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Abstract 21	
  
 For more than 60 years, electronic tags (including acoustic transmitters, archival loggers, 22	
  
and satellite tags) have been applied to free-ranging marine vertebrates to track their behaviour 23	
  
and characterize their spatial ecology. However, only recently have researchers begun using 24	
  
electronic tags as a tool to understand the mechanisms influencing processes that relate directly to 25	
  
fitness, i.e., the ability of organisms to survive and reproduce. In this paper, we briefly review the 26	
  
history of tracking studies focused on marine vertebrates and then provide a general overview of 27	
  
studies to date that have used tracking to address fitness-related questions. Although many 28	
  
studies have used at-sea movement and activity data to better understand feeding ecology, 29	
  
physiology and energetics, there is growing interest in the coupling of electronic tracking 30	
  
techniques with other disciplines to resolve the mechanisms underlying individual fitness, or 31	
  
more precisely the proxies thereof (survival, timing of reproduction, foraging success, etc.). We 32	
  
categorized studies into four general fitness-related areas: 1) foraging dynamics, energetics and 33	
  
growth, 2) migration and other non-breeding season activities, 3) survival, and 4) reproduction. 34	
  
Despite recent advances in tracking technologies, which include multi-sensor loggers, tri-axial 35	
  
accelerometers, and miniaturized geopositioning systems etc., we note that very few studies on 36	
  
wild marine vertebrates truly measure individual fitness or proxies thereof. There is thus a 37	
  
massive opportunity to design experimental, multi-disciplinary, and longitudinal studies that use 38	
  
genetics, individual-based modeling, and other techniques in an effort to resolve the mechanisms 39	
  
responsible for individual variation in fitness in marine vertebrates. 40	
  
 41	
  
Keywords: Electronic tracking, telemetry, biologging, electronic sensors, behaviour, life history, 42	
  
reproduction, survival, mortality, migration, non-breeding. 43	
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Introduction 44	
  
 Researchers have long been intrigued by animal movements, and have employed 45	
  
electronic tracking in order to observe and understand such behaviour. Electronic tracking 46	
  
involves the use of various technologies that either transmit (biotelemetry; Cooke et al. 2004a) or 47	
  
log (i.e. biologging; Block 2005, Rutz and Hays 2007) information about an animal’s position, 48	
  
parameters from their surrounding environment (e.g. pressure, temperature) or state (e.g. activity 49	
  
level, heart rate, body temperature). There are currently many types of biotelemetry and 50	
  
biologging devices available for use in marine animal tracking studies (see reviews by Arnold 51	
  
and Dewar 2001, Burger and Shaffer 2008, Godley et al. 2008, Wakefield et al. 2009, Cooke et 52	
  
al. 2012, Wilson and Vandenabeele 2012). Historically, most (but certainly not all) studies have 53	
  
used such tools in a very descriptive way (e.g. characterizing movements and other at-sea 54	
  
activities, or habitat use), without any consideration of the direct links to survival, growth and 55	
  
body condition, population processes, or other components of an individual’s life-history, let 56	
  
alone its overall fitness. 57	
  

Although fitness can be defined in many ways, there is general consensus regarding its 58	
  
essence (reviewed in Barker 2009). Orr (2009) elegantly states that “fitness involves the ability of 59	
  
organisms or, more rarely, populations or species, to survive and reproduce in the environment in 60	
  
which they find themselves. It is the more ‘fit’ individuals that are able to survive and reproduce 61	
  
to contribute most genes to the next generation”. Endler (1986) considered fitness to be a 62	
  
measure of the degree to which there is a consistent relationship between a given trait and 63	
  
survival, although he also noted that confusion often abounds regarding the difference between 64	
  
fitness and adaptation. There is much philosophical debate regarding fitness (e.g. Mills and 65	
  
Beatty 1979, Schaffer 1981, Sober 2001), and it is undoubtedly very difficult to measure 66	
  
accurately in the wild, particularly for long-lived animals (Kozlowski 1993) such that researchers 67	
  
usually rely on quantifying components of fitness that serve as proxies or surrogates (McGraw 68	
  
and Caswell 1996, Irschick 2003). Consider the vast marine realm, which is generally 69	
  
inhospitable to humans, but through which many other vertebrates roam freely. For many such 70	
  
species we know little about their natural history, let alone the key determinants of their 71	
  
individual fitness. Consider the challenges in determining the number of offspring produced by a 72	
  
swordfish, whose gametes are expelled into the water column, and of which only a tiny 73	
  
proportion will be fertilized and survive. Even for an ovoviviparous fish such as a tiger shark, it 74	
  
would be exceedingly difficult to determine how many offspring that a single female produced 75	
  
over her lifetime. Contrast that with, say, a terrestrial mammal like a black bear where it is 76	
  
comparatively easy to quantify lifetime reproductive success of a sow and even to track the 77	
  
survival and fitness of her offspring (Elowe and Dodge 1989). It is not surprising that we know 78	
  
so little about the fitness of most marine vertebrates, especially those that spend the majority of 79	
  
their time sub-surface. Seabirds and some marine mammals that come to shore at breeding 80	
  
colonies, and some fish species that return to distinct spawning grounds (e.g. Pacific salmon, 81	
  
Oncorhynchus spp.) do provide some unique opportunities to assess fitness of marine animals. 82	
  
With the advent of electronic tagging one would presume that it is finally possible to track fitness 83	
  
of marine vertebrates; however, have we actually made any progress in doing so? 84	
  

In this review, our aim is to briefly summarize the current state of electronic tracking 85	
  
studies focused on marine vertebrates, and to highlight the ways in which electronic tags have 86	
  
been used to inform our knowledge of life-history and fitness-related processes. Specifically, we 87	
  
highlight studies that combine electronic tracking, multiple sensor data, and, in some cases, other 88	
  
scientific disciplines, to quantify variation in behaviour; to relate individual variation in 89	
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behaviour to variation in relevant fitness-related traits; and to identify the endogenous or 90	
  
exogenous factors that mediate individual variation in those traits through correlational and 91	
  
experimental approaches. By so doing, we hope to promote the thesis that an understanding of 92	
  
fitness-related processes in free-ranging marine animals must use electronic tracking in tandem 93	
  
with other physiological, hormonal, energetic, metabolic, genetic, or environmental disciplines, 94	
  
thus providing insights into the regulatory mechanisms that lead to variation in fitness endpoints. 95	
  
We should note that although our review focuses on vertebrates, similar techniques have also 96	
  
been applied to marine invertebrates (e.g. Hays et al. 2012). 97	
  

Although our focus is on electronic tracking, we have framed this within the domain of 98	
  
evolutionary ecology and life-history by highlighting studies that use other disciplines to identify 99	
  
the organismal traits and environmental conditions that most contribute to variation in lifetime 100	
  
fitness. Since the advent of the research field in the early 1960s, the majority of animal tracking 101	
  
studies have been largely descriptive, reporting patterns of movement without any discernable 102	
  
links to fitness-related processes. Recently, however, an increasing number of tracking studies 103	
  
have adopted an individual-based approach to this topic, where differences in fitness-related traits 104	
  
are measured and the underlying causes of such variation identified. For the purposes of this 105	
  
paper, it is necessary to define what we mean by fitness-related traits, processes, and endpoints. 106	
  
Adopting ideas from the vast literature on fitness (Barker 2009, see also above), we define this as 107	
  
any trait that can contribute to individual variation in lifetime fitness. Relevant fitness traits 108	
  
include growth, timing of migration, breeding decisions, timing of reproduction, egg and clutch 109	
  
size, foraging success, parental care, hatching and breeding success, overall fecundity and 110	
  
survival (or mortality). These can be grouped into four general fitness-related categories, which 111	
  
we discuss below: 1) foraging dynamics, energetics, and growth, 2) migration and other non-112	
  
breeding season activities, 3) mortality, and 4) reproduction. 113	
  
 114	
  
Tracking fitness: context and examples 115	
  
Foraging, energetics, and growth 116	
  

In order to maximize fitness, animals must possess efficient mechanisms for energy 117	
  
acquisition and expenditure (Kleiber 1975). The transfer of energy between an animal and its 118	
  
environment is challenging to study in controlled laboratory settings; thus, attempting to quantify 119	
  
energy budgets within the logistical constraints that apply to research on free-ranging animals is 120	
  
even more challenging (Nagy et al. 1999). Nevertheless, telemetric and biologging approaches, 121	
  
often in combination with oceanographic sampling and other techniques (e.g. doubly-labeled 122	
  
water), have provided important insights into the processes that govern energy gain and use in 123	
  
different habitats, particularly during foraging (Wilson et al. 2002, Goldbogen et al. 2006, Aoki et 124	
  
al. 2012, Simon et al. 2012, Shepard et al. 2013). Energetically efficient foraging strategies are 125	
  
essential for supporting metabolism, somatic growth, and parental investment. This requires a 126	
  
low cost of transport for locomotion and feeding, as well as a high rate of energy (= resource) 127	
  
acquisition. The interaction of these processes, and the properties of the physical environment, 128	
  
determine the energetic efficiency of foraging. Therefore, investigating foraging behaviour of 129	
  
free-ranging animals under natural conditions is a fundamental step towards understanding 130	
  
energy flux between organisms and their environment (e.g. Weimerskirch et al. 2000, Shaffer et 131	
  
al. 2003). 132	
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A major focus of tracking studies aims to understand animal locomotion across a wide 133	
  
range of temporal and spatial scales, from excursions across ocean basins (see section on 134	
  
migration below) to an individual stroke of a fluke or fin. At the smallest scale, the advent of 135	
  
accelerometers and magnetometers in animal-borne tags has revealed important information 136	
  
about the kinematics of fine-scale movement and provided powerful proxies for movement-based 137	
  
energy expenditure (e.g. Halsey et al. 2011). The combination of multiple sensor modalities 138	
  
allows for several key locomotor parameters to be quantified such as speed, stroke frequency, and 139	
  
body orientation. Long time-series data sets can generate ethograms of animal behaviour (Yoda 140	
  
et al. 2001, Sakamoto et al. 2009, Shamoun-Baranes et al. 2012), fine-scale automated 141	
  
positioning systems (e.g. this Theme Section- Bunt and Kingsford 2014, Heupel and 142	
  
Simpfendorfer 2014, McLean et al. 2014) or daily diaries (Wilson et al. 2008), which describe 143	
  
behavioural states (i.e. feeding, mating, resting, or transit) as a function of location, depth, or time 144	
  
of day (Friedlaender et al. 2009, Whitney et al. 2010, Goldbogen et al. 2013, Watanabe and 145	
  
Takahashi 2013). These approaches aim to quantify key kinematic and physiological parameters 146	
  
that elucidate the energy budgets of animals in relation to foraging performance, growth, and 147	
  
reproduction. Because of the logistical and technological constraints, many early studies focusing 148	
  
on these parameters involved the use of large archival tags attached to relatively large aquatic 149	
  
vertebrates like marine mammals, seabirds, and fish. 150	
  

Travel speed is one of the most important parameters related to energy expenditure, but it 151	
  
is also one of the most difficult to measure in free-swimming animals. Methods used to estimate 152	
  
swimming speed of tagged animals have included a rotating propeller (Tanaka et al. 2001), a 153	
  
flexible paddle wheel (Shepard et al. 2008a), vector resolution from depth rate and animal 154	
  
orientation (Miller et al. 2004a, Simon et al. 2012), and flow noise (Burgess et al. 1998, 155	
  
Goldbogen et al. 2006). Drag increases exponentially with speed and therefore greater speeds 156	
  
require disproportionately more power output (energy use per unit time) (Vogel 1994). It follows 157	
  
that animals will predictably choose cost efficient locomotor strategies and low speed for long 158	
  
distance travel in order to minimize cost of transport (energy use per unit distance) (Williams 159	
  
1999). Laboratory experiments with swimming animals showed that speed increased with body 160	
  
size, a phenomenon explained post hoc by one theoretical framework (Bejan and Marden 2006). 161	
  
Initial tag studies from free-ranging aquatic vertebrates showed that swimming speed was largely 162	
  
independent of body size (Block et al. 1992, Sato et al. 2007), demonstrating that free-ranging 163	
  
animals may exhibit different behaviours and locomotor performance to those expected from 164	
  
laboratory studies. A subsequent analysis using comparative phylogenetic methods demonstrated 165	
  
a significant, but very small increase in swimming speed (up to 2.5 m s-1) with body size in 166	
  
breath-hold divers (Watanabe et al. 2011). Although steady swimming speeds were between 0.5-167	
  
2.5 m s-1 across a wide body size range, the largest animals exhibited the greatest speeds and thus 168	
  
were able to cover greater distances while minimizing the cost of transport (Watanabe et al. 169	
  
2011). 170	
  

Because aquatic animals must navigate a complex three-dimensional environment, they 171	
  
integrate their choice of swimming speed with a wide variety of behavioural strategies to ensure 172	
  
successful locomotor and foraging performance. The combination of time-depth recorders 173	
  
(TDRs) with accelerometers and video systems has uncovered specific mechanisms used by 174	
  
animals to minimize energy costs. The most basic of these strategies is to employ gliding, either 175	
  
in the form of burst-and-coast swimming (Videler and Weihs 1982, Williams 2001, Watanuki et 176	
  
al. 2003, Sato et al. 2013), or gliding during the descent or ascent phase of a dive (Williams et al. 177	
  
2000, Gleiss et al. 2011a, Gleiss et al. 2011b). The ability to distinguish active swimming strokes 178	
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from periods of gliding using accelerometer signals is important, given that mechanical work is 179	
  
dependent on energy expenditure. Acceleration metrics related to periods of stroke-propelled 180	
  
swimming, such as overall dynamic body acceleration (ODBA) and minimum specific 181	
  
acceleration (MSA), have been developed to investigate both the fundamental mechanics and the 182	
  
energetic cost of different behaviours (Gleiss et al. 2011c, Simon et al. 2012). The incorporation 183	
  
of these and related kinematic parameters into mechanical models of swimming has the potential 184	
  
to quantify multi-dimensional energy landscapes (power envelopes or energetic niches) that 185	
  
define the amount of power required for various behaviours under different environmental 186	
  
conditions (Wilson et al. 2011, Wilson et al. 2012, Shepard et al. 2013, Wilson et al. 2014). Of 187	
  
course, detailed calibrations are required to generate relationships between acceleration profiles 188	
  
and energetic costs (e.g. this Theme Section- Wright et al. 2014). Although possible to do so in 189	
  
the lab, such calibrations are difficult in the field, especially for large animals. However, as the 190	
  
number of studies linking metabolic rates to dynamic acceleration metrics increases, allometric 191	
  
trends in different movement styles may be revealed, from which species-specific metrics could 192	
  
be derived. 193	
  

In addition to energy expenditure, tracking techniques have enabled researchers to 194	
  
quantify foraging behaviours and identify specific feeding events. Changes in speed, orientation, 195	
  
and acceleration have been used to infer prey capture attempts in a wide variety of animals 196	
  
(Wilson et al. 2002, Goldbogen et al. 2006, Aoki et al. 2012, Simon et al. 2012, Naito et al. 197	
  
2013). This indirect approach is greatly enhanced by complimentary data, such as simultaneous 198	
  
video footage (Goldbogen et al. 2013, Watanabe and Takahashi 2013) or acoustics that quantify 199	
  
echolocation clicks (Miller et al. 2004b, Watwood et al. 2006). Other direct measures of feeding 200	
  
involve stomach temperature logging or telemetry in endotherms, which monitors rapid drops in 201	
  
temperature upon prey capture and ingestion (Weimerskirch et al. 1994, Catry et al. 2004, 202	
  
Sepulveda et al. 2004, Kuhn et al. 2009). The ability to quantify feeding performance, and the 203	
  
concomitant estimation of energy expenditure during foraging, allows for an assessment of 204	
  
foraging efficiency (Costa et al. 1989, Gremillet 1997, Williams and Yeates 2004, Goldbogen et 205	
  
al. 2011). Ultimately, the efficiency of foraging determines the ability of an animal to extract 206	
  
energy from the environment for a given prey density, resulting in its own mass gain or loss, and 207	
  
that of any dependent offspring. Some of the largest marine endotherms, exemplified by the 208	
  
largest baleen whales, rely on lipid stores acquired during extensive feeding bouts in summer 209	
  
months that then must fuel large scale migrations across ocean basins to breeding grounds 210	
  
(Goldbogen et al. 2011, Costa et al. 2012, Christiansen et al. 2013). Long term tag studies have 211	
  
been able to track these changes in body condition in some large marine vertebrates, which are 212	
  
manifested as changes in buoyancy, by quantifying changes in drift rate during glides (Thums et 213	
  
al. 2011, Del Raye et al. 2013, Thums et al. 2013). Through simulation, this approach 214	
  
(quantifying drift rates and migratory behaviour) has now been extended to estimate long term 215	
  
changes in vital rates, fitness, and eventually population-level effects from perturbations in the 216	
  
environment (e.g. this Theme Section- New et al. 2014). For ectotherms, even basic measures of 217	
  
temperature (environment or body) have the potential to provide unprecedented information on 218	
  
animal energetics (e.g. this Theme Section- Drenner et al. 2014). 219	
  
 220	
  
Migration and other activities during the nonbreeding season 221	
  

The techniques highlighted in the previous section have been applied to a diverse range of 222	
  
marine vertebrates during the nonbreeding season. This is a key life-history phase, when animals 223	
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are no longer constrained by breeding duties to return to a central place nor accommodate the 224	
  
slow movements of dependent young, and so can engage in long-distance, energetically-225	
  
demanding migrations. Until recently, relatively little was known about these movements, and 226	
  
even less about the fitness consequences. Yet, the decisions they make during this time affect the 227	
  
recovery of body condition, and accumulation of fat and protein stores in advance of breeding, 228	
  
and hence their survival and subsequent fitness (Dingle 1996). The advent of new technologies 229	
  
has revolutionised the field; archival devices with long battery lives and low power consumption, 230	
  
particularly geolocators (which record light levels that can then be used to infer latitudes and 231	
  
longitudes), have now been deployed on numerous predators, particularly seabirds, pinnipeds and 232	
  
sea turtles that are land-based during breeding and can be recaptured for device recovery in 233	
  
subsequent years. Such studies have highlighted extraordinary circumpolar or trans-equatorial 234	
  
migrations, shown unexpectedly high levels of variability among individuals, and examined 235	
  
habitat use or preference in detail, demonstrating intra- and inter-specific spatial and temporal 236	
  
segregation with implications for niche partitioning, population genetic structure and, ultimately, 237	
  
speciation (Croxall et al. 2005, Shaffer et al. 2006, Nathan et al. 2008, Rayner et al. 2011). The 238	
  
availability of detailed information on individual trajectories has led to a burgeoning in the study 239	
  
of movement ecology, which seeks to understand the causes and consequences of individual 240	
  
movement, often in a complex mathematical framework (Schick et al. 2008). 241	
  

As technology has improved, there has also been a burgeoning of studies that combine 242	
  
geographic locations of migrants obtained using satellite-telemetry or geolocation, with recording 243	
  
of dives, saltwater immersion (distinguishing time on the water vs. in flight), internal temperature 244	
  
(indicating prey ingestion), dynamic acceleration, heart rate or other aspects of behaviour. These 245	
  
have tested a wide range of ecological hypotheses; concurrent use of multiple sensors has 246	
  
provided insights into differences in behaviour between daylight, twilight and darkness; inferred 247	
  
reliance on nocturnal prey and the importance of lunar phase; influence of photoperiod on timing 248	
  
of migration; constraints associated with low light levels in the polar winter; effects of region, 249	
  
year, sex, status etc.; and intra- and inter-specific foraging niche specialisation and resource 250	
  
partitioning (Green et al. 2005, Hays et al. 2006, Shepard et al. 2006, Bestley et al. 2008, 251	
  
Mackley et al. 2010, Pinet et al. 2011). Novel analytical methods have identified behavioural 252	
  
modes, for example diel patterns in travel rates of leatherback turtles Dermochelys coriacea using 253	
  
ARGOS tracks (Jonsen et al. 2006), the switch from directed movement to residency in elephant 254	
  
seals Mirounga leonina (Bestley et al. 2013), or between transiting, foraging, migration or 255	
  
breeding behaviour in great white sharks Carcharodon carcharias using relatively low temporal 256	
  
resolution data on position, temperature and daily time-at-depth histograms from pop-up archival 257	
  
transmitting tags (Jorgensen et al. 2012). Studies have also detected ontogenetic changes in 258	
  
activity patterns or mapped events so that the location of particular behaviours can be related to 259	
  
conservation issues, highlighting spatial differences in susceptibility of threatened species to 260	
  
predation, targeted harvesting or bycatch in fisheries (Sims et al. 2005, Bailleul et al. 2007, 261	
  
Bestley et al. 2010, Lea et al. 2010, Mackley et al. 2011, Freeman et al. 2013). 262	
  

Multi-sensor studies are especially pertinent where the insights into feeding ecology can 263	
  
be related to trade-offs in time and energy, the key currencies that underlie overall fitness. Direct 264	
  
measurement is possible with heart rate loggers, which with calibration provide instantaneous 265	
  
estimates of energy expenditure associated with different activities of migrants, and in 266	
  
conjunction with estimation of prey ingestion from internal temperature sensors, allow the 267	
  
calculation of foraging success and overall energy budgets (Green et al. 2009, White et al. 2013). 268	
  
As an alternative, overall dynamic body acceleration (ODBA) can provide a useful proxy for 269	
  
energy expenditure, and energetic trade-offs can also be investigated by incorporating indirect 270	
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approaches to estimating body condition or composition (see previous section). Energy cost of 271	
  
different activities or environments can be compared using a lower-tech approach; for example, 272	
  
analysis of temperature data from geolocators would provide insights into the importance of heat 273	
  
loss while floating or swimming, which can be a major energetic consideration, particularly for 274	
  
seabirds (Richman & Lovvorn 2011, Garthe et al. 2012). In this Theme Section, Wilson et al. 275	
  
(2014) use tri-axial accelerometers to infer optimal swimming speeds of sockeye salmon 276	
  
(Oncorhynchus nerka) during both marine and freshwater homing migrations. 277	
  

Another useful approach for examining fitness consequences of migration is to combine 278	
  
conventional tracking with forensic methods of diet determination, because the quantity and 279	
  
quality of prey consumed during the nonbreeding or the immediate pre-breeding period affects 280	
  
adult condition and the resources that can be devoted to egg formation in birds, or to foetal 281	
  
development in viviparous animals. Thus geolocator and satellite-tracking data have been 282	
  
integrated with stable isotope analysis of tissues synthesised during the nonbreeding period (e.g. 283	
  
feathers, whiskers and baleen), to infer trophic level, carbon source and potentially prey type, 284	
  
foraging overlap and segregation (Phillips et al. 2009, Suryan and Fischer 2010, Young et al. 285	
  
2010, Bentaleb et al. 2011, Thiebot et al. 2012). There is considerable scope to extend such 286	
  
approaches to the study of carryover effects; stable isotope analyses suggested that the estimated 287	
  
proportion of energetically-rich copepods consumed in the prebreeding period influenced timing 288	
  
of breeding and egg volume in female Cassin's auklets Ptychoramphus aleuticus, although there 289	
  
was no effect on males (Sorensen et al. 2009), and trophic level during the nonbreeding period 290	
  
was correlated positively with egg mass in Atlantic puffins Fratercula arctica (Kouwenberg et al. 291	
  
2013). 292	
  

Despite the technological advances, researchers rarely addressed the direct consequences 293	
  
of individual migration strategies for survival or breeding success in the following summer, nor 294	
  
whether carryover effects from breeding might affect the subsequent migration. This has changed 295	
  
recently, with several observational or experimental studies demonstrating an effect of previous 296	
  
breeding outcome on migration patterns, typically manifested during the immediate post-breeding 297	
  
period rather than on the return journey to the colony (Bogdanova et al. 2011, Catry et al. 2011, 298	
  
2013) (e.g. this Theme Section- Schultner et al. 2014). There is also some evidence for carryover 299	
  
effects from the nonbreeding to subsequent breeding season, affecting the decision to defer 300	
  
breeding, laying date, egg dimorphism or size, or breeding success, and in some cases this has 301	
  
been related to adult body condition or hormone levels (Daunt et al. 2006, Crossin et al. 2010, 302	
  
Crossin et al. 2012a, Crossin et al. 2013a, Crossin et al. 2013b, Kouwenberg et al. 2013). In this 303	
  
context, analysis of hormones may be particularly informative, as stressors activate the 304	
  
hypothalamic-pituitary-adrenal cortex (HPA) which responds by increasing circulating levels of 305	
  
glucocorticoid hormones (CORT) that trigger physiological and behavioural responses promoting 306	
  
survival in the face of environmental change (Bokony et al. 2009). In addition to effects on 307	
  
nutritional status and hormone levels, differences in migration strategy may influence exposure to 308	
  
pollutants (e.g. mercury, persistent organic pollutants and hydrocarbons), with possible endocrine 309	
  
disruption and other impacts on breeding deferral, fecundity or survival (Ragland et al. 2011, 310	
  
Montevecchi et al. 2012, Leat et al. 2013, Tartu et al. 2013). Carryover effects may also occur 311	
  
across important life-history transitions (e.g., during smoltification) as documented for sea trout 312	
  
(Salmo trutta) implanted with PIT tags and exposed to exogenous cortisol manipulation (e.g. this 313	
  
Theme Section- Midwood et al. 2014). 314	
  

Finally, an improved understanding of migration patterns and the potential or measured 315	
  
energetic and fitness consequences is increasingly important in an era of rapid global change, as 316	
  
the combined impact of anthropogenic threats (e.g. changing climate, bycatch, overfishing, 317	
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invasive predators and oil pollution) is unprecedented (Shillinger et al. 2008, Barbraud et al. 318	
  
2012, Hazen et al. 2013, Maxwell et al. 2013). In some cases there is a need to study the 319	
  
effectiveness of management interventions such as captive breeding, including to evaluate the 320	
  
behaviour of released animals relative to wild individuals (Westerberg et al. 2014). For some 321	
  
species, considerable effort has been directed at modelling future habitat requirements and 322	
  
availability, and at relating survival prospects to foraging constraints associated with reduced 323	
  
light levels during the temperate or polar winter (Green et al. 2005, Daunt et al. 2006, McIntyre et 324	
  
al. 2011, Hazen et al. 2013, White et al. 2013). However, for most migrants, accurate projection 325	
  
of demographic responses to environmental change will rest on future tracking studies that enable 326	
  
the prediction of nonbreeding distribution based on habitat availability and preference, the 327	
  
modelling of energetic trade-offs, and links between these components and individual fitness. 328	
  
Even basic knowledge of the factors that influence habitat use and movement of wild marine 329	
  
vertebrates is lacking for most species, and for some discrete life stages (e.g. the dispersal of 330	
  
marine juveniles and ontogeny of migration are not well studied because of limitations relating to 331	
  
small size and the often long interval to first breeding; recent attempts to fill this knowledge gap 332	
  
include Hays et al. 2010, Gutowsky et al. 2013). Studies that use high-resolution positioning data 333	
  
combined with sophisticated modeling and model selection procedures (e.g. this Theme Section- 334	
  
Heupel and Simpfendorfer 2014) have much potential for unraveling the energetic and life-335	
  
history drivers of spatial and movement ecology. 336	
  
 337	
  
Mortality 338	
  

Beyond being an important phenomenon in population dynamics (Beverton and Holt 339	
  
1957), mortality is of direct relevance to fitness given that once an animal is dead, its fitness is 340	
  
zero. However, from a fitness perspective, the timing of mortality is perhaps the most relevant 341	
  
aspect. Mortality prior to maturation or (successful) reproduction would clearly yield zero 342	
  
lifetime fitness, while mortality after some degree of reproductive success could mean that some 343	
  
level of fitness had been obtained, depending on the life-history of a given species, adult age, 344	
  
condition, etc. Mortality is obviously a natural phenomenon, and indeed can be exceedingly high 345	
  
(e.g. early life stages of most fishes and sea turtles), but can also be mediated directly (e.g. 346	
  
hunting, harvest) and indirectly (e.g. disease, change in ecosystem structure) by human activities. 347	
  
While a simple concept, mortality was rather difficult to measure directly in marine vertebrates 348	
  
until the advent of electronic tagging techniques (Pollock et al. 2004). In some species with 349	
  
strong fidelity to a breeding (e.g. marine mammals, seabirds, Pacific salmon) or foraging site 350	
  
(e.g. some sharks), it may be relatively easy to quantify mortality using band returns or resights, 351	
  
yet that approach provides little insight into the location, timing or mechanism underlying 352	
  
mortality. Although tracking can be used to infer mortality, other issues including tag failure, 353	
  
shedding or loss (Hays et al. 2007), predation (such that the tag is removed by another animal; 354	
  
Cooke and Philipp 2004), poor detection efficiency of receivers (Melnychuk 2012), and the 355	
  
difficulty of differentiating mortality from emigration (Yergey et al. 2012) can make it difficult to 356	
  
know with certainty. Some efforts have been put into the development of mortality sensors (see 357	
  
Cooke et al. 2004a) but they have yet to be used widely. Additionally, studies have documented 358	
  
tagging impacts on animals, which can include effects on, among other things, mortality. Many 359	
  
studies aim to minimize tagging effects, and will sometimes use controlled holding studies or 360	
  
other pilot studies in an effort to identify optimal size and mass of devices, effects on movement 361	
  
and agility, and best physical position on the body for placement. Addressing these issues prior to 362	
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tagging are important for both scientific, and, increasingly, ethical reasons (see reviews by 363	
  
Ropert-Coudert and Wilson 2005, Cooke et al 2011). 364	
  
 Documenting the level of natural or anthropogenic mortality is a common goal of marine 365	
  
vertebrate tracking studies, particularly those involving devices that transmit information. Heupel 366	
  
and Simpfendorfer (2002) studied mortality levels of young blacktip sharks (Carcharhinus 367	
  
limbatus) using acoustic telemetry coupled with modeling. Notably, all natural and fishing 368	
  
mortality occurred within the first 15 weeks of the study while animals remained on nursery 369	
  
grounds, revealing a period of vulnerability. Given the intense management efforts focused on 370	
  
Pacific salmon, there have been numerous studies identifying the magnitude and location of 371	
  
mortality for out-migrating smolts (Melnychuk et al. 2007, Brown et al. 2013, Romer et al. 2013, 372	
  
and Rechisky et al. 2014, Brosnan et al. 2014 in this Theme Section) and returning adults (e.g. 373	
  
Cooke et al. 2006a, Crossin et al. 2007, Crossin et al. 2009) in coastal waters and freshwater. 374	
  
Some of those studies have contrasted the survival of hatchery and wild fish (e.g. Johnson et al. 375	
  
2010, Moore et al. 2012, Aarestrup et al. 2014 - this Theme Section) to inform management. 376	
  
Another management application has involved use of acoustic telemetry to estimate natural 377	
  
mortality of lingcod (Ophiodon elongatus) in a marine reserve and evaluate reserve effectiveness 378	
  
(Starr et al. 2005). Although tracking studies focused on mortality are dominated by those on 379	
  
fish, there are examples from other taxa. For example, Reid et al. (1995) quantified mortality of 380	
  
radio-tagged manatees (Trichechus manatus latirostris) in Florida estuaries, and several studies 381	
  
have quantified mortality of sea turtles (reviewed in Godley et al. 2008). Indeed, although not 382	
  
always a stated objective, nearly every tracking study reports some basic information on 383	
  
mortality (Hart and Hyrenbech 2009). 384	
  

Beyond documenting natural mortality, there has been much effort directed at 385	
  
documenting bycatch mortality in commercial fisheries or catch-and-release mortality from 386	
  
recreational fisheries, although only recently have these commonly involved electronic tracking 387	
  
(Donaldson et al. 2008, Maxwell et al. 2013). Given that mortality is often cryptic, tracking 388	
  
studies provide one of the few means to objectively assess mortality. Hays et al. (2003) published 389	
  
one of the first studies to use satellite telemetry to quantify bycatch mortality in marine turtles; 390	
  
data that can be incorporated into population and management models (Chaloupka et al. 2004). 391	
  
The earliest catch-and-release study using acoustic telemetry to assess mortality in a recreational 392	
  
marine fishery revealed mortality was of Atlantic sailfish (Istiophorus albicans) and revealed 393	
  
mortality that would have otherwise been undetected (Jolley et al. 1979). Studies on bonefish 394	
  
(Albula vulpes) post-release mortality in shallow tidal creeks using acoustic telemetry revealed 395	
  
that predator density had a major impact on survival (Cooke and Philipp 2004), whereas for 396	
  
Atlantic bluefin tuna (Thunnus thynnus) studied with PSAT tags (pop-up satellite archival tags) in 397	
  
the Gulf of St. Lawrence, little post-release mortality was observed (Stokesbury et al. 2011). In 398	
  
one study PSAT tags were used to contrast mortality of striped marlin (Kajikia audax) captured 399	
  
and released using different hook types (Domeier et al. 2003). Beyond simply documenting 400	
  
mortality, the goal of much of the fisheries interaction research is to develop strategies to reduce 401	
  
mortality (McClellan et al. 2009). 402	
  

Electronic tags, either alone or in combination with other techniques such as blood 403	
  
sampling to assess physiological status, are able to elucidate the details of mortality (Cooke et al. 404	
  
2008). For example, using a non-lethal biopsy approach on fish tagged with radio and acoustic 405	
  
transmitters (see Cooke et al. 2005 for approach), Miller et al. (2011) revealed genomic 406	
  
signatures that predicted migratory failure (i.e. mortality) of Pacific salmon destined for 407	
  
spawning grounds. Cooke et al. (2006) and Crossin et al. (2009) used similar approaches to 408	
  



	
   11	
  

associate more traditional physiological measures (e.g. stress and reproductive hormones, ions, 409	
  
metabolites) with mortality of sockeye salmon at the ocean-to-river transition. Such mechanistic 410	
  
studies of mortality are still rare in marine vertebrates. Gallagher et al. (2014, this Theme 411	
  
Section) adopted a different approach to study the consequences of fisheries interactions for 412	
  
several shark species; satellite tags were used to assess post-release mortality levels, and blood 413	
  
samples and reflex indicators collected in parallel from other sharks at time of capture provided 414	
  
the context in which to interpret mortality patterns. 415	
  
 416	
  
Reproduction 417	
  

When an animal reproduces, one of its first considerations is where and when to breed. 418	
  
Electronic tracking has been used to identify and characterize reproductive locales for a number 419	
  
of marine species. For example, satellite telemetry was used in a threatened sea-duck species, the 420	
  
Stellar’s eider (Polysticta stelleri), to identify population-specific breeding areas across Arctic 421	
  
regions, which had hitherto been unknown (Petersen et al. 2006). This information was useful for 422	
  
differentiating breeding characteristics of Atlantic and Pacific populations, and suggested 423	
  
evolutionary and ecological factors influencing their distributions. In a different study, acoustic 424	
  
and radio telemetry were coupled with egg drift sampling and histological analyses to 425	
  
characterize the marine-to-freshwater movements and spawning locations of endangered Gulf 426	
  
sturgeon (Acipenser oxyrinchus desotoi) (Fox et al. 2000). This study provided new insights into 427	
  
the different spawning schedules of males and females, with important implications for 428	
  
conservation and management. For many pelagic marine species, however, and especially fish, 429	
  
knowledge of breeding or spawning locations is sparse or unavailable due in part to the obvious 430	
  
difficulty of observing these events (e.g. the coelacanth, Latimeria menadoensis). Satellite 431	
  
telemetry has been used with some success to identify spawning activity in wide-ranging bluefin 432	
  
tunas (Thunnus thynnus) (Lutcavage et al. 1999, Block et al. 2001, Teo et al. 2007, Lutcavage et 433	
  
al. 2012). In Atlantic bluefin tuna, for example, tagging revealed areas in the North Atlantic as 434	
  
important spawning areas, which dispelled long-held ideas that the Gulf of Mexico was the 435	
  
principal breeding area (Lutcavage et al. 1999). Similarly, in shortnose sturgeon (Acipenser 436	
  
brevirostrum), acoustic telemetry arrays revealed new breeding habitats for individuals that could 437	
  
not spawn in historical locations within a fragmented river system, and were thus forced to move 438	
  
across marine areas to new river systems (Zydlewski et al. 2011). In loggerhead turtles (Caretta 439	
  
caretta), identification and use of breeding areas within established marine protected areas in the 440	
  
eastern Mediterranean Sea, as well as in Baja California, were determined using GPS loggers and 441	
  
ARGOS transmitters (Peckham et al. 2007, Schofield et al. 2009). These studies provided data 442	
  
and recommendations for guiding conservation policy at both local and regional scales. Although 443	
  
not they are not marine species per se, the spawning locations of female muskellunge (Esox 444	
  
masquinongy) and northern pike (Esox lucius) were identified via oviduct tagging (Pierce 2004, 445	
  
Pierce et al. 2007). In this method, acoustic transmitters are inserted into the oviducts of mature 446	
  
female fish, which are then expelled along with eggs when the fish spawns, thus allowing 447	
  
researchers to track the movement to, and activity on, precise spawning sites. For the first time 448	
  
oviduct tagging was used to identify the spawning sites of a pelagic fish, the European perch 449	
  
Perca fluviatilis, in the Baltic sea (Skovrind et al. 2013). Other studies have used electronic 450	
  
tracking to identify not only breeding site location, but also site fidelity (i.e. philopatry), for a 451	
  
variety of marine taxa including bonefish (Humston et al. 2005), loggerhead turtles and green 452	
  
turtles (Chelonia mydas) (Limpus et al. 1992; Broderick et al. 2007; Tucker 2010), ringed seals 453	
  
(Phoca hispida; Kelly et al. 2010), harbour seals (Phoca vitulina; Van Parijs et al. 2000), King 454	
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eiders (Somateria spectabilis; Phillips and Powell 2006), nurse sharks (Ginglymostoma cirratum, 455	
  
Pratt and Carrier 2001), bluefin tuna (Teo et al. 2007), red tilefish (Branchiostegus japonicus; 456	
  
Mitamura et al. 2005), and Atlantic cod (Gadus morhau; Robichaud and Rose 2001). Despite the 457	
  
innate programming for philopatry in some species, navigating to natal breeding locations is 458	
  
nevertheless a massive challenge. Ueda (2014, this Theme Section) conducted a series of 459	
  
experiments to manipulate the endocrine and sensory physiology systems of Pacific salmon and 460	
  
reveal the mechanisms by which adult salmon are able to successfully home to natal spawning 461	
  
grounds. In many cases, information on breeding location, multi-year habitat use and breeding 462	
  
site fidelity provided vital information with direct application to management and conservation. 463	
  

Once animals reach breeding areas, the timing of reproduction accounts for a large 464	
  
proportion of the total variance in lifetime fitness. For nearly all animals, breeding is usually 465	
  
restricted to a window of opportunity that is timed to match seasonal availability of food 466	
  
resources. Variation in timing can result in reproductive isolation (allochrony), which in turn 467	
  
leads to selection for adaptive reproductive phenotypes and provides a mechanism for adaptive 468	
  
radiation (Hendry and Day 2007). Despite the abundance of papers that examine reproductive 469	
  
timing in wild animals, examples where telemetry or bio-logging techniques are used to 470	
  
characterize variation in these events are few, presumably because reproduction is often very 471	
  
predictable and for many species relatively easy to observe. There are nevertheless a few 472	
  
examples. Clear differences in male and female loggerhead turtle arrival at a marine protected 473	
  
area breeding site showed a clear bimodal distribution (e.g. protandry); these GPS tracks directly 474	
  
aid the conservation and management of this species (Schofield et al. 2013). Radio telemetry was 475	
  
used to identify the timing of reproduction by populations of chinook salmon (Oncorhynchus 476	
  
tshawytscha) in the Kenai River of Alaska (Burger et al. 1985). The authors speculated how 477	
  
variation in spawning times might influence the fitness of individuals, but did not directly 478	
  
measure any such endpoints. Differences in the timing of reproduction by male and female 479	
  
spotted seatrout (Cynoscion nebulosus) have also been described via acoustic telemetry 480	
  
(Lowerre-Barbieri et al. 2013). Goutte et al. (2014, this Theme Section) examined the links 481	
  
between breeding phenology of black-legged kittiwakes (Rissa tridactyla) and levels of the stress 482	
  
hormone, corticosterone (cort); although baseline cort levels were correlated with trip duration 483	
  
and destination during the pre-laying period, the decision to breed, and laying date, were 484	
  
influenced not by cort but by individual body condition, suggesting that the proximate 485	
  
mechanisms underlying timing of breeding are complex. 486	
  

Electronic tracking has been used frequently to study reproductive activity and behaviour, 487	
  
especially in fish where courtship and spawning behaviour is often difficult to observe. Acoustic 488	
  
telemetry arrays have identified broad-scale movement patterns in deep shelf environments as 489	
  
evidence of spawning aggregation in bonefish and linked these movement and spatial patterns to 490	
  
specific moon phases (Danylchuk et al. 2011). At a smaller scale, egg-laying behaviour and 491	
  
reproductive timing was characterized in female small spotted catsharks (Scyliorhinus canicula) 492	
  
via time-depth telemetry and the tracking of vertical movements that are known to correspond to 493	
  
egg laying (Wearmouth et al. 2012). Similarly, recent studies in nurse shark (Ginglymostoma 494	
  
cirratum) used 3-dimentional accelerometry to differentiate mating from other peripheral 495	
  
behaviours (resting, swimming, etc.) (Whitney et al. 2010). Attempts to quantify energetic costs 496	
  
of breeding and courtship behaviour involved electromyogram telemetry (EMG), most frequently 497	
  
in Pacific salmon where muscle contraction and tailbeat frequency relationships yielded estimate 498	
  
of energy expenditure (Healey et al. 2003, Hruska et al. 2007). These studies allow activity 499	
  
budgets to be estimated, as well as the costs of various behaviours related to courtship, nest 500	
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construction, and defense. The energetics of parental care have been examined in centrarchid 501	
  
fishes using combinations of radio-telemetry, underwater videography and direct observation. 502	
  
These studies demonstrated a diversity of species-specific parental care strategies that ranged in 503	
  
duration and intensity, and offered insights into their evolution (Cooke et al. 2006b). Attempts to 504	
  
quantify diversity and costs of very fine scale behaviours have used biotelemetry of heart rate 505	
  
(e.g. electrocardiogram, ECG; Lucas et al. 1991), tail-beat frequency (Ross et al. 1981), and 506	
  
EMG (Cooke et al. 2004b). ECG and EMG are invasive techniques requiring surgical 507	
  
implantations; however, the alternative is to use accelerometry (Wilson et al. 2007, Shepard et al. 508	
  
2008b), which has great potential to reveal the costs of behaviour in the context of reproduction. 509	
  

There have been recent attempts to identify physiological mechanisms of parental care in 510	
  
marine vertebrates by using experimental manipulation in tandem with electronic tracking. Using 511	
  
time-depth recorders, physiological sampling, and exogenous corticosterone implants in female 512	
  
macaroni penguins (Eudyptes chrysolophus), variation in baseline corticosterone was identified 513	
  
as a key predictor of parental foraging behaviour and chick growth (Crossin et al. 2012b). Cottin 514	
  
et al. (2014, this Theme Section) took a similar approach in their study of parental care in Adélie 515	
  
penguins (Pygoscelis adelie), wherein males were similarly implanted with exogenous 516	
  
corticosterone and foraging behaviour and chick growth monitored. This study highlights how the 517	
  
hormonal control of foraging and parental care can differ among species (e.g. macaroni penguins) 518	
  
and between sexes. It also highlights how experimental manipulation of hormonal state and 519	
  
tracking can be combined to address life-history questions. Cottin et al. (2013) also used this 520	
  
approach when they manipulated prolactin levels in male Adélie penguins and found an effect on 521	
  
parental foraging behaviour but without an ultimate fitness effect on chick growth. Generally, the 522	
  
physiological mechanisms governing parental care, particularly from an endocrine perspective, 523	
  
are fairly well known, especially for birds and some freshwater fishes (e.g. the sunfishes, 524	
  
Centrarchidae; Cooke et al. 2006b). Studies of marine fishes and marine mammals, where it is 525	
  
difficult to observe parental behaviour, will benefit from tracking techniques. 526	
  
 527	
  
Future opportunities: moving beyond fitness proxies? 528	
  

Despite the realization that physiological systems are important mediators of life-history 529	
  
variation (Ricklefs and Wikelski 2002), the physiological basis of most life-history trade-offs 530	
  
remains unknown. Experimental studies using physiological sampling and electronic tracking 531	
  
techniques like those described above will allow us to move beyond an understanding of simple 532	
  
performance-related traits (e.g. locomotion, maximum sustainable metabolic rates, etc.) and 533	
  
towards an understanding of the key mechanisms underlying life-history variation and fitness 534	
  
related events. Indeed, the many studies that we have highlighted in this brief review use 535	
  
electronic tagging to some extent to characterize fitness proxies, thus allowing inferences about 536	
  
true fitness. However, there are virtually no electronic tagging studies where true fitness is 537	
  
measured directly. There are certainly numerous technical challenges that exist given the inherent 538	
  
challenges in working on marine vertebrates, many of which are mobile within a vast open 539	
  
environment. Moving beyond individual fitness proxies might require advances in three 540	
  
interrelated areas:  541	
  

1. Advanced sensor development: We can only presume that tracking devices will 542	
  
continue to get smaller and lighter, with greater battery life and memory capacity that 543	
  
would allow researchers to track individuals across life-history stages. The 544	
  
development of sensors that allow estimations of reproductive output (or 545	
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reproductive state, e.g. reproductive hormone levels) and survival would facilitate 546	
  
this aim. At present, it is in many cases impossible to determine the link between say 547	
  
winter or non-breeding movements and survival, particularly for pelagic species. 548	
  
Identifying the time and location of mortality events would allow researchers to 549	
  
address direct fitness questions. Similarly, sensors that can estimate or quantify 550	
  
reproductive output (e.g. number of eggs expelled during spawning events) as well 551	
  
as the timing and location of such events would similarly expand our understanding 552	
  
the factors influencing individual variation in reproductive output. However, the 553	
  
creation of smaller and more advanced tags is only one aspect; the very real problem 554	
  
of long-term tag attachment, with minimal tag effects, must be addressed, especially 555	
  
for long-term studies. 556	
  

2. Long-term, repeated measures studies: There are many inherent difficulties in 557	
  
designing and maintaining the long-term, longitudinal studies that span the full life 558	
  
cycles of study animals. This type of study is nonexistent for most marine 559	
  
vertebrates, but could be possible as new tracking and sensor technologies become 560	
  
available. Such long-term studies, wherein fitness components can be monitored in 561	
  
individual animals, across multiple life-history stages, would yield insights to the 562	
  
working of fitness like that done for great tits (Parus major), studies for a 39 year 563	
  
period in their natural environment (McCleery et al. 2004). Attempts to gain broader 564	
  
spatial coverage would also facilitate this, and the newly established ICARUS 565	
  
Initiative is a notable example, working to establish a global, remote sensing 566	
  
platform for scientists tracking small organisms over large spatial scales 567	
  
(icarusinitiative.org). Finally, for marine studies that span ocean basins and 568	
  
jurisdictional boundaries, data-sharing may become necessary and more common 569	
  
allows, thus facilitating researcher efforts by groups addressing similar questions 570	
  
(e.g. Bailey et al. 2012). 571	
  

3. Genomic integration: Genomic techniques in which gene expression is described in 572	
  
free-ranging animals at key life-history stages or transitions are proving to be a 573	
  
powerful means for resolving the many physiological processes that underlie 574	
  
variation in fitness, especially when coupled with electronic tracking techniques. The 575	
  
best example of this at present is by Miller et al. (2011) who identified the key 576	
  
physiological processes that predicted the failure of sockeye salmon during 577	
  
migration. In these fish, the fitness result of a failed migration is clear - zero fitness. 578	
  
A recent review of molecular genetics in seabird studies highlights the value of these 579	
  
approaches in understanding their ecology, evolution, and conservation (Taylor and 580	
  
Friesen 2012). When used in the context of long-term, repeated measures tracking 581	
  
studies, genomic integration and molecular genetic approaches to tracking studies 582	
  
will help resolve the trade-offs and constraints that individuals face at various times 583	
  
during their lifetime. 584	
  

 585	
  
To conclude, there is continued need for creativity as researchers push the frontiers 586	
  

of technology and biology to study wild marine vertebrates in their natural environment. 587	
  
Twenty years ago one could only dream of studies that attempt to explain variation in fitness 588	
  
among individuals – constrained by technology and forced to select “ideal model systems” 589	
  
that were convenient and tractable. Today, tracking fitness in a wide range of marine 590	
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vertebrate taxa is possible and with that comes the opportunity to unlock fascinating secrets 591	
  
of marine life. Additional innovation is needed as we strive to move from what at best are 592	
  
“marginal” fitness proxies to truly measuring (and tracking!) fitness in wild marine 593	
  
vertebrates. 594	
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 601	
  
Figure Legends 602	
  
Figure 1: Electronic tracking, biologging, and other techniques have much promise for gaining 603	
  
insights on fitness-related events and processes in a variety of marine vertebrate taxa. Four 604	
  
studies assembled in this theme section highlight the use of electronic tracking and biologging 605	
  
techniques to advance our understanding of the factors affecting fitness in four principal life-606	
  
history stages that we reviewed. Panel A shows a great hammerhead shark, Sphyrna mokarran, 607	
  
with a satellite tag attached to its dorsal fin. Using both tracking and physiological sampling 608	
  
techniques, this study examined the effects simulated catch-and-release angling stress on 609	
  
subsequent patterns of behaviour and survival (Gallagher et al. 2014). Panel B shows a black 610	
  
legged kittiwake, Rissa tridactyla, bearing a geolocation loggers on a leg band. Geolocators and 611	
  
endocrine manipulations were used to examine nonbreeding distributions in the North Atlantic 612	
  
and migratory carryover effects on reproduction (Schultner et al. 2014). Panel C shows a 613	
  
Southern elephant seal, Mirounga leonina, fitted with satellite transmitter. This study reveals 614	
  
links between environmental change and fitness by examining how short-term (seasonal) shifts in 615	
  
marine behaviour affect long-term patterns of reproduction and survival (New et al. 2014). Panel 616	
  
D shows an emperor penguin (Aptenodytes forsteri) bearing a digital electrocardiogram (ECG) 617	
  
and time depth recorder to monitor oxygen regulation during deep dives (Wright et al. 2014). 618	
  
Photo credits: Evan D’Alessandro (A), Tycho Anker-Nilssen (B), Mark Hindell (C), Paul 619	
  
Ponganis (D). 620	
  

621	
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