed by different combinations of
HIMU [Hannigan et al., 2001] and UDMM
[Workman and Hart, 2004]. For simplicity, the
model adapts a single set of mineral modes for all
combinations of DMM-HIMU, but varies the
proportion of garnet in the source (regardless of
whether this arises from deep melting within the
garnet field, or by shallower melting of enriched
veins carrying a ghost garnet signature into a low-
Al,O3 harzburgitic host). Here, we find that a
HIMU-enriched UDMM source composition repro-
duces our melts better than average/depleted
UDMM variants. This enriched melt composition
is generated assuming closed-system melting of a
homogeneous mantle source, whereby energy or
heat can be transferred to or from the surroundings,
but no melt can leave the system. This results in
early saturation in Mg-rich clinopyroxene in melts
that closely matching our observed, primitive clino-
pyroxene-bearing basalts. The addition of a clino-
pyroxene-rich component (not normally present in
DMM) is consistent with metasomatic processes

such as refertilizing of the mantle by small melts,
and corroborates evidence of melt-rock interaction
found in dredged peridotites from the region [Seyler
et al., 2007; Pertsev et al., 2009].

[25] Inverse modelling of the lavas at 13°19'N
shows that the addition to the mantle of a third
(enriched) component, which increases its middle
rare earth element (MREE) content, significantly
improves the fit of the binary DMM-HIMU source
melting model to natural M1 lava compositions
(Table 2, Figure 10). In these lavas, the propor-
tional contribution of the third component appears
to be significant. The addition of this third compo-
nent(s) is not ‘special pleading’ and compliments
previous findings that predict the presence of mantle
components, with lower LREE and higher M-HREE
compositions than HIMU, for the central MAR
Hannigan et al. [2001]. The results from our own
models also predict a (0-5%) contribution from a
low HIMU mantle component to M2 lavas, but a
much higher (20-40%) contribution from a HIMU
component for the M1 lavas. This is consistent with
our isotopic evidence, which also suggests that M1
derive from an enriched source, with a substantially
lower contribution from the more refractory UDMM
source, compared with the M2 lavas or axial lavas.
However, the difference may be partially due to
higher melt fraction melting of M2 (4—10%): higher
melt fractions from a UDMM source result in signif-
icant dilution of the HIMU component in the result-
ing cumulative melt composition. This is consistent
with our geochemical data that predict the reduction
in contribution from the HIMU component in M2 is
a result of enriched material, having been previously
melted from the source to form M1 lavas. In addition
to identifying mantle components, our modeling also
predicts a variable ‘garnet effect’ in the mantle
sources, the amount of which is linked to the extent
of partial melting. Modeled low-melt-fractions are
associated with greater garnet signatures in the
source, with M1 having an estimated 10-25%, and
M2 between 20% and 50%.

[26] Usually, high proportions of garnet in the mantle
source are compatible with fertile (Ca and Al-rich)
mantle compositions, yet the mantle underlying the

Table 2. Outcomes of Mantle Source Modeling, This

Study.

Melt ID Melt Fraction HIMU, % Length of Melt Path
M1 Lavas 3—4% 20-50 ~100-45 km
M2 Lavas 4-10% 0-5 ~100-55km
Axial 2-12% 0-5 ~100-30km
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Figure 10. Outcomes of geochemical modeling. Left — variation between natural (solid) and modelled (dashed)
basalt compositions (13°19°N). Also shown are HIMU [Hannigan et al., 2001] and UDMM compositions [ Workman
and Hart, 2004]. Right — recalculation using modified bulk source.

13°-14°N MAR is thought to be unusually refractory
[Seyler et al., 2007; Godard et al., 2008; Suhr et al.,
2008]. This suggests that the garnet effects, seen in
M1 and M2 lavas, arise from preferential melting of
enriched, ‘garnet-like’ metasomatized veins within
a host of depleted (harzburgitic) mantle, yielding
low-melt-fraction melts with a strong garnet signa-
ture, rather than actual melting of fertile garnet lher-
zolite mantle.

7. Model for OCC development —13°—
14°N

[271 OCCs are distributed throughout the Mid-
Atlantic Ridge between 13°N and 14°N, where they
are flanked by regions of normal and robust magmatic
spreading. Sonar images show that opposite the
OCCs recent volcanic activity and lava flows are ab-
sent in the rift axis, supporting the concept that OCC
development is a consequence of low melt supply.

[28] Despite the evidence for diminished volcanic
activity, basalt geochemistry shows that there are
no consistent or significant differences in melt frac-
tion for present-day axial lavas either opposite the
OCCs or in between where volcanic activity
appears robust. Instead, the calculated melt fraction
of ~12% remains broadly similar throughout the
spreading axis. It is therefore unlikely that current
variations in melt supply, possibly resulting from
fine-scale mantle upwelling, either affect or cause
OCC initiation and development in the 13°-14°N
MAR region. In contrast, however, we show that
there is a correlation between low degrees of mantle
melting, resulting in the production of thin crust
that was moved then off axis, and the initiation of

later detachment faulting that lead to OCC develop-
ment. We suggest that, for the 13°—~14°N MAR sec-
tion, this reduction in crustal thickness was a direct
result of mantle composition resulting from an
underlying mantle that was both depleted relative
to an N-MORB source and later locally refertilized
to generate a bimodal source prior to being melted.
Normal axial-wall faulting developed in this anom-
alously thin crust resulted in water ingress to the
shallow underlying mantle peridotite that altered
to serpentinite and talc resulting in strain weaken-
ing and continued displacement on the normal fault.

[29] Near vertical dykes that cut across the domed
surface of the serpentinized peridotite core of the
13°19N OCC footwall have compositions very
similar to axial lavas, suggesting that melt from
the present-day spreading axis intrudes into the
OCC footwall rather than being erupted. These
magmas may also intrude deeper in the OCC foot-
wall forming plutonic rocks [e.g., Kelemen et al.,
2004]. The sparse occurrence of gabbro (~2%) at
the 13°19 OCC (Table 3) suggests that this may
not be such a significant mechanism here,
although this may be an artefact of sampling only
the surface of the study area. It is argued that the di-
version of melt into the 13°19'N OCC footwall is
close to terminating the detachment fault while si-
multaneously reducing the surface expression of
volcanism opposite the OCC in the spreading axis.

8. Modeling of Small-scale Thermal

Anomalies

[30] We have argued that a heterogeneous mantle
composition, heat advection, and the latent heat of
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fusion during early melt-extraction from enriched
mantle streaks, all combined to reduce magma flux
resulting in the production of thin magmatic crust
that was a prerequisite to OCC formation at
13°19'N MAR. However, it is also a possible that
the low melt flux at the 13°19'N OCC was a result
of pre-existing cooler temperatures within the
underlying mantle. To investigate this, we calculate
how long a preexisting low-temperature anomaly
would survive in the sub-spreading ridge mantle
(Figure 11). In the absence of knowledge about
the size, geometry or other characteristics of the
anomaly, we only offer this estimate as a means
of testing the feasibility of preserving long-term
temperature anomalies in the subridge mantle
asthenosphere.

[31] The geographic extent of any mantle tempera-
ture anomaly underlying 13°19'N OCC is con-
strained by the ~11km width of the OCC. Using
the one-dimensional heat equation H=kA(AT/x)
[Cannon, 1984] where:

k=thermal conductivity

A =total x sectional area of conducting surface

AT=temperature difference

x=thickness of conducting surface separating the
two temperatures

[32] We calculate a thermal equilibration times for
a range of spherical temperature anomalies of be-
tween 2 and 98km in diameter with temperature
differentials (AT) of 5 to 100° K. For anomalies
10-20km in diameter, and a temperature differ-
ence (5°K), thermal equilibration times are 30—
100 ka. These times decrease substantially as AT
increases, causing the rates of thermal equilibra-
tion to increase also. These short thermal equili-
bration times suggest that anomalously cooler
mantle temperatures beneath OCC areas are very
unlikely to be long-lived and, hence, inherited
characteristics of the MAR mantle, and are there-
fore not the trigger for low melt fraction melting
episodes. Instead, we argue that preconditioning
of the UDMM mantle by major element depletion

Table 3. Rock Types and Percentage (by weight) of Rocks Sampled Per Dredge

Dredge Start

Lithology (Wt %)

Basalt Dolerite Gabbro Dunite Harzburgite Serpentine Plagiogranite Hydrothermal Minerals Talc Other*

No. Lat®

1 13.82 11.1 0 5.6 0 72.2
2 13.49 0 35.0 5.0 25.0 0

3 13.30 0 0 0 0 0
4 13.36 0 0 0 0 0

5 13.30 62.5 125 0 0 0

6 13.30 100.0 0 0 0 0

7 13.30 50.0 0 0 0 50.0
8 13.34  50.0 0 0 0 50.0
9 1332 16.7 10.0 10.0 10.0 23.3
10 13.34  69.2 2.6 2.6 0 0
11 13.27  69.7 2.7 2.6 0.1 11.7
12 13.30 100.0 0 0 0 0
13 13.32 182 6.8 2.3 2.3 56.8
14 13.33  75.0 0 0 0 25.0
15 13.07 94.1 0 0 0 0
16 13.03 61.1 0 0 5.6 333
17 12.98 100.0 0 0 0 0
18 12.96

19 12.78 100.0 0 0 0 0
20 1299 194 30.6 16.7 5.6 2.8
21 13.02 0 0 0 2.4 87.8
22 13.52

23 13.51 674 0 7.0 0 0
24 13.35 100.0 0 0 0 0
25 13.40 100.0 0 0 0 0
26 13.66 100.0 0 0 0 0
27 13.80 80.0 0 0 0 0
28 13.84 94 7.5 3.8 11.3 39.6
29 13.90 100.0 0 0 0 0
30 14.09 100.0 0 0 0 0

0 0 0 56 5.6
25.0 0 5.0 0 5.0
0 0 0 50.0 50.0
100.0 0 0 0 0
6.3 0 6.3 0 12.5
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
13.3 0 0 0 16.7
0 0 154 0 10.3
0 0 0 0.1 13.1
0 0 0 0 0
0 0 0 23 114
0 0 0 0 0
0 0 0 0 59
0 0 0 0 0
0 0 0 0 0
Dredge unsuccessful
0 0 0 0
13.9 0 0 0 11.1
4.9 0 0 24 24
Dredge unsuccessful
0 0 16.3 23 7.0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 20.0
1.9 13.2 0 94 38
0 0 0 0 0
0 0 0 0 0

*Other lithologies include sediments, Mn crusts, breccias, hyaloclastites, uncategorised peridotites and epidosite
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is the main driver for low melt fraction during M1
genesis. This, coupled with the cooling effects
caused by the extraction of the M2 melts, sup-
presses magma supply, yielding thin crust that is
more susceptible to long-lived detachment faulting
and OCC development.

9. OCC Initiation Driven by Mantle
Heterogeneity

[33] Figure 12, stages A—E, represent mantle pre-
conditioning, low melt production, crustal thinning
and the eventual formation of long-lived detach-
ment faulting at 13°19'N MAR that ultimately led
to OCC formation.

Stage (A): magmatic spreading from a locally
depleted upwelling mantle source, in which there
are some enriched veins, results in low-fraction
melting and a low flux of M1 melt.

Stage (B): Ml-type magmas, formed from the
enriched fusible veins and mixed with a little
UDMM melt, generate thin magmatic crust. The
resulting magmas are incompatible-element enriched
and have distinct isotopic signatures, dominated by
HIMU-FOZO mixing.

The removal of enriched components (during M1
genesis) promotes localized mantle cooling (by the
advection of magmatic heat and the latent heat of
fusion) and dehydration of the mantle source, sup-
pressing melting of the more depleted M2 compo-
nent due to the temperature gradient created by
the heat of fusion of the fertile (M1) component
The suppression of M2 melting, and the very low

melt fraction do not allow M1 and M2 melts to
homogenise, resulting in bi-modal volcanism and
a compositional gap.

The occurrence of only M2-type (trending to axial
type) lava compositions in talus on the OCC surface
(no M1 type) may be significant, indicating that M1
and M2 magmas did not coexist for long beneath
the spreading axis. We argue that after an initial melt-
ing episode stripping enriched material to form M1
melts, the enriched material was predominantly
exhausted. During an episode of ongoing low-degree
melting of the ascending residual mantle, only M2
type magmas continued to be formed, persisting for
some time after M1 production ceased.

Stage (C): Following M1, M2 melts continued to
be produced from a predominantly UDMM source,
preconditioned by the earlier removal of enriched
veins and cooled (by heat advection) during the
formation and removal of the M1 melts. Both M1
and M2 melt production result in low magma flux
and thin magmatic crust, and are precursory to the
initial stages of OCC growth. The current distance
from the 13°19'N OCC breakaway to the known
position of the first outcrop of mantle peridotite,
combined with the angle of rotation of the OCC,
gives a maximum estimate of mafic crustal thick-
ness of ~3.5km. This is about half the thickness
of average seismically measured oceanic crust at
segment centers (Table 4) and supports the idea that
the crust where the OCC initiated is very thin and a
product of low degrees of mantle melting. Further-
more, the scarcity of gabbro (see Table 3) in our
study area argues for a crustal thickness, comprising
predominantly pillow basalts and sheeted dykes, of
substantially less than 3.5 km.
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Stage (D): With insufficient melt supply,
during which magmatic axial spreading may have
dramatically reduced, tectonic extension is accom-
modated on nearby axial valley wall normal faults
that fracture the thin magmatic crust generated by
M1 and M2 volcanism.

Stage (E): As a result of the shallow mantle
beneath this thin crust, faulting allows easy access
of seawater, causing serpentinization, localized
strain weakening and continued slip on developing
detachment faults. As spreading continues, these
faults rotate to a shallow angle, exposing the under-
lying lower crust and ultramafic mantle, and result-
ing in OCC formation. During OCC formation, the
spreading ridge begins to sample new mantle con-
taining a higher proportion of HIMU-FOZO veins.
Melt production increases in response, and magma-
tism at the axis becomes more evident. Triangular
neovolcanic zones form and cut into the axis toward
the fault line. This volcanism will eventually termi-
nate the OCC fault, and normal magmatic spreading
will resume.

10. Conclusions

[34] Here, we argue that the development of seg-
ment-centre OCC at 13°19'N MAR s a direct con-
sequence of unusual geochemical characteristics in
the underlying mantle. At segment ends and trans-
form faults, asthenospheric heat is lost by lateral
conduction into older colder lithosphere, resulting
in lower melt production, thinner crust and the for-
mation of OCCs. However, at 13°N-14°N MAR, in
the center of the ridge segment and far from the
influences of any transform offset, extreme mantle
source depletion followed by heat loss from early
melting of enriched heterogeneous veins results in
a reduction of melt flux that, in turn, yields thinner
magmatic oceanic crust. Faulting, serpentinization
and strain weakening of this anomalous lithosphere
subsequently results in continuous slip on normal
axial wall faults, triggering detachment faulting
and OCC formation. We show that long-lived ther-
mal anomalies (mantle cold spots) cannot survive
long enough to be the cause of suppressed melt

| KEY : OCC FORMATION SEQUENCE DIAGRAM
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Figure 12. Sequential block diagram illustrating OCC development and its relation to underlying mantle composition.

Block diagrams are shown for each developmental stage A-E.
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Table 4. Average Crustal Thickness Estimates for Mid-Ocean Ridges and for Selected MAR Segments

Ridge/Region Thickness (km) Reference
Average ‘Slow’ Ridge 6.3 White et al. [1992, 2001]
Average ‘Ultraslow’ Ridge 4

Average ‘hotspot’ Ridge 10

MAR 5°S Northern Segment (segment end) 3 Planert et al. [2009]
MAR 5°S Northern Segment (segment Center) 8.5

MAR 5°S Southern Segment (OCC) 2.5-5.0

MAR 33-40°N (Segment Center) 89 Detrick et al. [1995]
MAR 33-40°N (Segment End) <34

13°19'N OCC, MAR (Segment Center) ~3.5km MacLeod et al. [2009]

production. Instead, at 13°19’N, source geochemis-
try (ultra-depleted harzburgitic mantle or UDMM)
combined with melting of a few, low-solidus
HIMU-FOZO veins, causes local cooling of the
mantle further suppressing melt fraction, further
promoting OCC formation.
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