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Monitoring abundance and phenology in butterflies

Summary12

1. Data from ’citizen science’ surveys are increasingly valuable in identifying declines in13

widespread species, but require special attention in the case of invertebrates, with14

considerable variation in number, seasonal flight patterns and, potentially, voltinism.15

There is a need for reliable and more informative methods of inference in such cases.16

2. We focus on data consisting of sample counts of individuals that are not uniquely17

identifiable, collected at one or more sites. Arrival/emergence and departure/death of18

the individuals take place during the study. We introduce a new modelling approach,19

which borrows ideas from the “stopover” capture-recapture literature, that permits the20

estimation of parameters of interest, such as mean arrival times and relative abundance21

or, in some cases, absolute abundance, and the comparison of these between sites.22

3. The model is evaluated using an extensive simulation study which demonstrates that23

the estimates for the parameters of interest obtained by the model are reliable, even24

when the data sets are sparse, as is often the case in reality.25

4. When applied to data for the Common blue butterfly Polyommatus icarus at a large26

number of sites, the results suggest that the mean emergence times, as well as the27

relative sizes of the broods, are linked to site Northing, and confirm field experience28

that the species is bivoltine in the south of the UK but practically univoltine in the29

north.30

Synthesis and applications31

5. Our proposed “stopover” model is parameterised with biologically informative con-32
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Monitoring abundance and phenology in butterflies

stituents; times of emergence, survival rate and relative brood sizes. Estimates of33

absolute or relative abundance, that can be obtained alongside these underlying vari-34

ables, are robust to the presence of missing observations, and can be compared in35

a statistically rigorous framework. These estimates are direct indices of abundance,36

rather than ”sightings”, implicitly adjusted for the possible presence of repeat sight-37

ings during a season. At the same time they provide indices of change in demographic38

and phenological parameters that may be of use in identifying the factors underlying39

population change. The model is widely applicable and this will increase the utility40

of already valuable and influential long-standing surveys in monitoring the effects of41

environmental change on phenology or abundance.42
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Monitoring abundance and phenology in butterflies

1 Introduction43

The sizes of wildlife populations, and particularly of many insect populations, at a study site44

can change daily, with new individuals being added through birth and/or immigration and45

removed through death and/or emigration. Studying these changes is of great interest in46

conservation and monitoring, but a complete census is rarely possible and a sampling survey47

is all that can be achieved. For widespread species, “citizen science” schemes are increasingly48

adopted, with potentially large numbers of volunteers able to cover large geographical areas49

over a longer period of time than is practical by any other means. Trends from such data50

are now available from across many (though by no means all) taxonomic groups. Modelling51

invertebrate data poses both problems and opportunities, with seasonal occurrence and52

individuals, possibly of several generations, having lifespans considerably shorter than the53

sampling period.54

Such data usually comprise a number of simple series of counts collected to a standardised55

protocol. Where individuals can be uniquely marked or identified by unique physical charac-56

teristics, a number of capture-recapture (or mark-recapture) modelling approaches have been57

developed for estimating the size of a population. Collectively, these have become known58

as “Jolly-Seber-type” models (Jolly, 1965; Seber, 1965). Furthermore, recently developed59

“stopover” models (Pledger et al., 2009; Matechou et al., 2013), that build on the Schwarz60

& Arnason (1996) mark-recapture approach (SA), explicitly model the unknown times of61

arrival and departure of the individuals and provide estimates of the arrival rates at the site62

during the sampling period, as well as indirect estimates of the average duration of stay of63

the individuals at the site, referred to as mean stopover duration. However, these models do64
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Monitoring abundance and phenology in butterflies

not directly apply to data where the individuals are not uniquely identifiable. In these cases,65

the data commonly consist only of sample counts obtained on each of a number of occasions66

within a survey period, and the number of times an individual is detected is unknown.67

In this paper, we introduce a new approach for data of this type. The merits of this new68

model are that underlying biological processes are explicitly parameterised. This permits69

the flexible estimation of parameters of interest such as absolute (or relative) abundance,70

mean arrival times and probabilities of retention, and the formal comparison of these across71

a number of sites and/or years. Whereas existing models essentially estimate the numbers72

of sightings, we estimate relative or absolute abundance, with an implicit adjustment made73

for multiple encounters while estimating the relative sizes of the arrival groups, their mean74

arrival times, and the mean stopover duration in a season. These additional parameters are75

potentially useful in explaining changes in abundance or phenology and can be functionally76

related to environmental covariates.77

In section 2 we introduce the model, with particular attention to issues of model-fitting78

and parameter identifiability. In section 3 we explore the performance of the model via79

a large-scale simulation study. In section 4 we present an illustrative example based on80

data from the UK Butterfly Monitoring scheme (UKBMS) (Botham et al., 2011) where we81

consider the case of seasonally emerging butterflies which are only countable - in adult form82

- during a fixed period. Specifically, we consider multivoltine species in which more than one83

generation appear during each season, with potentially considerable overlap in their times84

of flight. The paper then concludes with a discussion.85
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Monitoring abundance and phenology in butterflies

2 Material and Methods86

2.1 The model87

The model presented in this section borrows ideas from models for capture-recapture data,88

and specifically from the SA parameterisation of the Jolly-Seber model. SA use the idea89

of a “super-population”, N , first introduced by Crosbie & Manly (1985), which is the total90

number of unique individuals that were present at the site during the study. For a study91

assumed to consist of T occasions, eg. days, weeks etc, they explicitly model the arrival92

of the individuals at the site using the entry parameters, βj−1, j = 1, . . . , T, which are the93

proportions of N that were new arrivals at occasion j with
∑T

j=1 βj−1 = 1.94

We assume here, without loss of generality, that the T sampling occasions are equally95

spaced. The data set, y, is a vector of sample counts of length T collected at the site with96

K ≤ T non-missing entries. For an individual animal to contribute to a count obtained97

on occasion j, yj , it has to have arrived before occasion j, to have remained until j and to98

be detected given that it is present on occasion j. The probability of remaining at the site99

until the next occasion, referred to as retention probability, can be time- or age-dependent,100

where age is defined to be the unknown time since entry to the site. We denote by φja the101

probability that individuals that have been at the site for a occasions, and are present on102

occasion j, will remain until occasion j + 1. The probability of detecting an individual that103

is present on occasion j, referred to as detection probability, is denoted by pj .104

It is natural to treat entry j in y as the realisation of a Poisson distribution with expec-105

tation λj. Each λj is a function of the “super-population” size and of the entry, retention106

and detection probabilities. Specifically, the expected number of individuals counted at the107
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2.1 The model Monitoring abundance and phenology in butterflies

site on occasion j is equal to λj = N
[∑j

b=1 βj−1

{∏j−1
k=b φka

}]
pj, j = 1, . . . , T, a = k− b+1,108

where b = 1, . . . , j are the possible times of entry to the population for an individual detected109

on occasion j. For example, λ3 = N (β0φ11φ22 + β1φ21 + β2) p3, that is individuals detected110

on occasion 3 entered the population either before occasion 1 but remained until occasion 3,111

or between occasions 1 and 2 and remained until occasion 3, or between occasions 2 and 3.112

The model likelihood is L(N,βββ,φφφ,ppp|y) =
∏T

j=1

[
exp(−λj)λ

yj

j

yj !

]
. If sample j was missed113

then pj = 0 and hence λj = yj = 0 and observation j does not contribute to the likelihood114

calculation.115

As will be explained in section 2.2, the total number of parameters or combinations of116

parameters that can be estimated by the model is equal to K. Allowing the entry prob-117

abilities to freely vary by time introduces T − 1 parameters to the model, a number of118

which can be practically equal to 0 for data sets of the type considered in this paper,119

since the period during which individuals arrive at the site may be much shorter than,120

and is assumed to be encompassed by, the sampling period. Therefore, we suggest that121

the entry probabilities are modelled/constrained using a mixture of M normal distribu-122

tions instead. Each of these distributions relates to one arrival group, eg. one distinct123

brood, and has its own (relative) weight wm, m = 1, . . . ,M and mean, µm, and possibly124

its own variance σ2
m. Consequently, the proportion of N that were new arrivals on occasion125

j, j = 1, . . . , T is equal to: βj−1 =
∑M

m=1 wm [Fm(j)− Fm(j − 1)] where, Fm(j) = P (X ≤ j)126

when X ∼ N(µm, σ
2
m). By the definition of the β parameters, Fm(0) = 0 and Fm(T ) = 1 ∀m,127

therefore β0 =
∑M

m=1wm [Fm(1)] and βT−1 = 1 −
∑M

m=1wm [Fm(T − 1)]. A demonstrating128

example when M = 2 with overlapping times between the two arrival groups is given in Fig.129
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2.1 The model Monitoring abundance and phenology in butterflies

1. Hence, regardless of the size of T , the model requires the estimation of 2M parameters in130

the case of homoscedastic mixture distributions and 3M −1 parameters in the heteroscedas-131

tic. This modelling approach for the entry parameters provides a smooth representation of132

the arrival pattern of the individuals to the site as well as estimates of the mean arrival times133

and relative sizes of the different arrival groups.134

[Figure 1 about here.]135

Similarly, we propose to model retention probabilities using parametric curves. An ex-136

ample is the logistic curve where logit(φja) = αφ + βφ · xj , ∀a where xj can correspond to137

the value of a time-varying environmental covariate such as temperature or simply to calen-138

dar time. Another option is to use the more flexible quadratic function where logit(φja) =139

αφ + βφ · xj + γφ · x
2
j , ∀a. Alternatively, as mentioned above, φ can be modelled as a function140

of age, logit(φja) = αφ + βφ · a, ∀j.141

Finally, detection probabilities can be modelled either as constant over time, as appro-142

priate, or as dependent on a time-varying covariate v, such as temperature or sampling effort143

at the time of sampling, with logit(pj) = αp + βp · vj. As will be shown in section 2.2, in144

the first case, parameters N and p are only estimable as a product and therefore the model145

provides estimates of the total number of individuals that were detected at least once but146

not estimates of the “super-population” size. In the latter case, simulations presented in sec-147

tion 3 suggest that the model becomes more “data-hungry” and richer data sets with higher148

counts from more sites and maybe better separated groups are required for its estimates to149

be reliable.150

If data sets from multiple sites are available, then one can use an integrated modelling151
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2.2 Parameter Redundancy Monitoring abundance and phenology in butterflies

approach to analyse them simultaneously. The data set now consists of matrix Y with152

entry yij equal to the count obtained at site i on sampling occasion j. Specifically, for data153

sets collected at S sites the likelihood becomes L(N,βββ,φφφ,ppp|Y) =
∏S

i=1

∏T

j=1

[
exp(−λij)λ

yij
ij

yij !

]
,154

where λij is the Poisson mean for site i on occasion j.155

The number of estimable parameter combinations now increases, with a maximum of ST156

if there are no empty cells in Y, which allows for some of the assumptions for the model157

parameters to be relaxed. For example, the mean arrival times can be modelled in terms of158

a site-specific covariate, z: log(µim) = αm + βµ · zi, where αm, m = 1, . . .M is the log mean159

arrival time of group m with zi = 0 and βµ is the shift of all means to a direction indicated160

by its sign when zi changes. A similar approach can be employed for modelling the relative161

weights of the arrival groups. The precision of the estimates is expected to increase as the162

number of sites increases if the expectations of the model for each site have a number of163

parameters in common. However, parameters N1, . . . , NS are again only estimated each as164

a product with p when the latter is assumed constant for all sites and sampling occasions.165

All of the simulation and data analysis results presented in this paper were obtained166

using R Core Team (2013) and computer code to perform the model-fitting is available from167

the first author upon request.168

2.2 Parameter Redundancy169

If one or more parameters in a model cannot be estimated, then the model is termed param-170

eter redundant and is non-identifiable. Catchpole & Morgan (1997) showed that for a model171

from the exponential family of distributions, such as the Poisson model described in section172
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2.2 Parameter Redundancy Monitoring abundance and phenology in butterflies

2.1, one can identify whether it will be parameter redundant for all data sets by calculating173

the rank of a matrix of first derivatives. Specifically, the number of estimable parameter174

combinations in the model for data from a single site is equal to the rank of matrix D with175

entries176

Dlk =
∂λk

∂θl
, k = 1, . . . , T, l = 1, . . . , q

where λλλ is the vector of means of the model, in this case of length T , and θθθ is the vector of177

parameters, of length q. The rank of D, r, is less than or equal to T if there are no missing178

data and less than or equal to K otherwise. If r is less than q then the model is parameter179

redundant and it is not possible to identify unique maximum likelihood estimators for at180

least some of its parameters. If on the other hand r = q then the model is termed full rank.181

Symbolic algebra packages, such as Maple, can be used to calculate the entries of D182

as well as its rank. However, if the model structure is too complex, Maple can run out183

of memory when calculating r symbolically. To deal with this limitation, Choquet & Cole184

(2012) proposed a hybrid symbolic-numerical approach where the entries of D are found185

symbolically but its rank is calculated numerically for values of the parameters randomly186

chosen from the parameter space. If r is calculated less than q then any zero entries in187

the numerical estimation of the left kernel of D suggest the parameters that are estimable.188

As Choquet & Cole (2012) point out, a point chosen at random from the parameter space,189

especially if this choice is poor, can result in r being estimated as smaller than the actual190

model rank, and they therefore suggest choosing around 5 sets of random values and repeating191

the procedure for each set. The model rank is equal to the largest value for r obtained from192

these 5 repetitions.193
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2.2 Parameter Redundancy Monitoring abundance and phenology in butterflies

For data collected at S sites, the number of estimable parameter combinations cannot194

exceed ST . If detection probability is assumed constant across all sites and all sampling195

occasions then N1, . . . , NS only appear as a product with p and therefore are not estimable196

separately from it. This result is also verified by adopting the aforementioned symbolic-197

numerical methods for all specifications of the other model parameters introduced in section198

2.1.199

Parameters N1, . . . , NS and p do however become separately estimable if p is modelled us-200

ing a time-varying covariate. This finding is similar to that shown by Cole & Choquet (2013)201

who incorporated random effects to separate confounded parameters in capture-recapture202

models. Similarly to Cole & Choquet (2013), we have found that if either the covariate203

used to model p does not vary considerably across the samples, or its effect on p is not sta-204

tistically significant, then the model becomes near-parameter redundant, which means that205

even though it is in theory full rank it actually behaves like a parameter redundant model206

in practice.207

Although these results do not need to be reproduced when the models are fitted to data,208

the Maple (Maplesoft, Waterloo, Canada) code used to derive these results is available upon209

request from the first author. Simulations shown in section 3 that explore the different model210

specifications suggest that as the model becomes more complicated, and especially when N211

and p are separately estimated, the data set needs to be richer for the model to perform212

adequately. As is usually the case with sparse data sets, results that hold in theory might213

not be true in practice in terms of the estimable parameter combinations in the model and214

results obtained by analysing sparse data sets should be treated with caution.215
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2.3 Model-fitting considerations Monitoring abundance and phenology in butterflies

2.3 Model-fitting considerations216

Different starting values for the parameters in mixture models can yield different local max-217

ima since the surface of a mixture model likelihood may be multimodal. This implies that in218

this case different starting values for the mean arrival times of the groups could lead to dif-219

ferent results. It is recommended that the optimisation algorithm is started from a number220

of different values to ensure a wide search and to obtain a number of different local maxima221

from which to choose the best i.e. the one that results in the highest likelihood value.222

The starting value for each arrival mean can be randomly sampled from the possible223

arrival times, which are all values between 1 and T. Those for the standard deviations of224

the arrival groups can be chosen to be large, eg. 5-6 depending on the length of the study,225

to eliminate as much as possible the appearance of spurious maximisers which may result226

from the fact that the likelihood for mixtures of heteroscedastic normal distributions does227

not have a global maximum value and continues to increase when one, or more, of the values228

of the variances of the groups decrease. These maximisers often lead to singularities in the229

variance-covariance matrix.230

For a detailed description of the issues of multimodality and spurious maximisers see231

McLachlan & Peel (2000) and in particular sections 2.12 and 3.10.232

2.4 Goodness of fit233

The expected number of individuals detected at site i on occasion j, ŷij is equal to ŷij =234

N̂ip̂ij
∑j

b=1

[
β̂i,b−1

{∏j−1
j=b φ̂i,ja

}]
, a = j− b+1, where β̂i,b−1 and φ̂i,ja are the estimated entry235

and retention probabilities for site i, respectively.236
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2.5 Stopover duration Monitoring abundance and phenology in butterflies

The residual deviance of the fitted Poisson model can be used to assess its fit. However,237

when a number of cell counts in Y are low then the asymptotic distribution of the residual238

deviance may not be χ2 anymore, but the fit can be assessed less formally by plotting the239

observed and fitted values against or alongside one another.240

2.5 Stopover duration241

The mean stopover duration at site i, MSDi, is equal to242

MSDi =
∑T

b=1

∑T

d=b(d − b + 1)βi,b−1

(∏d−1
j=b φi,ja

)
(1 − φi,d(d−b+1)), a = j − b + 1, where243

d = b, . . . , T are the possible exit times from the population for an individual that entered244

on occasion b. In the case of bivoltine insect species, this is the average duration across245

both broods. In cases where the population is closed to migration, this will generally be246

the average (adult) lifespan of an individual, although for the few species that overwinter as247

adults individuals emerge from, and may leave the study into, a state of diapause.248

3 Simulations249

This section presents an extensive simulation study which examines the performance of the250

model for a wide range of assumptions for the parameters. The simulations are divided in251

two sections: in section A, the fitted models have pij = p ∀i, j and therefore parameters252

N1, . . . , NS are only estimated as a product with p, while in section B, detection proba-253

bilities are logistically regressed on an artificial covariate, generated from a Unif[5,15] for254

all sites/occasions, and estimates of N1, . . . , NS, separate from detection probabilities, are255

obtained.256
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3.1 Section A Monitoring abundance and phenology in butterflies

3.1 Section A257

Simulation A1 sets S = 10, T = K = 15, N = (609, 869, 659, 848, 553, 346, 871, 875, 227, 545),258

M = 2 with µi,1 = 2, µi,2 = 7, wi,1 = 0.4, wi,2 = 0.6 and σi,1 = σi,2 = 1 ∀i, pi,j = 0.2 and259

φi,j = 0.6 ∀i, j. Fig. 2 (a) shows the counts obtained in one simulation run for all sites.260

Figs 2 (b) and (c) demonstrate that the model provides satisfactory estimates of both the261

numbers of individuals detected once at each site, as well as of the entry parameters.262

[Figure 2 about here.]263

This simulation is used as a baseline for evaluating several extensions of the model. The264

results are shown as supplementary material. In simulation A2, observations are deleted at265

random and hence at any site K 6= T , resulting in around 20% of the data being missing266

(Fig. S1). In simulations A3, A4 and A5, retention probabilities are, respectively, a function267

of calendar time, a function of age and a function of the square of calendar time (Figs S2,268

S3, S4). Note that in simulation A4 T is set equal to 20 since the second group remains for269

longer than in simulation A3. In simulation A6, w1 is logistically regressed on a fictitious270

covariate (Fig. S5) while in simulation A7, the logarithms of µ1 and µ2 are regressed on271

a fictitious covariate (Fig. S6). The case of heteroscedastic arrival groups is examined in272

simulation A8 (Fig. S7) while, finally, simulation A9 sets M = 3 with µ = (2, 6, 10) and273

w = (0.4, 0.5, 0.1) (Fig. S8).274

The results suggest that the model performs well in all of these cases. When the relation-275

ship between logit(φ) and calendar time is quadratic, there is greater uncertainty for the part276

of the curve that corresponds to the early sampling occasions, compared to the case when277

logit(φ) is linearly dependent on time. Similarly, when logit(φ) depends linearly on age,278

14



3.2 Section B Monitoring abundance and phenology in butterflies

there is more uncertainty in the part of the curve that corresponds to the older individuals.279

The validity of model selection criteria, such as the Akaike Information Criterion (AIC)280

(Akaike, 1973), in choosing the number of mixture components is doubtful because of vi-281

olation of regularity conditions (McLachlan & Peel, 2000, Chapter 6). However, their use282

has gained support in the literature, for example in Cubaynes et al. (2012). We performed283

a small simulation study to examine the performance of AIC in choosing the right value for284

M when M is set equal to 1, 2 or 3. Specifically, we simulated data with M = 1, µ = 5,285

σ = 1 or with M = 2, w1 = 0.4, w2 = 0.6, µ1 = 3, µ2 = 7 and σ1 = σ2 = 1, or with M = 3,286

w1 = 0.4, w2 = w3 = 0.3, µ1 = 3, µ2 = 7, µ3 = 11 and σ1 = σ2 = σ3 = 1 and all other287

parameters set as in the baseline simulation. For each set, we fitted models with M = 1, 2, 3288

and used AIC to choose between them. The number of times each model is selected for each289

set, out of 100 simulations, given below, suggests that in this case AIC successfully selects290

the right value for M in the majority of cases:291

[Table 1 about here.]292

3.2 Section B293

If detection probabilities are allowed to vary according to a fictitious site- and time-varying294

covariate, then the model also requires richer data sets with higher counts in order to perform295

adequately. For example, if the average detection probability is 0.2 and all other parameters296

are as in simulation A1, then the median relative bias (MRB) in the estimates for N is around297

−9% for all sites. If detection probabilities are set on average equal to 0.7, then the MRB298

falls to around 5% for all sites. If N doubles for all sites compared to simulation A1, then299
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MRB is around 3.5% when average detection probability is 0.2, and only 0.1% when average300

detection probability is 0.7. The results of the latter simulation (B1), are presented in Fig.301

3 together with the counts obtained in one of the simulation runs at all sites.302

[Figure 3 about here.]303

Further simulation results are shown as supplementary material. In particular, simulation304

B2 explores the case when 20% of the counts are missing (Fig. S9), simulation B3 has φ305

logistically regressed on time (Fig. S10) while simulation B4 has φ logistically regressed on306

age (Fig. S11). Note that in simulations B3 and B4 the groups are better separated for the307

model to perform well with µ1 = 2 and µ2 = 9 and also in simulation B4 T = 20, as was the308

case in simulation A4.309

4 Application to UKBMS count data310

Butterfly counts are characterised by their high variability throughout the season, represent-311

ing the different patterns of emergence for each species. Different species of butterfly exhibit312

varying levels of voltinism, with one, two or more generations per year.313

The UKBMS consists of counts made weekly from the beginning of April until the end314

of September using the transect method, which is described in depth in Pollard & Yates315

(1993). Transects are typically 2-4 km long and walked within specified periods of the day316

and when weather conditions are suitable for butterfly activity. The scheme design allows317

for counts to be made throughout the season for butterfly activity, during which abundance318

will vary according to different seasonal patterns of emergence.319
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We apply the model introduced in section 2.1 to UKBMS data for the Common blue320

Polyommatus icarus, collected in 2010. This species is known to exhibit bivoltine populations321

in the south of the UK, whilst populations become single brooded in the north. However, a322

precise latitude at which this occurs or knowledge of how this boundary may have changed323

over time are both unknown (Asher et al., 2001).324

We considered M = 2 homoscedastic normal mixture distributions for the arrival of the325

butterflies at the sites. For computational efficiency, data were limited to a random sample326

of 50 monitored sites, excluding sites where more than 6 counts were missing from the season327

or the sum of the counts made was less than 10. Common Blue overwinters as a caterpillar,328

and is therefore not seen in flight until late spring. The start of the season was defined as329

the week with the first positive count, with season length totalling 21 weeks.330

Model comparison was made for varying parameter assumptions using AIC. The mixture331

means and weights were estimated as either constant, or as a function of site Northing, as332

described in section 2.1. Retention probabilities were modelled as constant, or as logistically333

dependent on calendar time, age or calendar time squared. Detection probabilities were334

set either as constant and common across sites or as logistically dependent on temperature335

at the site on the day of sampling, which is also recorded by the data collector. Missing336

temperature records were replaced by the average of neighbouring sites. Each model was337

started from ten different random starts for the parameters to determine the optimal local338

maximum, as discussed in section 2.3 and all covariates were standardised.339

Table 2 provides the AIC values and the number of parameters of the models considered.340

The two models with the greatest support have the weights and mixture means dependent341

on Northing and the logits of retention probabilities as dependent on the square of calendar342
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time. The most favoured model also has the logits of detection probabilities dependent on343

temperature and an AIC value considerably lower than that of the second most favoured344

model, which has a constant detection probability across sites and time.345

[Table 2 about here.]346

Parameter estimates and associated standard errors for the preferred model are given in347

Table 3 and they are similar to those derived from the second best model, shown in Table348

S1.349

[Table 3 about here.]350

The residual deviance of the selected model is D=3952, with (n− p)=924-61=863 which351

implies a moderate lack of fit and dispersion estimated as approximately 4.58. However,352

comparison of the observed counts with estimated fitted counts from the model show rea-353

sonable correspondence for most sites, implying overdispersion rather than a failure in the354

model structure (Figure S12) and all standard errors have been adjusted for overdispersion.355

The estimated retention probabilities, shown in Fig. 5(a), peak around week 11 of 21,356

before dropping off towards the ends of the season. They are estimated as approximately357

zero for the initial weeks of the season. The 95% confidence intervals constructed around358

the logit of retention probabilities demonstrate the greater uncertainty for the part of the359

curve that corresponds to the start of the season (Fig. S13). This is because the obtained360

counts are considerably low in the first few weeks and the first few columns of the data set361

are very sparse. A similar result was observed for simulated data, as mentioned in section 3.362

The weighting of the first normal distribution increases with Northing, with the second363

brood almost disappearing in the North (Fig. 5(b)). The means of the two normal distribu-364
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tions suggest a later time of emergence in the North (Fig. 5(c)). This is also demonstrated365

by the entry parameters; two relatively even broods at southern sites, with the first brood366

dominating at high Northing, in addition to a later emergence (Figure 4). The 95% confi-367

dence intervals shown in Fig. 5(b) and Fig. 5(c) are constructed using the Delta method in368

R package msm Jackson (2011).369

[Figure 4 about here.]370

Finally, the estimated “super-population” sizes for all 50 sites are shown in Fig. 5(d),371

together with their asymptotic 95% confidence intervals back-transformed from the log-372

scale. The black dots are the estimates of Np, that is the product of the “super-population”373

sizes and detection probability, when that is assumed constant and common across all sites,374

derived by the second best model, as shown in Table 2. As expected, and especially for sites375

with higher estimated N , these two point estimates are far apart, with N greater than Np.376

[Figure 5 about here.]377

5 Discussion378

Simple series of annually replicated counts, made to a standardised protocol, are essential379

for conservation monitoring. Through butterfly counts of this kind, for example, have been380

identified not only widespread declines in some species, but also several marked successful381

responses to targeted management (Thomas, Simcox & Hovestadt, 2011). Optimal methods382

of analysing such data would also shed light on the factors behind the population changes,383

by estimating demographic and phenological changes alongside the population trends.384
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Many approaches have been adopted for comparing relative abundances at different lo-385

cations, or different points in time. Simple Poisson models are often applied to data in the386

form of multiple, often short and incomplete, time series arising from standardised survey387

protocols. A specific problem with butterfly data, such as those of the UKBMS, is the need388

to account for the seasonal patterns - inevitable in the counts - which mean that expected389

counts, even at an individual site, vary greatly within a season. To date, this seasonal pat-390

tern has usually been estimated via a Generalized Additive Model (GAM: Rothery & Roy391

(2010); Dennis et al. (2013)). Such models however rely on interpolating any missing values,392

and as such estimate the total numbers of sightings, rather than individuals.393

A GAM approach is clearly non-parametric and empirical. Our proposed method is still394

Poisson-based (although other distributions might be considered if preferred), but seeks to395

explain the changing counts within a season via models which are both biologically realis-396

tic, and of considerable value in conservation management. Missed visits within the season397

are easily encompassed due to the use of parametric functions to constrain the model pa-398

rameters, and we can now estimate more flexibly a number of quantities, in addition to399

abundance or relative abundance. Additionally, we can ensure that indices of abundance are400

not biased due to differences in seasonal flight periods or multiple sightings of individuals401

within a season. The retention/survival probability φ is a demographic variable that can402

be converted to the estimated flight-period (adult life-expectancy) of an individual; through403

the arrival parameter β alone we are informed about phenological change (the average time404

of arrival/emergence) and, importantly, the relative strengths of two (or more) broods in405

multivoltine species. Extensive simulations have shown that the model can be expected to406

perform well with data of a scale readily achievable in practice.407
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Note that the method includes the pioneering work of Zonneveld (1991) as a special case,408

in which data from single sites are modelled individually with a constant rate of survival. The409

number of parameters estimated restricts the capacity for useful inference at a single site and410

season (see Calabrese, 2012). Extension to simultaneous analyses at multiple, potentially411

many, sites which may be expected to share at least some parameters allows “borrowing412

strength” and improved inference on key ecological parameters - the assumption of constant413

survival can be tested in a robust framework, for example. Although we have chosen normal414

distributions for the arrival times, alternatives are readily adopted: Zonneveld (1991) consid-415

ered logistic, and Cornulier et al. (2009) also used asymmetric distributions within mixture416

models to permit a degree of skewness in the hatching dates of birds from monitored nests.417

Clearly the model is also straightforward to apply to univoltine species, though we have418

concentrated on the bivoltine case here due to its special interest and difficulties, and to419

illustrate the connection with the widely-used stopover models in other contexts. In the420

latter, arrival and departure of (marked) individuals from a location are usually considered421

as immigration and emigration, though the mathematics is clearly analogous. The butter-422

flies in our data are of course not individually identifiable, and this prohibits the estimation423

of genuine abundance when detection probability is assumed constant, something which is424

possible in conventional stopover models. Nonetheless, in this case the model confounds425

abundance and detectability, so if the latter can be assumed constant comparable measures426

of relative abundance arise, and are of use in management and monitoring.427

The ability to estimate changes in phenology, demography and voltinism along with abun-428

dance provides a rigorous statistical basis for comparisons of these, and their relationships429

with environmental covariates or with one another. Thus, for example, in a species such as430
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the Common Blue we are able not only to estimate abundance/relative abundance at each431

site, but to apportion this between two broods. Use of a covariate (site Northing) confirms,432

and quantifies, long-standing field experience that the species is effectively single-brooded433

in the far North of its range although the two broods are comparable in the South, and434

that the broods emerge later with increasing Northing, presumably as a consequence of later435

spring/summer conditions. Given that, for simplicity, survival is often assumed constant436

in modelling butterfly populations, e.g. Soulsby & Thomas (2012), and in the absence of437

evidence for senescence, it is interesting that for Common Blue models with age-dependence438

in survival fare poorly. However, the evidence for variation with time across the season is439

pronounced.440

Butterfly data are regarded as especially useful environmental indicators. They are, for441

example, relatively easy to collect via ’citizen science’ schemes as they are visible, popular442

with the public and, in the UK at least, species are few and largely easy to locate and443

identify, compared to many invertebrate groups. The method is, however, equally applicable444

to other seasonal invertebrate species.445

The sensitivity of butterflies to climatic or land-use changes makes them useful indi-446

cators of the effects on wider biodiversity, as shown by the adoption of the UKBMS into447

governmental indicators of biodiversity trends in the UK (Defra, 2011) and beyond (van448

Swaay, Nowicki, Settele & van Strien, 2008). Given the demonstrated utility of butterfly449

surveys in studying, for example, climate change (Roy & Sparks, 2000; Roy et al., 2001) or450

consequences of agricultural practice (Woodcock et al., 2012; Jonason et al., 2011) and, for451

specialist species, habitat fragmentation (Brückmann, Krauss & Steffan-Dewenter, 2010) we452

believe that the greater flexibility and robustness of the models described here will greatly453
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increase the value of such surveys in the future.454

The method has important applications in conservation biology as it enables absolute455

abundance of an insect species seasonal population to be estimated from strip transects.456

This is without the need for intrusive and labour intensive marking techniques or technically457

demanding distance sampling that involves counting butterflies in distance bands. Phenology458

and abundance are modelled simultaneously, and mean date of emergence, which is a new459

statistic for butterflies, can be used to monitor species responses to climate change. Altitude460

and aspect are also thought to affect butterfly phenology and it is straightforward to include461

these in the model in the future. Detectability was modelled as a function of temperature462

at the site on the day of sampling, but other covariates such as habitat type, recorder effort,463

experience or age can be also incorporated if available.464
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Figure 1: (a): Two normal densities with µ1 = 4, µ2 = 7 and σ1 = σ2 = 1 with corresponding
weights equal to 0.7 and 0.3. If an observation, x1, is drawn randomly from a N(4, 1)
distribution then 0.7× P (4 ≤ x1 ≤ 5) is given by the gray shaded area (0.7× 0.34) while if
an observation x2 is drawn from a N(7, 1) distribution then 0.3×P (4 ≤ x2 ≤ 5) is given by
the area inside the black lines (0.3 × 0.02). (b): The resulting β parameters. For example,
β4, which is shaded in gray, is given by 0.7× 0.34 + 0.3× 0.02 = 0.244.
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Figure 2: Simulation A1. (a): Obtained counts from one simulation run for all sites. (b)
and (c): Box-plots of derived estimates for Np and β from 100 replications and true values,
indicated by the black diamonds.
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Figure 3: Simulation B1. Derived estimates for N and β from 100 replications. The true
values are indicated by the black diamonds.
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Figure 4: Estimated entry parameters for Common Blue in the UK, summer 2010, at a
sample of Northing values.
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Figure 5: Point estimates obtained by the selected model together with 95% confidence
intervals : (a) estimated retention probabilities (common across sites), (b) relative size of
the first brood, (c) mean arrival times of the two broods, by Northing, and (d) estimated
“super-population” sizes, N , of the 50 sites. The black dots in (d) are the point estimates
of Np obtained by the second best model in terms of AIC.
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Table 1: Each cell corresponds to the number of times each value of M was chosen by AIC,
out of 100 simulations, when the true value of M is the one indicated in the first column

Chosen M
True M 1 2 3

1 83 8 9
2 0 85 15
3 0 27 73
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Table 2: Model comparisons from fitting a range of models to the Common blue data. Here
ℓ denotes the value of the log likelihood evaluated at the maximum likelihood estimate of
the parameters. north: Northing, temp: temperature.

No .of
Model ℓ parameters AIC

wm(north)µm(north)σ(.)φ(t+ t2)p(temp) -2880.01 61 5882.03
wm(north)µm(north)σ(.)φ(t+ t2)p(.) -2923.42 59 5964.85
wm(.)µm(north)σ(.)φ(t+ t2)p(.) -3161.16 58 6438.31
wm(north)µm(north)σ(.)φ(a+ a2)p(temp) -3232.41 61 6586.81
wm(north)µm(north)σ(.)φ(t)p(.) -3260.33 58 6636.65
wm(north)µm(north)σ(.)φ(t)p(temp) -3258.37 60 6636.73
wm(north)µm(north)σ(.)φ(a+ a2)p(.) -3280.17 59 6678.34
wm(north)µm(north)σ(.)φ(a)p(temp) -3306.02 60 6732.04
wm(north)µm(north)σ(.)φ(.)p(temp) -3316.60 59 6751.19
wm(north)µm(north)σ(.)φ(a)p(.) -3337.4 58 6790.80
wm(north)µm(north)σ(.)φ(.)p(.) -3343.42 57 6800.84
wm(.)µm(north)σ(.)φ(t+ t2)p(temp) -3356.25 60 6832.50
wm(north)µm(.)σ(.)φ(t+ t2)p(temp) -3374.32 60 6868.63
wm(.)µm(north)σ(.)φ(.)p(temp) -3473.19 58 7062.38
wm(north)µm(.)σ(.)φ(t+ t2)p(.) -3559.7 58 7235.39
wm(.)µm(north)σ(.)φ(.)p(.) -3566.72 56 7245.43
wm(north)µm(.)σ(.)φ(.)p(temp) -3741.07 58 7598.15
wm(.)µm(.)σ(.)φ(t+ t2)p(temp) -3837.59 59 7793.17
wm(north)µm(.)σ(.)φ(.)p(.) -3849.68 56 7811.36
wm(.)µm(.)σ(.)φ(.)p(temp) -3971.42 57 8056.84
wm(.)µm(.)σ(.)φ(t+ t2)p(.) -4000.97 57 8115.94
wm(.)µm(.)σ(.)φ(.)p(.) -4045.26 55 8200.51
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Table 3: Parameter estimates from the most favoured model in terms of AIC.

Parameter Estimate Standard error

Logit of detection probabilities,
as a function of temperature

Intercept -4.600 1.769
Slope 5.522 2.170

Logit of relative weight of the first brood,
as a function of Northing(standardised)

Intercept 1.186 0.160
Slope 1.101 0.150

Log of mean emergence times of the two broods,
as a function of Northing(standardised)

Intercept (1) 1.688 0.023
Intercept (2) 2.748 0.013
Slope 0.209 0.010

σ 1.251 0.055

Logit of retention probabilities,
as a function of time (t) and time squared (t2)

Intercept 1.743 0.193
Slope for t 1.562 0.266
Slope for t2 -3.200 0.297
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