Hydrological Summary for the United Kingdom

General

The intensely cyclonic conditions of late-December continued into January, resulting in an exceptionally wet and windy (but notably mild) start to 2014. A succession of vigorous low pressure systems brought gale force winds, exceptionally strong swells (causing extensive coastal damage and tidal flooding) and persistent frontal rainfall. With heavy rain falling on already saturated ground, flood alerts were widespread and sustained through January, but peak river flows were generally not exceptional; rather, January was notable for the persistence and spatial extent of floodplain inundation, particularly from large, slowly responding rivers and in low-lying areas such as the Somerset Levels. Throughout January, comparatively few properties were flooded (in part due to the effectiveness of flood alleviation measures) but the prolonged nature of the inundation caused widespread transport disruption, damage to agricultural land and isolation of some communities. With the severe storms continuing into early February, flooding continued and intensified in some major river basins (e.g. the Thames and the Severn). Groundwater flooding became increasingly prevalent through January and into early-February, as aquifers responded to the rainfall accumulated since mid-December. There is a very high risk of further fluvial and groundwater flooding over the coming months – in vulnerable areas, the risk of groundwater flooding will remain high throughout the spring (as occurred following the exceptionally wet autumn/winter of 2000/2001). Additionally, with record groundwater levels in the southern Chalk and the highest January reservoir stocks for England & Wales in a record from 1988, the water resource outlook for 2014 is exceptionally healthy.

Rainfall

In the first week of January, the passage of several deep depressions brought severe gales (which, exacerbated by high spring tides, inflicted severe damage to western coastlines, e.g. at Aberystwyth on the 3rd) and heavy rainfall (e.g. 68mm at Tyndrum on the 3^{rd} , and 67mm at Achnagart on the 7^{th}) to many parts of the UK. The next two weeks remained very unsettled, with several depressions bringing persistent rainfall to southern Britain; 48mm was reported at Charlwood, Surrey, on the 16th, but daily rainfall totals were generally more modest. January ended as it began, with a relentless sequence of low pressure systems bringing persistent frontal rain and gale force winds in the final week, which continued unabated into February. The most notable feature of the January rainfall was its persistence – the highest number of rain days (>1mm) registered for January in the NCIC record for southern England (from 1961). Correspondingly, much of central and southern England received over twice the average rainfall for January, with over three times the average received in some localities. Parts of eastern Scotland also received more than twice the average. Northernmost Scotland, by contrast, was dry - parts of the far north-west received less than 60% of the average. It was the wettest January on record for England (in a record from 1910) and, provisionally, the wettest January in the England & Wales rainfall series (from 1766). Outstanding two-month accumulations were also registered: it was the highest rainfall total for December/January (in records from 1910) for the Thames, Southern and Wessex regions, and the second wettest two-month period, for any calendar months, in these regions. It was the joint highest December/January total for Scotland (where December was considerably wetter than January).

River flow

Following the exceptional rainfall from mid-December, flows in many index rivers were substantially above average entering 2014, and continued to increase following the heavy rainfall in early-January. By the 4th, 100 flood warnings and >200 flood alerts applied, across all regions of the UK. By the 6th, the Thames had risen to its highest levels since 2003, heralding a prolonged spell of floodplain inundation which caused severe transport disruption throughout the catchment, and by mid-month resulted in property flooding in the lower reaches. A major incident was declared on the Somerset Levels on the 24th, following over three weeks of inundation (with over 16,000 acres of land reported as flooded) which cut off isolated communities such as Muchelney; efforts to alleviate the situation by pumping away floodwater extended into early-February against a worsening situation. Generally, January was notable for the persistence of high flows rather

Centre for Ecology & Hydrology NATURAL ENVIRONMENT RESEARCH COUNCIL than the magnitude of extremes. Peak river flows were not exceptional, although new January maxima were registered for several index rivers in the Thames catchment (e.g. the Pang and the Blackwater) and in parts of the south-west (e.g. the Brue in Somerset and the Dart in Devon). The protracted nature of the high flows is illustrated by the average January flows, which were the highest on record for a substantial majority of index catchments across southern Britain. Correspondingly, the total outflows for Lowland England for January were the highest on record (from 1961) for any month. It was the highest January average flow for the Thames by a considerable margin, in a record from 1883. In contrast, the Naver and the Carron in the far north of Scotland registered below average January flows. In general however, runoff over the last two months has been exceptional: the combined December/January outflows for Great Britain were the second highest on record (from 1961).

Groundwater

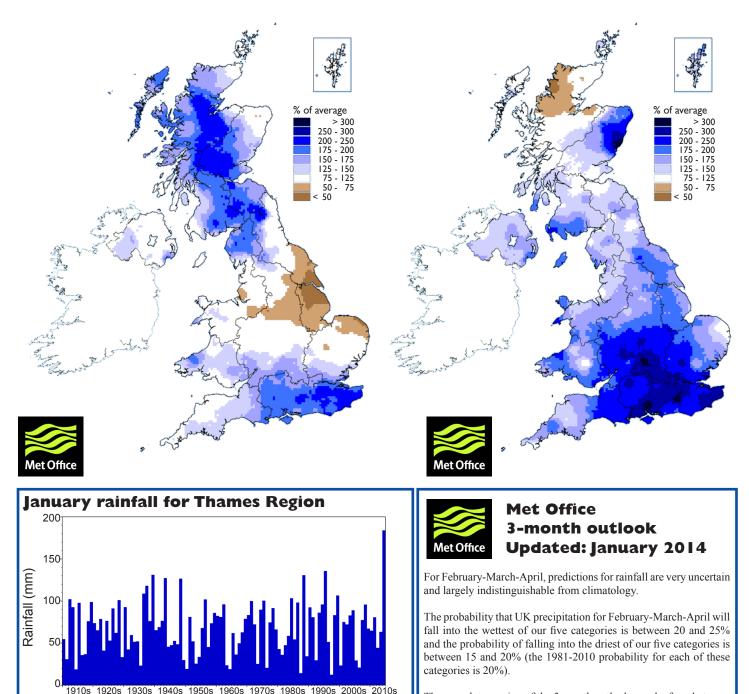
The rapid rises in responsive aquifer units in late-December, coupled with equally dramatic increases in January (e.g. >10m at Stonor and Little Bucket Farm), has led to exceptionally high groundwater levels across the southern Chalk outcrop, with new January maxima established for six Chalk boreholes. In Sussex, the Chilgrove House well overflowed (there have been around six similar artesian episodes in a record extending back to 1836), across southern England the emergence of groundwater was observed in bournes, e.g. the South Winterbourne (Dorset), Aldbourne (Berkshire), Lavant (Hampshire) and Nailbourne (Kent). In the northern and eastern Chalk, which was drier in December, levels increased but remained below average. In the Permo-Triassic sandstones, levels were above normal in the Midlands and north Wales, but exceptionally high in the north-west and south-west, with record monthly levels recorded at Newbridge, Skirwith and Bussels. In other aquifers, levels were typically above average, with Ampney Crucis (Jurassic limestone) registering exceptional levels. With rising water levels in the southern Chalk, concerns over sewer surcharging and groundwater flooding heightened through January; flood alerts were widespread across the southern Chalk (from Dorset to Kent, but predominantly in the west), and were also issued for the Lower Greensand in south-west Surrey. The high water levels on the interfluves will gradually feed into the lower parts of catchments over a period of weeks to months, and it is likely groundwater flooding will persist well into the spring. In some of the major river valleys (e.g. the Thames Valley), elevated groundwater levels in superficial sands and gravels are exacerbating current flooding and the risk of future flooding.

British Geological Survey NATURAL ENVIRONMENT RESEARCH COUNCIL

Rainfall . . . Rainfall . . .

Rainfall accumulations and return period estimates

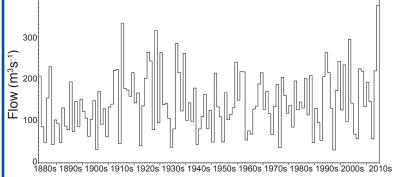
Percentages are from the 1971-2000 average.

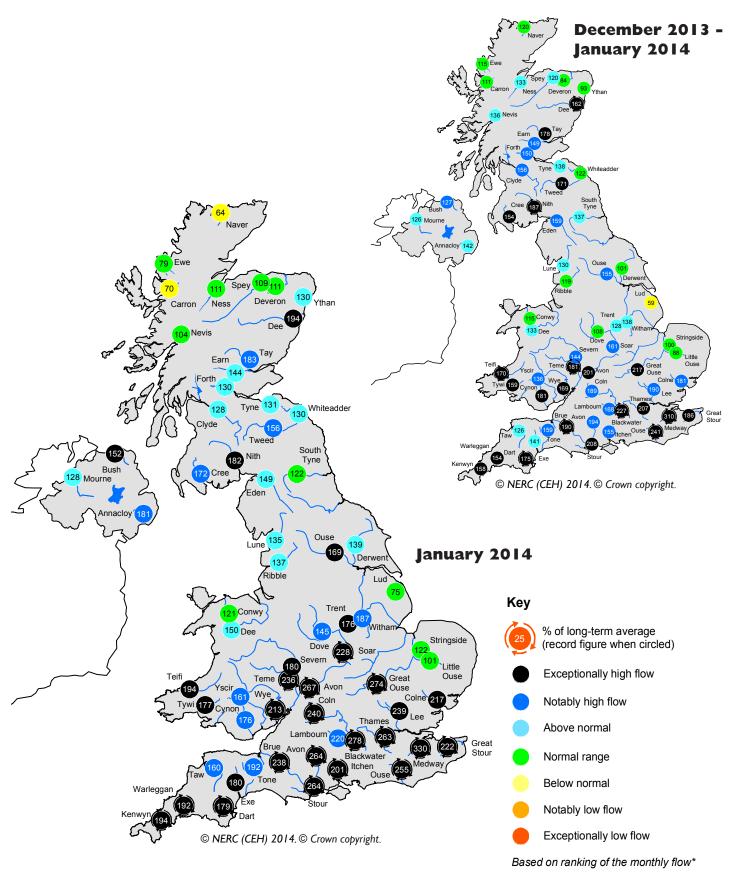

Region	Rainfall	Jan 2014	Dec 13 – Jan 14		Oct 3 – Jan 4		Feb 13 – Jan 14		Aug 12 – Jan 14	
		2011		RP		RP		RP		RP
United	mm	184	369		622		1161		1936	
Kingdom	%	156	157	>100	136	50-80	108	2-5	114	10-20
England	mm %	158	275 163	50-80	481 147	30-50	895 	2-5	527 20	10-20
Scotland	mm	205	501	50 00	815	50 50	1518	23	2477	10 20
	%	124	155	70-100	128	30-50	106	2-5	108	5-10
Wales	mm	269	491		831		1470		2490	
	%	177	158	40-60	137	20-30	108	2-5	115	5-10
Northern Ireland	mm %	171 143	308 132	15-25	531 116	8-12	1160 105	2-5	1864 107	2-5
England &	mm	174	305		530	• •	974		1660	
Wales	%	188	162	50-80	144	30-50	110	2-5	119	10-20
North West	mm	184	366		628	0.10	1236		2171	0.10
N I a u cha u cha u i a	%	152	147	15-25	127	8-12	106	2-5	117	8-12
Northumbria	mm %	122 149	25 I I 50	15-25	450 140	15-25	926 3	2-5	1624 127	50-80
Midlands	mm	148	227		422		840		1398	
	%	199	150	15-25	145	20-30	112	2-5	120	10-15
Yorkshire	mm %	136 168	223 132	5-10	401 126	5-10	818 102	2-5	459 7	5-10
Anglian	mm	99	150		302		611		1018	
	%	186	138	5-10	137	10-15	103	2-5		2-5
Thames	mm %	184 168	309 223	>>100	490 180	>100	845 122	5-10	1345 125	15-25
Southern	mm %	211 256	385 230	>>100	623 187	>100	970 126	8-12	1559 128	15-25
Wessex	mm %	212 229	379 200	>>100	619 172	>100	991 116	2-5	1729 128	25-40
South West	mm	229	419		735		1276		2301	
	%	163	146	20-30	137	15-25	107	2-5	121	15-25
Welsh	mm %	259 177	474 159	50-80	804 138	20-35	1427 109	2-5	2416 116	5-10
Highland	mm	179	552		924		1765		2811	
5	%	89	139	10-20	118	8-12	103	2-5	102	2-5
North East	mm %	179 183	333 179	>>100	543 142	15-25	1028 109	2-5	1622 109	2-5
Tay	mm %	230 147	522 178	>100	792 142	50-80	1355 108	2-5	2232 	5-10
Forth	mm %	155 122	406 164	70-100	655 136	40-60	1167 104	2-5	984 	5-10
Tweed	mm %	47 46	358 177	>100	569 147	60-90	1081 115	2-5	1848 125	20-30
Solway	mm %	261 168	550 177	>>100	844 138	30-50	59 4	5-10	2666 120	30-50
Clyde	mm %	266 132	602 153	40-60	981 128	20-30	1803 104	2-5	3009 109	5-10
			1-2000 avera						= Return perio	

Important note: Figures in the above table may be quoted provided their source is acknowledged (see page 12). Where appropriate, specific mention must be made of the uncertainties associated with the return period estimates. The RP estimates are based on data provided by the Met Office and reflect climatic variability since 1910; they also assume a stable climate. The quoted RPs relate to the specific timespans only; for the same timespans, but beginning in any month the RPs would be substantially shorter. The timespans featured do not purport to represent the critical periods for any particular water resource management zone. For hydrological or water resources assessments of drought severity, river flows and/or groundwater levels normally provide a better guide than return periods based on regional rainfall totals. Note that precipitation totals in winter months may be underestimated due to snowfall undercatch. All monthly rainfall totals since September 2013 are provisional.

Rainfall . . . Rainfall .

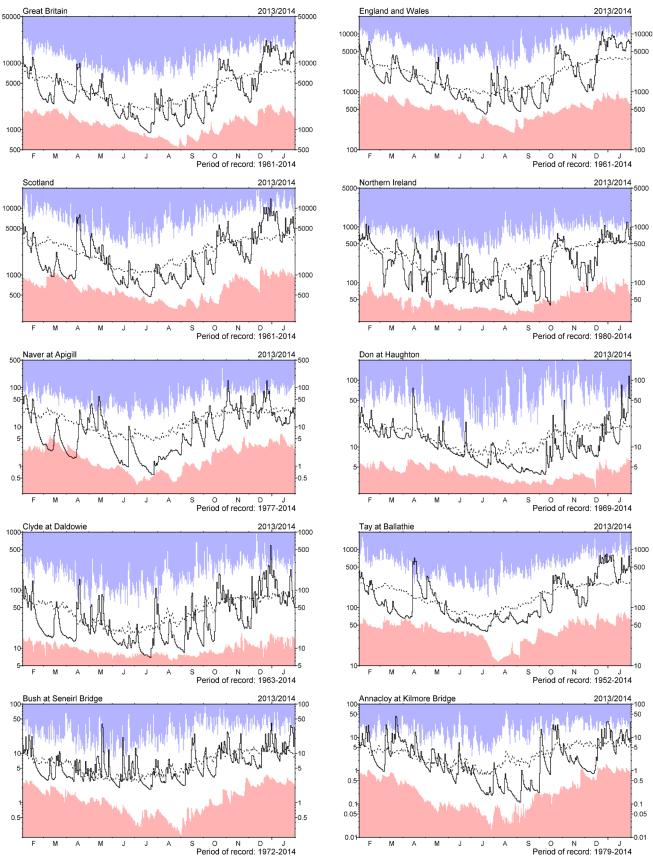
December 2013 rainfall as % of 1971-2000 average


January 2014 rainfall as % of 1971-2000 average

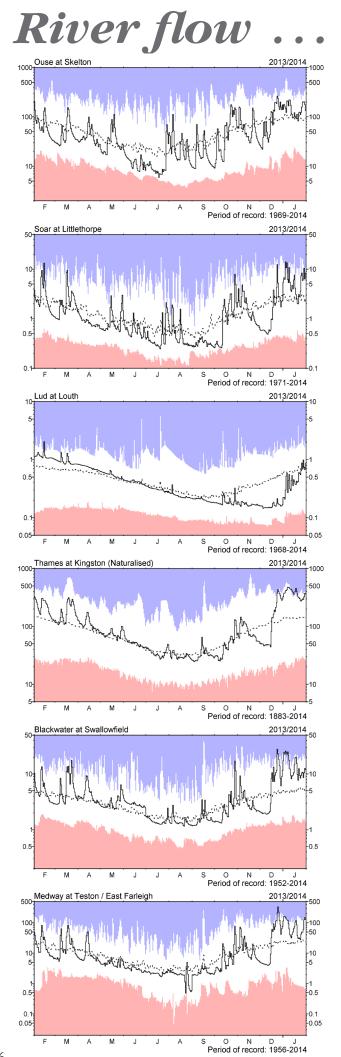

The complete version of the 3-month outlook may be found at: http://www.metoffice.gov.uk/publicsector/contingency-planners This outlook is updated towards the end of each calendar month.

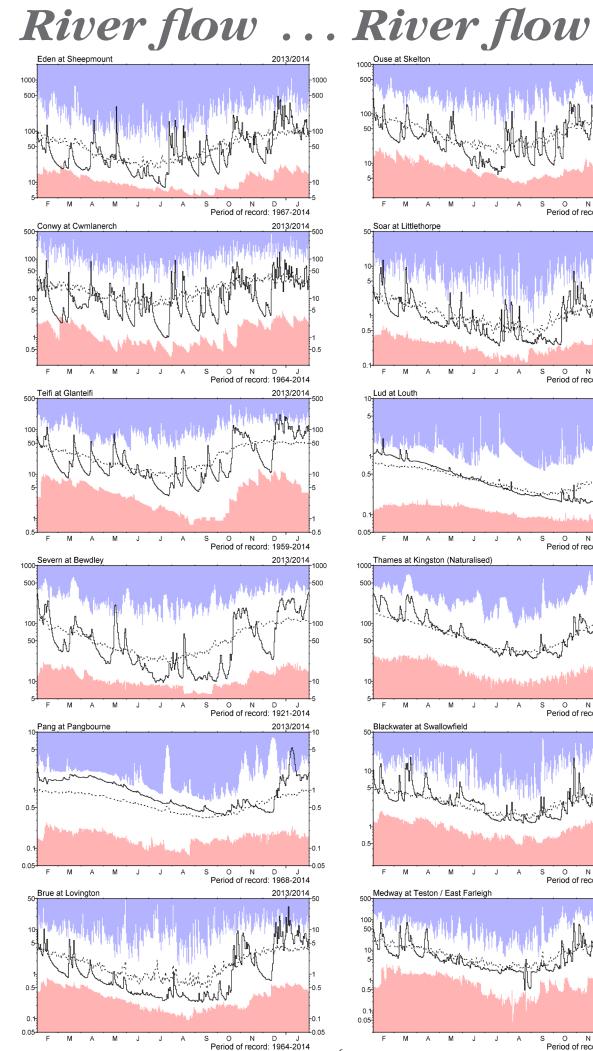
The latest shorter-range forecasts, covering the upcoming 30 days, can be accessed via: http://www.metoffice.gov.uk/weather/uk/uk_forecast_weather.html These forecasts are updated very frequently.

Average January naturalised flows for the Thames at Kingston

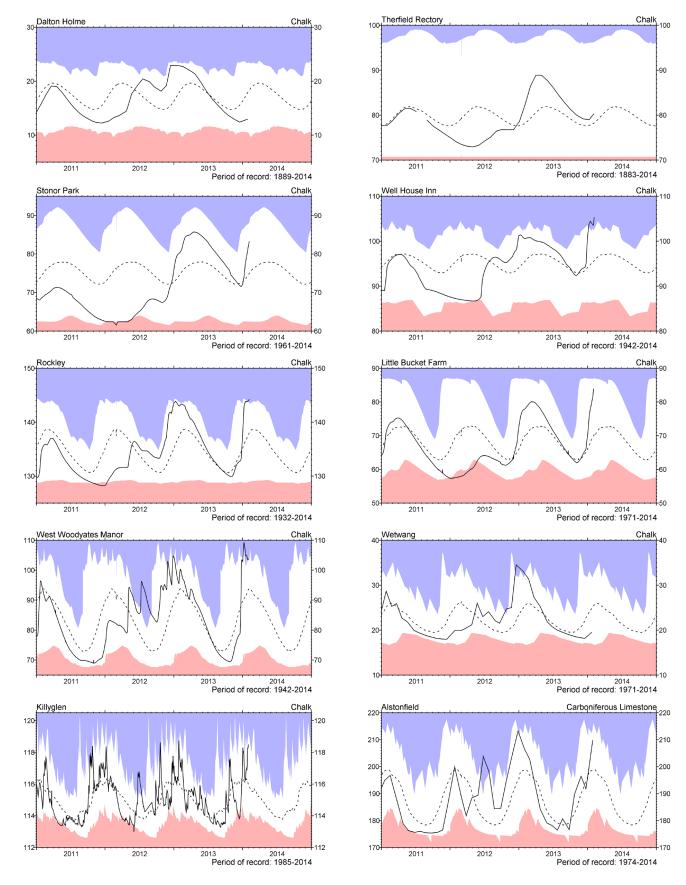

River flow ... River flow ...

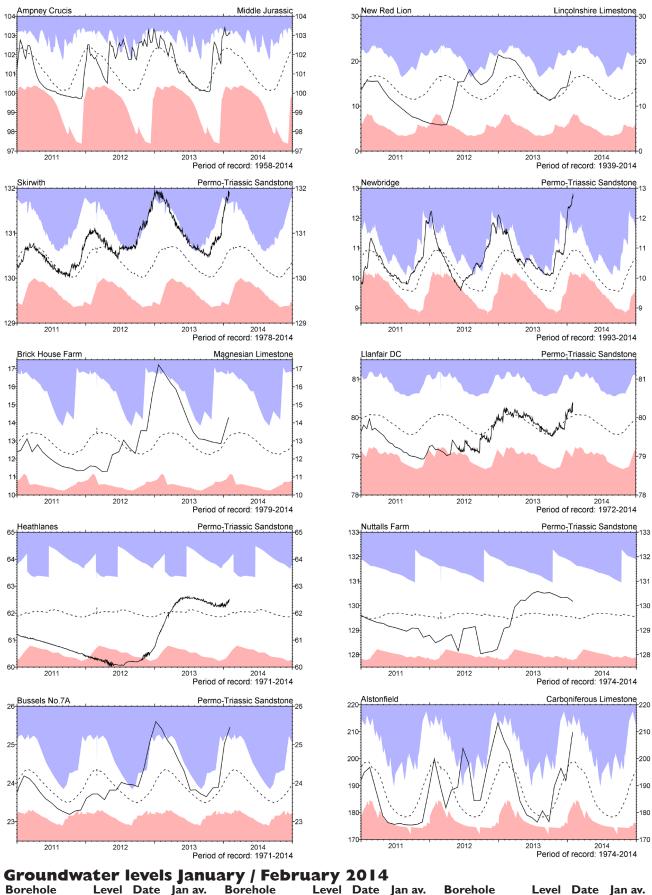
River flows


*Comparisons based on percentage flows alone can be misleading. A given percentage flow can represent extreme drought conditions in permeable catchments where flow patterns are relatively stable but be well within the normal range in impermeable catchments where the natural variation in flows is much greater. Note: the period of record on which these percentages are based varies from station to station. Percentages may be omitted where flows are under review.


River flow ... River flow ...

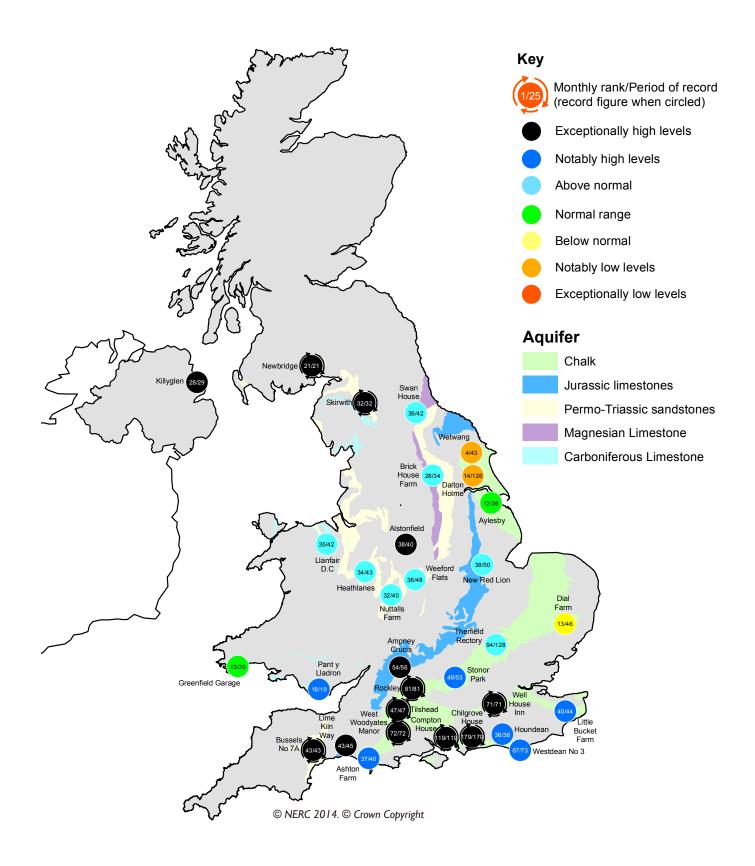
River flow hydrographs


The river flow hydrographs show the daily mean flows together with the maximum and minimum daily flows prior to February 2013 (shown by the shaded areas). Daily flows falling outside the maximum/minimum range are indicated where the bold trace enters the shaded areas. Mean daily flows are shown as the dashed line.



Groundwater...Groundwater

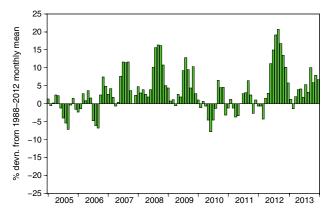
Groundwater levels normally rise and fall with the seasons, reaching a peak in the spring following replenishment through the winter (when evaporation losses are low and soil moist). They decline through the summer and early autumn. This seasonal variation is much reduced when the aquifer is confined below overlying impermeable strata. The monthly mean and the highest and lowest levels recorded for each month are displayed in a similar style to the river flow hydrographs. Note that most groundwater levels are not measured continuously and, for some index wells, the greater frequency of contemporary measurements may, in itself, contribute to an increased range of variation. The latest recorded levels are listed overleaf.


Groundwater... Groundwater

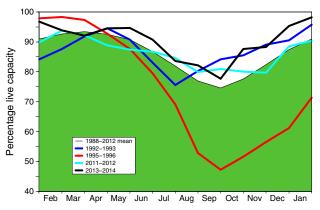
Borehole	Level	Date	Jan av.	Borehole	Level	Date	Jan av.
Dalton Holme	12.94	27/01	17.17	Chilgrove House	76.68	04/02	56.26
Therfield Rectory	80.27	03/02	77.66	Killyglen (NI)	118.48	31/01	116.20
Stonor Park	83.25	05/02	73.19	Wetwang	19.48	22/01	24.36
Tilshead	99.71	31/01	91.18	Ampney Crucis	103.08	05/02	102.34
Rockley	144.18	05/02	136.35	New Red Lion	17.77	21/01	14.89
Well House Inn	105.24	05/02	94.87	Skirwith	132.00	31/01	130.59
West Woodyates	103.57	31/01	91.62	Newbridge	12.72	02/02	10.88

Borehole	Level	Date	Jan av.
Brick House F	arm 14.30	28/01	13.05
Llanfair DC	80.38	31/01	79.96
Heathlanes	62.51	31/01	61.84
Nuttalls Farm	130.18	29/01	129.51
Bussels No.7a	25.45	04/02	24.15
Alstonfield	209.76	28/01	198.61
Levels	in metres abo	ve Ordnar	nce Datum

Groundwater...Groundwater



Groundwater levels - January 2014


The calculation of ranking has been modified from that used in summaries published prior to October 2012. It is now based on a comparison between the most recent level and levels for the same date during previous years of record. Where appropriate, levels for earlier years may have been interpolated. The rankings are designed as a qualitative indicator, and ranks at extreme levels, and when levels are changing rapidly, need to be interpreted with caution.

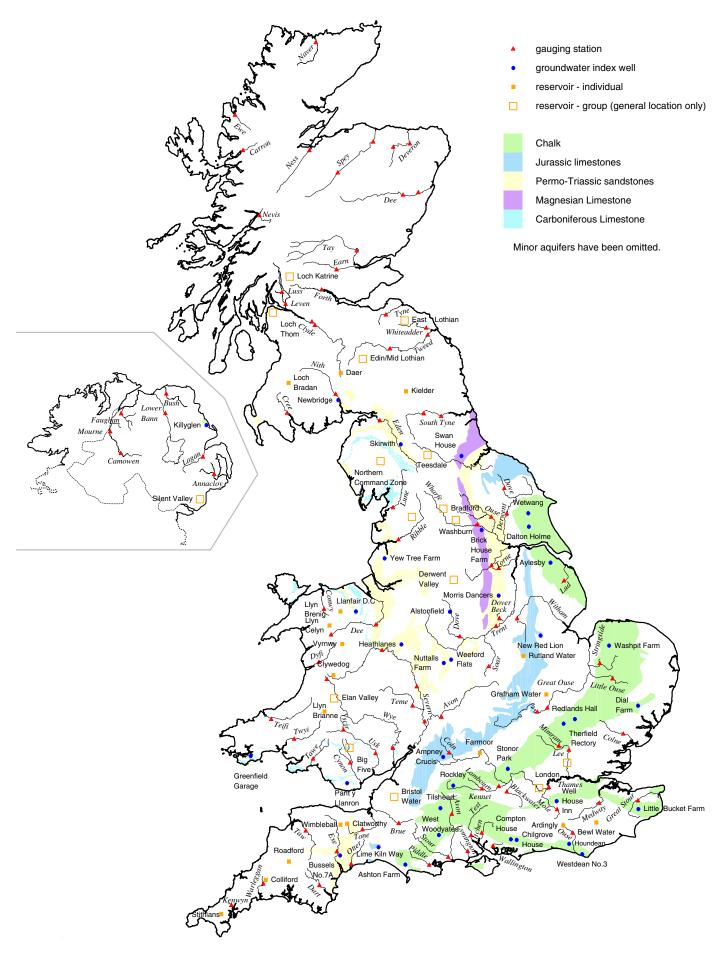
Reservoirs ... Reservoirs ...

Guide to the variation in overall reservoir stocks for England and Wales

Comparison between overall reservoir stocks for England and Wales in recent years

These plots are based on the England and Wales figures listed below.

Percentage live capacity of selected reservoirs at end of month


A	Decementin	(Capacity		2013	2013	2014	Jan	Min	Year*	2013	Diff
Area North West	Reservoir N Command Zone	•	(MI) 124929		Nov 81	Dec 94	100	Anom. 8	Jan 63	of min 1996	Jan 96	14-13 4
Nor ch vvesc	Vyrnwy		55146		83	100	100	7	45	1996	99	
Northumbrian	Teesdale	•	87936		97	100	100	. 8	51	1996	97	3
	Kielder		(199175)		89	100	97	3	85	1989	98	-1
Severn Trent	Clywedog		44922		87	87	92	4	62	1996	96	-4
	Derwent Valley	•	39525		89	98	101	6	15	1996	100	Í
Yorkshire	Washburn	•	22035		92	95	98	8	34	1996	97	I.
	Bradford Supply	•	41407		79	91	100	6	33	1996	99	I
Anglian	Grafham		(55490)		89	89	93	7	67	1998	73	20
0	Rutland		(116580)		86	89	95	10	68	1997	96	-1
Thames	London	•	202828		94	96	96	6	70	1997	96	I
	Farmoor	•	13822		92	84	100	10	72	2001	95	5
Southern	Bewl		28170		80	91	100	19	37	2006	99	I
	Ardingly**		4685		84	100	100	8	41	2012	100	0
Wessex	Clatworthy		5364		100	100	100	4	62	1989	100	0
	Bristol	•	(38666)		69	83	100	14	58	1992	96	4
South West	Colliford		28540		75	83	98	15	52	1997	100	-2
	Roadford		34500		81	91	100	19	30	1996	99	I
	Wimbleball		21320		66	76	100	10	59	1997	100	0
	Stithians		4967		81	100	100	12	38	1992	100	0
Welsh	Celyn & Brenig	•	131155		89	100	100	5	61	1996	100	I
	Brianne		62140		91	100	100	3	84	1997	99	I
	Big Five	•	69762		92	98	100	7	67	1997	96	4
	Elan Valley	•	99106		100	100	100	3	73	1996	100	0
Scotland(E)	Edinburgh/Mid-Lothian	•	97639		81	100	100	6	72	1999	97	3
	East Lothian	•	10206		73	100	100	2	68	1990	100	0
Scotland(W)	Loch Katrine	•	111363		87	94	95	2	85	2000	87	8
	Daer		22412		100	100	98	0	90	2013	90	8
	Loch Thom	•	11840		100	100	100	2	90	2004	100	0
Northern	Total ⁺	•	56800		87	89	93	2	75	2002	100	-7
Ireland	Silent Valley	•	20634		85	89	100	13	46	2002	100	0
() figures in parenthes	 denotes reservoir groups 					*last occurrence						

** the monthly record of Ardingly reservoir stocks is under review.

⁺ excludes Lough Neagh

Details of the individual reservoirs in each of the groupings listed above are available on request. The percentages given in the Average and Minimum storage columns relate to the 1988-2012 period except for West of Scotland and Northern Ireland where data commence in the mid-1990s. In some gravity-fed reservoirs (e.g. Clywedog) stocks are kept below capacity during the winter to provide scope for flood attenuation purposes. Monthly figures may be artificially low due to routine maintenance or turbidity effects in feeder rivers. © NERC (CEH) 2014.

Location map...Location map

National Hydrological Monitoring Programme

The National Hydrological Monitoring Programme (NHMP) was instigated in 1988 and is undertaken jointly by the Centre for Ecology & Hydrology (CEH) and the British Geological Survey (BGS) – both are component bodies of the Natural Environment Research Council (NERC). The National River Flow Archive (maintained by CEH) and the National Groundwater Level Archive (maintained by BGS) provide the historical perspective within which to examine contemporary hydrological conditions.

Data Sources

River flow and groundwater level data are provided by the Environment Agency (EA), Natural Resources Wales - Cyfoeth Naturiol Cymru, the Scottish Environment Protection Agency (SEPA) and, for Northern Ireland, the Rivers Agency and the Northern Ireland Environment Agency. In all cases the data are subject to revision following validation (high flow and low flow data in particular may be subject to significant revision).

Reservoir level information is provided by the Water Service Companies, the EA, Scottish Water and Northern Ireland Water.

Most rainfall data are provided by the Met Office (address opposite).

To allow better spatial differentiation the monthly rainfall data for Britain are presented for the regional divisions of the precursor organisations of the EA and SEPA.

The monthly, and n-month, rainfall figures have been produced by the Met Office, National Climate Information Centre (NCIC) and are based on gridded data from raingauges. They include a significant number of monthly raingauge totals provided by the EA and SEPA. The Met Office NCIC monthly rainfall series extends back to 1910 and forms the official source of UK areal rainfall statistics which have been adopted by the NHMP. The gridding technique used is described in Perry MC and Hollis DM (2005) available at http://www.metoffice.gov.uk/climate/uk/about/Monthly_gridded_datasets_UK.pdf

The regional figures for the current month are based on limited raingauge networks so these (and the return periods associated with them) should be regarded as a guide only.

The Met Office NCIC monthly rainfall series are Crown Copyright and may not be passed on to, or published by, any unauthorised person or organisation.

From time to time the Hydrological Summary may also refer to evaporation and soil moisture figures. These are obtained from MORECS, the Met Office services involving the routine calculation of evaporation and soil moisture throughout the UK. For further details please contact:

The Met Office FitzRoy Road Exeter Devon EX1 3PB

Tel.: 0870 900 0100 Email: enquiries@metoffice.gov.uk

The National Hydrological Monitoring Programme depends on the active cooperation of many data suppliers. This cooperation is gratefully acknowledged.

Enquiries

Enquiries should be addressed to:

Hydrological Summaries for the UK Centre for Ecology & Hydrology Maclean Building Crowmarsh Gifford Wallingford Oxfordshire OX10 8BB

Tel.: 01491 692599 Email: nhmp@ceh.ac.uk

A full catalogue of past Hydrological Summaries can be accessed and downloaded at: http://www.ceh.ac.uk/data/nrfa/nhmp/nhmp.html

Some of the features displayed on the maps contained in this report are based on the following data with permission of the controller of HMSO.

- i. Ordnance Survey data. © Crown copyright and/or database right 2005. Licence no. 100017897.
- ii. Land and Property Services data. © Crown copyright and database right, S&LA 145.
- iii. Met Office rainfall data. © Crown copyright.

All rights reserved. Unauthorised reproduction infringes crown copyright and may lead to prosecution or civil proceedings.

Text and maps in this document are © NERC (CEH) 2014 unless otherwise stated and may not be reproduced without permission.

