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Abstract 

Nanogram per litre concentrations of a wide range of emerging contaminants are currently 
being detected in groundwater as well as their metabolites and transformation products. In 
some cases transformation products are found at concentrations equalling or exceeding those 
of the parent compounds.  These come from both point and diffuse sources and may enter the 
subsurface directly or through groundwater/surface water interaction. Geochemical 
conditions in the subsurface favourable to persistence and long water residence times mean 
that these compounds may pose a threat to the environment or to drinking water abstractions 
for decades to come. 
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1 Introduction 

Globally, groundwater provides the most reliable and best quality source of drinking water, it 
is therefore important to manage and protect this resource from anthropogenic contamination. 
In the context of groundwater pollution, the term ‘emerging contaminant’ (EC) usually refers 
to anthropogenic organic compounds and their transformation products, many of which do 
not currently have water quality standards. These often ‘emerge’ as a result of changes in use 
of manufactured chemicals, advances in analytical techniques, or more detailed survey and 
monitoring in the environment.  Compared to parent compounds, there are relatively few 
studies that have investigated transformation products of ECs in the aqueous environment. 
Other contaminants such as engineered nanoparticles also fall within this broad definition, 
but will not be considered here. This chapter provides a short overview of the current state of 
knowledge on the occurrence and fate of major groups of ECs and their transformation 
products in groundwater,  

Compared to surface water, pollution by micro-organics is less well characterised in 
groundwater. This is in part due to the relatively low concentrations anticipated in 
groundwater, the associated analytical challenges, and the necessary prioritisation of 
resources for monitoring/regulatory activities. However, in the last few decades there has 
been a growing interest in the deterioration of groundwater quality by ECs. To date only a 
handful of studies have considered EC transformation products in groundwater, and the vast 
majority of these are focussed on compounds derived from pesticides, as well as pollutants 
specific to military sites, airfields and landfills. However, this is a growing area of research 
for new groups of compounds, for example pharmaceuticals, ‘life-style’ and industrial 
compounds, and these are also discussed in this chapter. 

Various regulatory frameworks exist which require the monitoring of anthropogenic 
pollutants in river basins, with the overall aim of protecting the quality of water resources as 
well as dependant ecosystems. These currently cover only a small suite of organic 
contaminants, including pesticide breakdown products. Parent compounds and transformation 
products from a host of other ECs including medicines and personal care products, 
preservatives and industrial intermediates are largely unregulated. 

In the European context groundwater quality is currently regulated under the Water 
Framework Directive (WFD) (2000/60/EC), its daughter Groundwater Directive (GD) 
(2006/118/EC) and drinking water under the Drinking Water Directive (98/83/EC). The WFD 
and the GD establish environmental objectives for protecting groundwater bodies and 
ecosystems dependent on groundwater. These require that threshold values be established for 
prioritised pollutants that put the groundwater body at risk. For many EC parent compounds 
the lack of knowledge on toxicity, impact, behaviour and limited monitoring data means that 
threshold values cannot yet be set. There is even less information for their transformation 
products. 

It is proposed to extend the list of priority substances under the WFD  to include among 
others the anti-inflammatory drug diclofenac, the widely-used contraceptive ethinylestradiol, 
and perfluorooctane sulfonate (PFOS) and its derivatives (EP, 2012). The US EPA recently 
published a new contaminant candidate list (CCL-3) which included 3 pharmaceuticals 
(erythromycin, 17-ethinylestradiol (EE2), and nitroglycerin) as well as perfluorooctanoic 
acid (PFOA), PFOS and eight hormones (Richardson and Ternes, 2011). 
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2 Sources and Pathways of Emerging Contaminants to Groundwater 

A source-pathway-receptor framework is a useful way of conceptualising the risk of 
groundwater pollution by ECs, and their transformation products, from different sources. All 
three components, a source, a viable pathway and a receptor – in this case a groundwater 
body, need to be present to for a potential risk of groundwater pollution. Figure 1 highlights 
those sources of pollution and pathways which are thought to have the greatest impact on 
groundwater. 

Major sources and pathways for a range of ECs were recently reviewed by Lapworth et al. 
(2012) and are briefly summarised below. Point sources of pollution are by definition 
spatially discrete, and therefore the zone of pollution is constrained. Important examples 
include municipal sewage treatment plants and combined sewage-storm-water overflows, 
industrial effluents (manufacturing plants, hospitals, food processing plants), waste disposal 
sites (landfill sites, industrial/mining impoundments and farm waste lagoons) and septic tank 
effluent. In contrast, diffuse pollution originates from poorly defined sources that typically 
occur over broad geographical scales. Examples of diffuse source pollution include leaching 
from bio-solids and manure sources, storm-water and urban runoff, leakage from reticulated 
urban sewerage systems and aerial deposition.  

Pesticides come from diffuse agricultural and urban usage; however poor disposal and 
handling can also lead to significant point sources. It has been known for many decades that 
the soil zone, and perhaps to a lesser extent the shallow unsaturated zone, with their generally 
higher microbiological populations are the major zones for generating pesticide 
transformation products. 

Compounds applied to the soil surface will potentially migrate through the soil zone, the 
unsaturated zone and into the saturated zone (Oppel et al., 2004; Snyder et al., 2004; Zuehlke 
et al., 2004). The main processes controlling ECs during subsurface migration are sorption to 
organic matter and clay minerals, ion exchange in the soil and aquifer, and microbial 
degradation. Subsurface migration is therefore determined by a large number of factors, some 
of which are outlined below:  

 hydraulic regimes and flow-paths, e.g. by-pass flow mechanisms, depth to water table 
and thickness and nature of superficial cover 

 physical and chemical properties of the subsurface media, e.g. surface area and 
charge, and organic matter content 

 microbiological processes e.g. population dynamics and factors limiting biological 
growth 

 redox and other aqueous chemical factors such as pH and ionic strength 

 intrinsic molecular properties of the compounds, e.g. Kow and Dow 

 potential for colloid facilitated transport in the subsurface 

Rapid subsurface pathways, such as those found in karstic zones, as well as situations which 
limit natural attenuation (e.g. permeable thin aquifer cover or leaky buried septic tanks and 
reticulated sewerage systems) are important mechanisms whereby relatively high 
concentrations of ECs can be rapidly transported to depth, posing a significant threat to 
groundwater resources. Surface water-groundwater exchange (Bruchet et al., 2004; 
Osenbrück et al., 2007; Rabiet et al., 2006) and managed artificial recharge schemes  
(Drewes, 2009; Fram and Belitz, 2011) have also been shown to be significant pathways for 
groundwater contamination by ECs, and are therefore also likely to be important for 
transformation products. 
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3 Persistence in the Groundwater Environment 

Groundwater is often a very different environment from other parts of the freshwater cycle. 
Environmental conditions such as pH, temperature, pressure, redox conditions and the lack of 
light all influence microbial growth and activity. Commonly the organic content of the 
aquifer matrix is low and groundwater typically contains 1-2 mg/L of organic carbon and 
rarely exceeds 5 mg/L.  This is considered to be the main control on microbial growth in 
groundwater, which is likely to have a limited microbiological population compared to 
surface water. In unconfined aquifers groundwater may be fully saturated with oxygen, but at 
depth, or where the aquifer is confined, oxygen may be progressively depleted and a redox 
front established. As oxygen is removed we see progressive removal of nitrate and 
mobilisation of iron and manganese, and in extreme cases sulphate reduction and generation 
of methane. 

These carbon and oxygen poor environments have implications for the rate and pathway of 
organic contaminant degradation in groundwater (Langwaldt and Puhakka, 2000). Such 
processes are difficult to characterise in “undisturbed” aquifers and we must often rely on 
laboratory microcosms using disturbed matrix material. It is common for measured half lives 
in aquifers to be an order of magnitude longer than for soil or surface water.  Additionally the 
low organic carbon content means that sorption to the organic phase of the matrix will be 
much less important than for soils or surface water sediments. 

Groundwater acts as a long term reservoir with residence times of perhaps days for shallow, 
gravel aquifers, years to decades for shallow circulation in unconfined bedrock aquifers and 
decades to millennia for granular aquifers.  Residence times have been determined using a 
range of indicators such as Kr, Cl or C radio-isotopes  (Edmunds and Smedley, 2000; Shand 
et al., 2007) or chlorofluorocarbons (CFCs) or SF6 (Gooddy et al., 2006; MacDonald et al., 
2003). 

The degradation pathway can also depend on the geochemical conditions and on how the 
process is mediated, both biotic and abiotic transformation processes can be important.  Many 
organic contaminants are degraded by a combination of mechanisms proceeding at different 
rates and with different intermediates or final transformation products. For example all five 
endocrine disruptors studied by Ying et al. (2008) were microbially degraded under aerobic 
conditions with half lives of 26 days or less in aquifer sediment/groundwater microcosms. 
Under anoxic conditions little biodegradation was observed for four of them, and for the fifth 
at a lower rate. 

The different geochemical conditions and long residence times mean that it not possible to 
predict contaminant behaviour in groundwater reliably using data collected from surface 
environments, such as rivers or lakes or from soils. It is likely that there are other surprises in 
the pipeline, analogous to the protracted persistence of atrazine and its transformation 
products in groundwater almost two decades after its withdrawal for non-agricultural uses 
and some years since its complete withdrawal.   

4 Emerging Contaminants and their Transformation Products in Groundwater 

Detection frequencies for ECs in groundwater reconnaissance surveys are low compared to 
surface waters (Focazio et al., 2008; Loos et al., 2010). However, as well as pesticides and 
their transformation products there are a number of key new ECs that appear to have a global 
footprint, e.g. carbamazepine, caffeine, sulfamethoxazole, ibuprofen. Lapworth et al. (2012) 
highlighted the fact that degradates of ECs are sometimes found more frequently, and in 
greater concentrations, than their parents (e.g. cotinine, estrone, clofibric acid, and nonyl 
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phenol (NP)). While the vast majority of groundwaters contain ECs at concentrations that 
would not be considered toxic or harmful for drinking or aquatic organisms, there are still 
large variety of ECs found in groundwater and these are discussed in the subsequent sections.  

4.1 Pesticides 

Pesticides are not generally regarded as ECs as they are well-established contaminants and 
are regulated in drinking water. However in some instances, usually where adequate 
analytical methods have been lacking, problems can suddenly emerge. Metaldehyde is a good 
example of this, suddenly being widely detected in both ground and surface water in the UK, 
and in treated water, as a result of the development of a new analytical method 
(Bristol Water, 2009). 

The problem of persistent transformation products produced from partial degradation of 
pesticides in groundwater has been recognised since the 1980s (Galassi et al., 1996; 
Somasundaram and Coats, 1991). A wide range of pesticide transformation products have 
been identified in groundwater (Table 1). 

Some transformation products are more pesticidally active or toxic than their parent and some 
pesticides are formed as degradation products of other pesticides, e.g. carbendazim from 
benomyl. Transformation products are often more mobile and less susceptible to 
biodegradation than their parent compounds and as a consequence they can be detected more 
frequently or at higher concentrations in groundwater (Fava et al., 2005; Kolpin et al., 1996; 
Kolpin et al., 1998). Examples include the diclobenil metabolite 2,6-dichlorobenzamide 
(BAM) (Holtze et al., 2008),  the metabolites of atrazine (Belluck et al., 1991) and the 
glyphosate metabolite aminomethyl phosphonic acid (AMPA) (Kolpin et al., 2000). For 
glyphosate the high water solubility of both the parent and the metabolite has meant that their 
analysis was difficult. Risk assessment of pesticide transformation products in groundwater 
has been reviewed by Stuart et al. (2012). 

4.2 Pharmaceuticals 

Other than pesticides, pharmaceuticals are the most frequently reported group of ECs 
detected in groundwater (Lapworth et al., 2012). Waste waters (including domestic and 
hospital effluents) are major sources of analgesics and anti-inflammatories in groundwater, 
key pathways include managed artificial recharge and leakage from urban sewage systems 
and septic tanks  (Heberer et al., 1997; Hinkle et al., 2005; Reddersen et al., 2002). The more-
common groups of pharmaceuticals found in groundwater include analgesics, anti-
inflammatory drugs, antibiotics, anti-epileptics (e.g. carbamazepine), barbiturates (e.g. 
primidone), insecticides (e.g. DEET, the active ingredient of many insect repellents), and x-
ray contrasting agents (e.g. iopamidol), see Figure 2. Clofibric acid is also detected in 
groundwater, reportedly as a metabolite of the lipid regulator clofibrate.  In the recent review 
of Lapworth et al. (2012) analgesics were reported to occur in groundwater in the following 
order of maximum concentration; paracetamol>ibuprofen>phenazone> 
propyphenazone>salicylic acid, and anti-inflammatory drugs in the following order of 
maximum concentration; ibuprofen>ketoprofen>diclofenac. 

Maximum concentrations of antibiotics measured in groundwater from published studies  
ranged from 5.7 to 2 x 103 ng/L (Figure 2) with the major sources being waste water sources, 
landfills, septic tanks and animal waste lagoons  (Barnes et al., 2004; Carrara et al., 2008; 
Watanabe et al., 2010). The three most commonly reported antibiotics found to occur in the 
following order of maximum concentration, 
triclosan>sulfamethoxazole>lincomycin>erythromycin (Lapworth et al., 2012).  
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Veterinary medicines are an important sub-group of pharmaceutical compounds. Detections 
these compounds are often associated with leaching from farm waste lagoons, associated with 
concentrated animal feeding operations in USA, although they have also been reported in 
groundwater reconnaissance studies in Germany, USA and Switzerland (Barnes et al., 2008; 
Hirsch et al., 1999; NAQUA, 2009). The antibiotic sulfamethazine has been reported in 
groundwater in at least five separate studies, with maximum concentrations ranging from 
120–616 ng/L (Lapworth et al., 2012). Two other veterinary antibiotics reported in 
groundwater include monensin and tylosin (Bartelt-Hunt et al., 2010; Watanabe et al., 2008). 

A number of laboratory column experiments have been carried out to investigate the 
transformation of pharmaceuticals in soil and aquifer material, but very few studies have 
reported the occurrence of these compounds in groundwaters. For example, Barbieri et al. 
(2012) showed the quantitative transformation of diclofenac and sulfamethoxazole to nitro-
diclofenac and 4-nitro-sulfamethoxazole respectively in biotic nutrient rich conditions. 
Clofibric acid, the metabolite of clofibrate (cholesterol regulator), has been detected in soil 
pore waters at concentrations between 0.6-143 g/L at a site in Germany where sewage 
effluent has been applied to fields (Scheytt et al., 2007). A recent microcosms degradation 
study of the analgesic compounds phenazone and propyphenazone and their degradates by 
Burke et al. (2011) found that the degradation of six of the seven investigated compounds 
was strongly influenced by the prevailing redox conditions. 

One study in Berlin, Germany, detected metabolites of phenazone drugs (analgesics) in 
groundwater impacted by spills at a pharmaceutical production plant (Reddersen et al., 2002). 
Three phenazone-type metabolites, 1-acetyl-1-methyl-2-dimethyl-oxamoyl-2-
phenylhydrazide (AMDOPH), 1-acetyl-1-methyl-2-phenylhydrazide (AMPH), and 
dimethyloxalamide acid-(N-methyl-N-phenyl)-hydrazide (DMOAS), were detected in aerated 
groundwater in the following concentrations, 1200, 20-100 and ca. 10 (g/L) respectively. At 
the same site, Zuehlke et al. (2007) found the occurrence of metabolites of phenazone-type 
pharmaceuticals (analgesics) significantly higher than the parent compounds in treated 
groundwater as a result of degradation during filtration. AMPH, and the transformation 
products of dimethylaminophenazone (4-acetylaminoantipyrine and 4-
formylaminoantipyrine) were reported in Dutch river bank filtrates with the following 
maximum concentrations, 109, 20 and 45 ng/L respectively (de Jongh et al., 2012).    

4.3 Personal Care Products and Synthetic Musks 

A range of compounds associated with skin care products including UV blockers 
(oxybenzone and drometrizole), isopropyl myristate, phenoxy-ethanol and lilial have been 
detected in groundwater in a limited number of case studies (Snyder et al., 2004; Stuart et al., 
2011). Paraben compounds (fungicide/microbiocide) which are used in food, creams and 
other personal care products, are also found in groundwater, see Figure 2. For example, 
methylparaben has been detected relatively frequently (ca. 2%) in UK groundwaters (Stuart 
et al., 2011). The occurrence of these types of compounds in groundwater is often associated 
with waste water sources, such as septic tanks and artificial recharge of treated waste water. 
In the past the antimicrobial triclosan, now thought to be an endocrine disrupting compound 
(EDC) (Veldhoen et al., 2006), was used in PCPs such as hand soaps and tooth paste.  

The polycyclic musks, including galaxolide (HHCB), tonalide (AHTN), celestolide (ADBI) 
and phantolide (AHDI), and the nitro musks (musk xylene and musk ketone) are used as 
fragrances for personal care and household products. Their route into the environment is 
therefore predominantly in wastewater and high concentrations are found in the influents and 
effluents of treatment plants (Horii et al., 2007; Rimkus, 1999). Chase et al. (2012) detected 
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traces of HHCB, AHTN, ADBI, and AHDI in groundwater samples below a wastewater land 
application site mainly at  <5 ng/L.  HHCB was  also detected in groundwater impacted by 
sewer exfiltration (Osenbrück et al., 2007). 

The rate of mineralisation of musks in the environment appears to be low (Balk and Ford, 
1999). They are degraded to more-polar compound during water treatment and in sediments 
and the soil (Martin et al., 2007). Matamoros et al. (2009) detected HHCB-lactone, 2-amino-
musk ketone, 4-amino musk ketone, 2-amino-musk xylene in effluents. (Heberer, 2002) 
reports an oxidation metabolite, galaxolididone.  There are no reported studies targeted at 
musk transformation products in groundwater. 

4.4 Caffeine and Nicotine 

Caffeine, nicotine and the nicotine metabolite cotinine are widely detected in groundwater 
impacted by sewage effluent (Godfrey et al., 2007; Seiler et al., 1999). Swartz et al. (2006) 
showed caffeine and its paraxanthine metabolite were substantially attenuated during 
recharge of septic tank effluent. Stuart et al. (2011) found caffeine to be widely detected in 
groundwater in England and Wales (18% of 3963 monitoring sites). In their reconnaissance 
study, Barnes et al. (2008) found paraxanthine and cotinine as well as caffeine in 
groundwater. Seiler et al., (1999) did not detect caffeine metabolites or chlorinated 
derivatives in groundwater but did find dimethyl-imidazo-lidinetrione, a major product of 
caffeine chlorination in wastewater.  

4.5 Alkyl phenols and Other Endocrine Disruptors 

The branched chain alkyl ethoxylates (APEs) and polyethoxylates used in surfactants are 
regarded as resistant to biodegradation and both the parent ethoxylates and their metabolites 
have been found to persist in the aqueous environment (Montgomery-Brown and Reinhard, 
2003; Soares et al., 2008). Alkyl phenols and other APE transformation products are widely 
reported in groundwater (Table 1). 

APEs are degraded by shortening of the ethoxylate chain to AP1EO and AP2EO and by 
further transformation by oxidation of the ethoxylate chain to alkylphenoxy acetic acid 
(AP1EC) and alkylphenoxy ethoxy acetic acid (AP2EC).  It is generally assumed that the 
alkyl phenols are the most persistent metabolite but evidence is scarce and NP appears to be 
mainly formed under anaerobic conditions (Knepper and Eichhorn, 2006). Hao et al. (2010) 
showed the NP primary metabolites to be a series of short-chain alkyl phenols. Ying et al. 
(2008) measured the degradation rate of the alkyl phenols finding half lives of days for 4t-OP 
and 4n-NP in oxic water but were not able to measure any degradation in anoxic conditions.  

Many hormones now present in the aqueous environment are regarded as EDCs. These 
include sex hormones (the androgens, androstenedione and testosterone, and the estrogens, 
estrone, estriol, 17β-estrodiol (E2), 17α-estrodiol and progesterone) phytoestrogens, and 
faecal indicator and plant sterols. There are also synthetic androgens, oxandrolone and 
nandrolone, and more importantly synthetic estrogens, 17α-ethinyl estradiol (EE2) and 
diethylstilbestrol, used as contraceptives. Some of these compounds are commonly present in 
wastewater and sewage treatment effluent (Johnson et al., 2000; Standley et al., 2008).  
Degradation of E2 has been shown to take a few days under aerobic conditions, with EE2 
being slower and both much longer in anaerobic conditions (Sarmah and Northcott, 2008) 
(Ying et al., 2003). Czajka and Londry (2006) found reversible conversion of E2 to estrone 
(E1) under anaerobic conditions in lake sediment and also racemisation. 

Bisphenol A (BPA) has long been recognised as an EDC with potential exposure of humans 
through food and water, although its persistence in the aqueous environment has been unclear 
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(Ike et al., 2000). Kolvenbach et al. (2007) discuss the degradation of BPA by hydrolysis at 
the quaternary carbon atom, similar to that seen in alkyl phenols. This gives rise to both 
hydroxylated transformation products retaining the two ring structures and single ring 
phenolic derivatives. Ike et al. (2000) observed recalcitrant metabolites whereas Sarmah and 
Northcott (2008) found no metabolites. Cousins et al. (2002) observed aerobic degradation to 
be the dominant loss process with anaerobic rates being slower. Sarmah and Northcott (2008) 
found 98% of BPA was lost within 4 days under aerobic conditions in aquifer slurry/water 
whereas Ying et al. (2003) found BPA unchanged over 70 days under aerobic conditions. 
Faster degradation values in some areas were attributed to bacterial populations with a 
developed capacity to degrade BPA. Concentrations of EDCs found in selected groundwater 
studies are shown in Table 1. 

4.6 Disinfection By-products 

The route to groundwater for disinfection by-products (DBPs) is likely to be recharge by 
treated water from leakage or from managed aquifer storage and recovery (ASR). DBPs from 
reaction of chlorine with natural organic matter are predominantly trihalomethanes (THMs) 
and haloacetic acids (HAAs). In a study of the fate of THMs during ASR with reclaimed 
water, Pavelić et al. (2005) found chloroform was the most persistent THM with an average 
half life of about 65 days and bromoform the least, with HAAs generally very rapidly 
degraded.  Very long half lives were reported for abiotic processes. Degradation rates also 
varied with redox status with the highest rates in the area close to the injection point where 
groundwater was methanogenic. Pavelić et al. (2005) also highlight the possibility of 
continued formation of DBPs after recharge of disinfected wastewater as formation typically 
occurs over 10s or 100s of hours. 

Relatively high concentrations of a range of nitrosamines including N-nitrosodimethylamine 
(NDMA), extremely potent carcinogens, can also be produced during wastewater disinfection 
with chlorine and the reuse of municipal wastewater is an important area of concern (Mitch et 
al., 2003). Pehlivanoglu-Mantas and Sedlak  (2006) showed that NDMA is readily removed 
in the aquatic environment by biotransformation. However NDMA precursors can be very 
stable in effluent-dominated waters and result in unacceptable concentrations in disinfected 
water. Monitoring NDMA attenuation during groundwater recharge found half lives of 1.3 – 
7 days (Drewes et al., 2006). 

Richardson (2003) found that the change from disinfection with chlorine to ozone and 
chloramines can increase levels of other potentially toxic by-products, e.g. bromo- and iodo- 
THMs and brominated MX (3-chloro-4-dichloromethyl)-5-hydroxy-2(5H)-furanone). 

Acrylamide is used as a coagulant in drinking water treatment and has high environmental 
mobility (Conway et al., 1979).  Epichlorohydrin can be an ingredient in flocculating resins 
or pipe coatings in water supply systems. There is little published on either in groundwater 
with studies designed to assess ingress from other uses rather than from ingress of treated 
water, e.g. Labahn et al. (2007). 

4.7 Brominated and Fluorinated Compounds 

Flame retardants used in textiles, plastics and furnishing foam include a series of 
polybrominated diphenyl ether (PBDE) and polybrominated biphenyl (PBB) cogeners. The 
main route to groundwater is from landfills, municipal biosolids application to land, septic 
tanks and from the atmosphere (Gottschall et al., 2010; Levison et al., 2012; Odusanya et al., 
2009). Zhange et al. (2008) showed a measureable level of PBDE to be present at the water 
table after recharge of secondary effluent through a 40-m unsaturated zone. Polybrominated 
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compounds have been shown to accumulate in the soil (Engstrom and Arnold, 2006).  PBDEs 
are persistent in the subsurface environment as abiotic degradation is dominated by 
photolysis and microbially mediated debromination has not be demonstrated for some 
cogeners (He et al., 2006). There is also concern that the lower brominated PDBEs are more 
toxic than the parent compounds (Stapleton, 2006).  

Perfluorinated surfactants are in general use in products designed to repel dirt, grease and 
water. They include perfluoroalkane sulfonates, e.g. PFOS, perfluoroalkanoic acids e.g. 
PFOA and fluorotelomer alcohols. PFOS has been used in a diverse range of applications, 
including industrial uses, fire fighting foams and common household products, over a period 
of 50 years and is likely to have reached the environment by many routes 
(Environment Agency, 2008).  Perfluorinated compounds are widely detected in groundwater 
(Loos et al., 2010) and their ability to enter the subsurface is inversely proportional to chain 
length (Meyer et al., 2011). PFOS appears resistant to degradation (Remde and Debus, 1996) 
and exhibits little sorption. There is some evidence that some of the larger substituted 
compounds, including the fluorotelomer alcohols, can be partially degraded by chemical, 
photochemical and biological means to PFOA and PFOS. Any further degradation appears to 
involve the loss of side chains, to leave slightly smaller but essentially similar compounds. 

4.8 Triazoles 

Triazoles are corrosion and flame inhibitors commonly added to anti-icing fluids at airports 
(Breedveld et al., 2003) and include benzotriazole (BTA) and methyl substituted (tolyl) 
triazoles. They also have industrial uses as coolants, cutting and hydraulic fluids. Breedveld 
et al. (2003) showed BTA was detected in soil and a groundwater sample (1.2-1100 µg/L) 2 
years after airport activity had ceased. The triazoles are regarded as recalcitrant in the 
subsurface and  Jia et al. (2006) showed BTA was not apparently mineralised within the 
timeframe of their investigation. Liu et al. (2011) demonstrated some biodegradability under 
both aerobic and anaerobic conditions with BTA half life of 114 days under aerobic 
conditions and up to 315 under anaerobic conditions. They suggest phthalic acid, 1-methyl 
benzotriazole, 1H-benzotriazole 4-methoxy- and 1H-benzotriazole 5-methoxy- as initial 
aerobic degradation products. Under anaerobic conditions degradates are 1-methyl 
benzotriazole, dimethyl benzylamine and carbazole.  In both cases phenol is the final 
degradate.  

4.9 Naphthenic Acids 

Naphthenic acids comprise saturated aliphatic and alicyclic carboxylic acids found in 
hydrocarbon deposits (petroleum, oil sands bitumen, and crude oils). Natural groundwater 
concentrations  in oil sands regions vary from <4 mg/L up to 55 mg/L in vulnerable 
limestones (CEATAG, 1998). Naphthenic acids are likely to be persistent in the groundwater 
environment but little has been established regarding their relative degradation pathways in 
aquatic environments (Clemente and Fedorak, 2005; Headley and McMartin, 2004). Weak 
aerobic degradation has been demonstrated with trans isomers being more degradable. Side 
chains and rings are both metabolised with molecular weight and number of rings controlling 
the rate (Clemente and Fedorak, 2005). 

4.10 Explosive Residues 

Soils and waters have been found to have contain  a range of explosive residues (e.g. 2,4,6-
trinitrotoluene (TNT), 2,6–dinitrotoluene (DNT) hexahydro-1,3,5- trinitro-1,3,5-triazine 
(RDX) and octahydro 1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)) derived from use, as well 
as the poor handling and storage of munitions  (Amaral et al., 2009; Eriksson et al., 2004). 
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TNT is photo-degraded to 1,3,5-trinitrobenzene (TNB) and biotransforms to 2-amino-4,6-
dinitrotoluene (2-ADNT) and 4-amino-2,6-dinitrotoluene (4-ADNT) (Douglas et al., 2009). 
Some of the metabolite products of TNT and DNT, particularly partially reduced amino-
nitrobenzenes, are equally or even more toxic than the parent compounds (Sunahara et al., 
1998). Laboratory studies have shown that RDX metabolism may occur less readily in 
aerobic conditions compared anaerobic conditions (Beller, 2002). Both parent compounds 
and transformation products have been detected in environmental waters, including shallow 
groundwaters within close proximity to ammunition plants. Results from selected 
groundwater studies are summarised in Table 2. 

4.11 Algal Toxins 

Microcystins are derived from algal blooms containing cyanobacteria and comprise cyclic 
heptapeptides with both d and l amino acids and derivatives.  Groundwater problems arise 
when attenuation during recharge is insufficient to remove the toxins. Chen et al. (2006) 
show use of cyanobacterial material as plant fertiliser poses a risk to groundwater, where the 
soil has a low clay content.  Eynard et al. (2000) reviewed the risk to groundwater from 
recharge of lake water in Latvia and found soil infiltration insufficient to protect groundwater 
from toxins. Mohamed and Al Shehri (2009) found both cyanobacteria and microcystins (at 
concentrations in the range 0.3-1.8 µg/L) in groundwater  in Saudi Arabia, thought to be due 
to wells being unprotected from light or from direct surface water ingress. Aerobic 
degradation of microcystins by freshwater bacteria can be observed but at a slow rate and 
after an extended lag time. Anaerobic degradation also occurs, possibly due to dissimilative 
nitrate reduction, but is less efficient (Böttcher et al., 2003; Holst et al., 2003). 

5 Toxicity and Risk Assessment  

There is a scarcity of data on human health effects at environmental levels of transformation 
products, their effects on aquatic organisms, and other harmful effects. Therefore it is 
difficult to predict health effects on humans, terrestrial and aquatic organisms, and 
ecosystems (Stuart et al., 2012). Studies often use a mixture of physical properties, 
degradation rates and monitoring case studies to reach an assessment. Many of these 
compounds are considered to be persistent in the aqueous environment. However, it is 
characteristic of some contaminants  that they do not need to be persistent to cause negative 
effects since their high transformation/removal rates is compensated by their continuous 
introduction into the environment. 

Parsons et al. (2008) carried out an assessment of risk from pesticide metabolites in drinking 
water for both the US and the UK using sorption coefficient, half life and acceptable daily 
intakes (ADIs).  Sinclair et al. (2010) made a more sophisticated assessment using parent 
compound usage, formation rates in soil, persistence and mobility, removal in drinking water 
treatment and environmental degradation. 

Where there is less information, a similar approach to that of Schwab et al. (2005) and 
Cunningham et al. (2009) may be appropriate. They presented human health risk assessments 
for a range of active pharmaceutical ingredients and/or their metabolites in surface water, 
using environmental monitoring data. ADIs were used to estimate predicted no-effect 
concentrations (PNECs) for both drinking water and fish ingestion. The PNECs were 
compared to measured environmental concentrations from the published literature and to 
maximum permitted environmental concentrations generated using models. 
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Prediction of properties and toxicity can be made using molecular topology models such as 
EPI-suite (Kavlock et al., 2008), CATABOL (Jaworska et al., 2002) or  QSAR type models 
(Cronin et al., 2003; Sabljic, 2001; Walker et al., 2002). 

6 Conclusions 

Nanogram per litre concentrations are currently being detected for a wide range of emerging 
groundwater ECs. While information is becoming available on their sources and behaviour in 
groundwater, data for their transformation products remains sparse. Where these have been 
better characterised e.g. for pesticide metabolites and some endocrine disruptors, it is clear 
that transformation products can be found at concentrations equalling or exceeding those of 
the parent. Various pesticide transformation products have been shown to be persistent in 
groundwater for several decades now, and these may prove to be useful analogues for some 
newly emerging contaminants. 

ECs come from both point and diffuse sources and may enter the subsurface directly or 
through groundwater/surface water interaction.  Disposal of wastewater, including using 
wastewater for ASR and soil application of biosolids from water treatment, and animal 
wastes are particularly important sources of many ECs.  Where wastewater is disinfected 
chlorine can react with organic matter, including ECs to produce a further range of 
transformation products.  

It is likely that most EC degradation occurs in the soil and unsaturated zones. There may be a 
significant lag in the arrival of EC to the groundwater table due to extended transit times in 
the unsaturated zone either due to low aquifer permeability or thick unsaturated zones. Once 
in the saturated groundwater system, where residence times can be long and microbial 
activity relatively low, ECs and their transformation products may be persistent and may pose 
a threat to the environment or to drinking water abstractions for decades to come.  

There is still little information on impacts of transformation products in groundwater, either 
on the environment, e.g. groundwater dependent ecosystems, or on consumers of 
groundwater. A common theme is that some transformation products may be either similar to 
their parents, but smaller and more mobile, or more polar and more toxic. 
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Figure 1. Potential sources and pathways for groundwater pollution by ECs and their 
transformation products 
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Figure 2. Box plot of maximum concentrations of parent compounds in groundwater for 
major groups of ECs including PPCPs, industrial compounds, steroids and hormones, 
artificial sweeteners and preservatives. Note the log scale on the y-axis. Suspected 
outliers (+) are 25th and 75th percentile +/- 1.5(IQR). For comparison, the solid 
horizontal line is the EU drinking water limit for pesticides. The data is from a BGS 
database of published studies worldwide (14 different countries) investigating ECs in 
groundwater from. Explanation of groups of compounds on y axis: 1=Alcoholism 
treatment, 2=Analgesic, 3=Anti-inflamatory, 4=Antianginal, 5=Antiarrhythmic, 
6=Antibiotic, 7=Anticoagulant, 8=Anticonvulsants, 9=Antidepressant, 10=Antidiabetic, 
11=Antioxidant, 12=Antipruritic, 13=Artificial sweetner, 14=Barbiturate, 15=Beta-
blocker, 16=Blood pressure/hypertension, 17=Soil fumigant,18=Coccidostat, 
19=Corrosion inhibitor, 20=Detergents, 21=Diuretic, 22=Dye, 23=Fire retardant, 
24=Fluorescent whitening agent, 25=Food additive, 26=Fragrances, 27=Fungicide, 
28=Glaucoma treatment, 29=Illicit substance, 30=Insect repellent, 31=Insomnia drug, 
32=Lipid regulators, 33=Metabolic (diet pills), 34=Muscle relaxant, 35=Skin cosmetic, 
36=Plasticiser, 37=Psychiatric drug, 38=Scabicide/miticide, 39=Sedative, 40=Solvent 
plasticiser & anti-foamiing, 41=Solvent Stabaliser, 42=Steroids and steroidal hormones, 
43=Stimulant, 44=Sunscreen, 45=Surfactant, 46=Veterinary Medicine, 47=X-ray 
contrast media.  
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Table 1 Selected studies of pesticide transformation products in groundwater  

Location Process Transformation product (parent) Max 
conc. 
(µg/L) 

Reference 

Kent, UK Research 
project 

DCPMU, DCPU, DCA (diuron) 0.9 Lapworth & 
Gooddy (2006) 

Rome area, 
Italy 

Survey 8-hydroxybentazone (bentazone) 1.9 Laganà et al. 
(2002) 

Ebro/Almeria, 
Spain 

Survey 3-hydroxycarbofuran, methiocarb sulfone 3  Barceló et al. 
(1996) 

Ebro, Spain Survey Desethyl atrazine  0.53 Hildebrandt et al. 
(2007) 

France Catchment 
monitoring 

Desethyl-atrazine, 
 metolachlor ESA & OXA 

1.86 Baran et al. (2008; 
2010) 

Denmark National 
monitoring 
programme 

BAM (dichlobenil), deethyl-, & 
deisopropylatrazine, hydroxyatrazine 
ethylenethiurea (mancozeb), desamino-
diketo- & diketo- metribuzin  

Various Jacobsen et al. 
(2005); Kjaer et al. 
(2005) 

Norway Monitoring Desethyl atrazine 
BAM (dichlobenil) 
AMPA (glyphosate) 

0.05, 
0.2,  
0.02 

Haarstad  & 
Ludvigsen, (2007) 

Wisconsin, 
USA 

 desamino-diketo- & diketo- metribuzin 0-1.9 Lawrence et al. 
(1993) 

USA Lysimeter 
studies 

Acetochlor  ESA & OXA 
alachlor ESA & OXA 
desethyl-atrazine 
metolachlor  ESA & OXA 

3 
37 
11 
10 

Hancock et al. 
(2008) 

Iowa, USA Survey Acetochlor  ESA & OXA, alachlor ESA & 
OXA, AMPA (glyphosate), cyanazine acid & 
amide, desethyl cyanazine, desethyl 
cyanazine acid & amide, desethyl –, 
desethylhydroxy-, 
desisopropyl-, desisopropyl- hydroxyl-, & 
didealkylatrazine, dimethylflurometuron,  
dimethenamid ESA & OXA, DCPU,  
flufenacet ESA & OXA, metolachlor ESA & 
OXA 

Various Kolpin et al. 
(2004) 

AMPA = aminomethyl-phosphonic acid, BAM = 2,6-dichlorobenzamide, DCA = 3,4-dichloroaniline, DCPMU 
= 3-(3,4-dichlorophenyl)-1-methylurea, DCPU = 3,4-dichlorophenylurea,  ESA = ethane sulfonic acid, OXA = 
oxanilic acid  
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Table 2 Selected studies of parent and transformation products of alkyl 
ethoxylates, other endocrine disruptors and explosive residues in groundwater 

Site Process Compound Conc (µg/L) Reference 
Glattfelden, 
Switzerland 

River infiltration to valley 
fill aquifer 

NP 0.1-0.96 Ahel et al. 
(1996) 

Spain Industrial urban area NP , OP 0.16-0.38  Latorre et al. 
(2003) 

Llobregat 
Barcelona, 
Spain 

Industrial area with river 
infiltration to aquifer 

NP 
NP2EC 
NP1EC 
OP 
OP2EC 
OP1EC 

0.12-1.63  
nd-5.54 
nd-1.35 
nd-0.41 
nd-0.29 
nd-0.06 

Tubau et al. 
(2010) 

Otis Air 
base, MA, 
USA 

Disposal of secondary 
treated sewage 

NP isomers 0.44-1.08  Barber et al. 
(1988) 

Cape Cod, 
USA 

Plume from wastewater 
treatment plant 

Total APE 
NP/OP 2EO 
NP 1EO/3EO 
BPA (WWT) 
BPA (landfill) 

14-48 
14-38 
1-5 
0-0.29 
0-1.41 

Rudel et al. 
(1998); Swartz 
et al. (2006) 

Colorado , 
USA 

Survey of domestic wells Total APE & AP 
 NP 

0.01-3.5  
0.8-2  

Sprague & 
Battaglin (2004) 

Israel Irrigation and disposal of 
secondary treated 
wastewater 

Total APE 0.22-1.8 mg/L Zoller (1998) 

Catalonia, 
Spain 

Pesticide adjuvant use NP 
OP 
BPA 

0.3 
0.1 
0.2 

Lacorte et al. 
(2002)  

Halle, 
Germany 

River exfiltration into 
shallow urban aquifer  

BPA nd-1.14  Osenbrück et al. 
(2007) 

Helena 
valley, 
Montana 

Survey Estriol (E3) 
17-estradiol (E2), 
Estrone (E1), 
Progesterone 
BPA 

nd-6.4 
nd-2.9 
nd-1.0 
nd-0.6 ng/L 
nd-470 

Miller & Meek 
(2006) 

Austria  Survey 17-estradiol (E2), 
17-ethinylestradiol (EE2) 
Estriol (E3),  
Estrone (E1),  
BPA 

nd-0.79 ng/L 
nd-0.94 
nd-16 
nd-1.6 
0.600 

Bursch et al. 
(2004) 

USA 
Nebraska 

Survey of wells from army 
ammunitions plant 

HMX 
RDX 
TNX 
MNX 

nd-20 
nd-75 
nd-2 
nd-5 

Cassada et 
al.(1999) 

USA 
Iowa 

Survey of wells at an army 
ammunition plant 

RDX 
MNX 
DNX 
TNX 

0.03-430 
65* 
24* 
39* 

Beller & 
Tiemeier (2002) 

Portugal 
Lisboa 

Survey of boreholes near 
long-term explosives 
handling site 

TNT 
DNT 
2-NT 
4-NT 

<1-33100 
<0.1-7250 
nd-580 
nd-125 

(Amaral et al. 
(2009) 
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AP = alkyl phenol, APE = alkylphenol ethoxylate, OP = octyl phenol, OP1EC = octylphenyl acetic acid, OP2EC 
= octylphenoxyethoxy acetic acid, OPnEO = octylphenyl n ethoxylate, NP= nonyl phenol, NP1EC = nonyl 
phenyl acetic acid, NP2EC = nonyl phenoxy ethoxyacetic acid, , NPnEO = octylphenyl n ethoxylate,  BPA = 
bisphenol A, TNX= Trinitroso-RDX, MNX= mononitro-RDX, * average for detected compounds, nd=not 
detected 
 
 


