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Abstract

Landscape fragmentation has huge ecological and economic implications and affects the spatial dynamics of

many plant species. Determining the speed of population spread in fragmented/heterogeneous landscapes

is therefore of utmost importance to ecologists. Stage-structured Integrodifference Equations (IDEs) are

deterministic models which accurately reflect the life cycles and dispersal patterns for numerous species.

Existing approximations to wave-speeds consider only particular kernels, or landscapes in which the scale

of variation is much smaller than the dispersal scale. We propose an analytical approximation to the wave-

speeds of IDE solutions with periodic landscapes of alternating good and bad patches, where the dispersal

scale is greater than the extent of each good patch and where the ratio of the demographic rates in the

good and bad patches is given by a small parameter, denoted ε. We formulate this approximation for

the Gaussian and Laplace dispersal kernels and for stage structured and non-stage structured populations,

and compare the results against numerical simulations. We find that the approximation is accurate for

the landscapes considered, and that the type of dispersal kernel affects the relationship between landscape

structure, as classified by landscape period and good patch size, and the spreading speed. This indicates that

accurately fitting a kernel to data is important in determining the relationship between landscape structure

and spreading speed.

1. Introduction

The spread of plant populations has significant ecological and economic implications. Invasions by in-

troduced plant species cause ecosystem degradation, loss of biodiversity [1], have detrimental impacts on

human health and well-being [2], increase the rate of extinctions [3] and cost nations hundreds of billions of

US dollars per year [4]. Conversely, in a conservation context, as the climate changes and the location of

suitable habitat shifts, a native species’ ability to survive will depend on its ability to spread at an equal or
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greater rate than that at which its habitat shifts [5, 6, 7]. Therefore, understanding the process by which a

species’ range expands is of utmost importance, and an area of ongoing interest in ecology.

Most mathematical models of species’ range expansion consider only spatially homogeneous landscapes

(e.g. [7]) in which the demographic and dispersal parameters do not vary in space. However, landscape

structure is very important in determining a species’ ability to spread and its spreading speed [6, 8]. Land-

scape structure affects both dispersal and demographic processes, and is therefore of particular importance

given the extent to which fragmentation affects the area and spatial distribution of habitats [9]. Fragmenta-

tion consists of two processes, the loss of suitable habitat and the increasing isolation of remaining habitat

patches. It is a global phenomenon [10], which increases the vulnerability of landscapes to species invasion

[11, 12] and may reduce species’ ability to track regions of suitable climate as these regions shift [13, 14].

Plant populations are often studied using stage-structured matrix models [15], which can incorporate the

different characteristics of a species at different points in its life-cycle. Such stage-structured representation

can be incorporated into Integrodifference Equations [16], which are often used to model population spread

in plants [17, 7, 18, 19, 20]. Continuous time, age-structured models have also been used [21]. We choose

IDEs as our model as they incorporate important aspects of plant population behaviour, (1) they treat time

as a discrete quantity, so accurately reflect the seasonal growth and dispersal of many plant species, and (2)

incorporate different dispersal kernels to model various dispersal mechanisms. Spatial structure is generally

continuous, although spatially discrete IDEs (or Coupled Map Lattices) have been studied [22].

A simple non stage-structured IDE relates the continuous population distribution ut+1(x) at time t+ 1,

with the scalar distribution ut(x) at integer time t, where x ∈ R is a location in one dimensional space, via

ut+1(x) =

∫ ∞
−∞

k(x− y, y) f(ut(y), y)ut(y) dy . (1)

In the growth phase, the population distribution is multiplied by the density and location dependent

growth rate f(ut(y), y) [23, 24, 25, 5]. For the dispersal phase, the value of the post-dispersal population

distribution at x is obtained by taking the spatial integral of the product of the pre-dispersal population,

f(ut(y), y)ut(y) and the dispersal kernel k(x−y, y), the relative density of dispersal from y to x [26]. In other

words, the population abundance at spatial location x at the next generation is simply the contribution from

the birth/death processes, f , of the current generation that move to location x according to redistribution

kernel, k. Hence, the spatio-temporal population dynamics heavily depend on the growth and dispersal

functions.

The long-term behaviour of solutions to IDEs can be studied through simulation, but analytical results

are very useful, in that they help understand qualitative behaviour and dependencies on particular param-

eters, and provide a less computationally expensive way to study the dynamics of solutions to IDEs. For
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homogeneous IDEs with no Allee effect, where the growth and dispersal parameters are independent of

location and the intrinsic growth rate f(0, y) is higher than the growth rate experienced by any non-zero

population f(u, y), straightforward analytical expressions for the wave-speed have been derived [26]. For

spatially heterogeneous IDEs, where the growth and dispersal parameters vary spatially, the analysis is less

straightforward.

The solution of a spatially homogeneous IDE with no Allee effect is an exponential travelling wave [27],

with the spreading behaviour being governed by the behaviour of the solution’s wave-front [28]. This is often

referred to as the Linear Conjecture [29], and allows us to approximate the IDE by its linearisation. For

an homogeneous IDE, the growth rate f(ut(y), y) has no explicit y dependence, allowing us to write it as

f(ut(y)). The dispersal kernel k(x − y, y) depends only on the distance |x − y| travelled by the propagule,

and has no explicit dependence on the origin y of the propagule, allowing us to write it as k(x − y). Given

these conditions, Weinberger (1982) [30] showed that the asymptotic wave-speed for travelling wave solutions

of (1) with bounded initial support is given by

ĉ = min
s>0

(
1

s
log (f(0)M(s))

)
(2)

whereM(s) is the moment generating function (MGF) of the dispersal kernel k(x−y), M(s) =
∫∞
−∞ k(z)eszdz.

Neubert and Caswell (2000) incorporated stage structure into homogeneous IDEs, with the asymptotic wave-

speed being given by

ĉ = min
s>0

(
1

s
log (ρ(s))

)
(3)

where ρ(s) is the principal eigenvalue of the operator

H(s) =

∫ ∞
−∞

[K(z) ◦A] eszdz , (4)

where ◦ denotes the Hadamard (elementwise) product of two matrices, K(z) denotes the stage structured dis-

persal kernel and A the stage-structured population projection matrix linearised around the zero population

state [23].

For spatially heterogeneous IDEs, the lack of an equivalent expression to (2), has necessitated the devel-

opment of other approaches to determine population persistence [31, 32], invasion conditions and wave-speeds

[33]. The existing approaches all consider periodic landscapes, where the landscape is partitioned into peri-

odically alternating good and bad patches, with the demographic rates and dispersal parameters taking fixed

values in the different patch types. Kawasaki and Shigesda (2007) analysed the special case of the Laplace

(exponential) dispersal kernel [34] and used the piecewise separability of the spatial variables in the kernel
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to derive conditions and speeds for invasions in periodic landscapes. Dewhirst and Lutscher (2009) [33] used

averaging techniques to derive conditions and speeds for any exponentially bounded dispersal kernel in land-

scapes where the period of the landscape is much smaller than the scale of dispersal (although numerically

the approximation has been found to work outside this range, up to the point where the dispersal scale and

landscape period are of the same order). This difference in scales allows the replacement of the f(0)M(s)

term in (2) with the average of the two corresponding expressions for the good and bad patches to get the

asymptotic wave speed of a non-stage structured IDE on a periodic landscape. The existing analytical meth-

ods have been successful in their agreement with simulations of IDEs, but are limited to non stage-structured

populations and either (i) to a particular choice of kernel, which does not accurately describe the dispersal

patterns of all species, e.g. [35], or (ii) to cases in which dispersal occurs at scales much larger than the dis-

tance between patches (Figure 1a), see [33, 35]. However, many fragmented habitats [36] such as calcareous

grassland in Dorset, UK [9] and woodland in Wisconsin [37], as well as natural habitats such as vernal pools

in California [38], do not conform to this pattern and are composed of small habitat fragments separated by

distances which have sufficient length to make inter-patch dispersal rare. Hence, for general dispersal kernels,

the spread of species in such landscapes cannot be analysed by existing methods. There is therefore a need

for analytical approximations of invasion speeds which can incorporate a wide range of dispersal scales and

kernels, stage structure and landscape heterogeneity, and are appropriate to a broader class of landscapes.

In this paper, we will address this important gap, and will derive analytical approximations for the

asymptotic invasion speeds of stage structured populations in landscapes where (i) the spatial extent of good

habitat patches is smaller than the scale of dispersal and (ii) the matrix of demographic rates in the bad

habitat patches, are much lower than the matrix of demographic rates in the good patches (see Figure 1b).

These approximations are not restricted to particular choices of landscape period, or to particular dispersal

kernels and so extend the work of the previous studies. They also incorporate the important role of the

bad habitat [39, 40] in determining invasion success/speed. To derive this approximation, we will exploit (i)

the difference in scale between dispersal and the spatial extent of the good habitat patches and treat the

population in each good patch as a population at a single point, and (ii) the much smaller growth rate in

the bad patches to find the wave speed in terms of an asymptotic expansion in the ratio of the growth rates.

In §2, we will present the derivation of an approximation to the asymptotic wave-speed of solutions to IDEs

satisfying these conditions with compact initial support. In §3, we will derive particular approximations for

IDEs with Gaussian and Laplace dispersal kernels, and will compare the approximations with simulation.

We will conclude with a discussion of our results in §4.
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(a) (b)

Figure 1: Intrinsic growth rates f(0, x) (periodic square wave, green online) for a non stage-structured population in two periodic
landscapes plotted alongside a dispersal kernel (unimodal, red online). In both landscapes, the growth rate in the bad patches
are much lower than that in the good patches. In (a) the ratio of the landscape period to the mean dispersal distance is small
(see Dewhirst and Lutscher [33]), and in (b), the ratio of the length of the good patches and the mean dispersal distance is small
(considered in this paper).

2. Method

We begin by formulating a stage-structured IDE for heterogeneous landscapes with one spatial dimension.

This is non-dimensional in the sense that we do not give scales or units to length, population density or time.

The simplest population models treat all individuals as identical, regardless of size, age, sex, location etc.

However, in many species, individuals exhibit demographically different characteristics at different points

in the life-cycle. If the life cycle can be described in terms of size classes or developmental stages, then a

useful way to categorize these differences is stage structure [15], where the population is partitioned into M

demographically relevant stages (seedlings, adults, etc).

This analysis is applicable to all choices of length and time scale (provided that the scale of dispersal is

much larger than the extent of the good patches) and in this paper we consider non-dimensional IDEs, as

they correspond to the variety of possible ecological scales. In §§2.1-2, we will introduce this non-dimensional

model, in §2.3, we give conditions for an analytical approximation of the wave-speed, and in §§2.4-5 we will

assume these to discuss wave-speed estimates.

2.1. Heterogeneous Stage-Structured Integrodifference Equations

The general heterogeneous stage-structured IDE [23] is given by

ut+1(x) =

∫ ∞
−∞

[
K(x− y, y) ◦B(ut(y), y)

]
ut(y)dy (5)

where ut(x) is the vector of population densities for each stage at location x and time t. B(ut(y), y) is the

population projection matrix, and its (i, j)-th entry is the proportion of individuals in stage i transitioning
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to stage j. K(x − y, y) is the matrix of dispersal kernels Ki,j(x − y, y), where the (i, j)-th entry is the

dispersal kernel for individuals which transitioned from stage i to stage j in the growth phase. It is necessary

to consider the dispersal pattern of individuals transitioning between each (permitted) pair of demographic

stages separately, as the stage of the individual or, in the case of juveniles, its parent before the growth phase

will often affect the individual’s dispersal behaviour. For example, for plants with wind dispersed seeds,

the mean dispersal distance of a seed/new juvenile will depend on the seed release height of its parent and

therefore on its parent’s demographic stage.

2.2. Sparse Periodic kernels and growth functions

We consider one dimensional landscapes in which the real line R is partitioned into periodically alternating

patch types, good patches Gn = [nL−L1/2, nL+L1/2) of length L1, and bad patches Bn = [nL+L1/2, nL+

L−L1/2) of length L−L1 (see Appendix C for a full table of parameters used in this manuscript). Hence L is

the period of the landscape. We assume that the dispersal kernel, K(x− y, y) and the population projection

matrix, B(ut(y), y) depend solely on whether y is in a good or bad patch, and do not vary within patches.

We make two assumptions about the landscape scales, dispersal parameters and demographic rates. We

assume (i) that the length L1 of the good patches is much smaller than the scale of the dispersal distances

from the good patches (see Condition IV in §2.3), and (ii) that all the demographic rates in the bad patches

are much lower than those in the good patches (see Condition V in §2.3).

Since the species has reduced fecundity in the bad patches (compared to the good patches), the population

projection matrices in the good and bad patches are related by a small parameter ε � 1, and are denoted

respectively by BG(ut(y)) and εBB(ut(y)), where ε is chosen such that no element of the linearized population

projection matrix BG(0) is much larger than the corresponding element in εBB(0). For brevity, the good and

bad patch projection matrices are combined to form a spatially and density dependent population projection

matrix,

B(ut(y), y) =

 BG(ut(y)) for y ∈ Gj

εBB(ut(y)) for y ∈ Bj
. (6)

We also allow dispersal from y to depend on whether y is in Gj or Bj , and let KG(x − y) and KB(x − y)

be the matrices of dispersal kernels from the good and bad patches, with our spatially dependent matrix of

dispersal kernels given by

K(x− y, y) =

 KG(x− y) for y ∈ Gj

KB(x− y) for y ∈ Bj
. (7)
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2.3. Conditions

We will explore solutions to (5) analytically by linearising, discretising and finding travelling wave solutions

to the linearisation. All solutions corresponding to real populations have initial conditions with compact

support. For a solution’s asymptotic wave-speed to be determined by its linearisation, we need the spatially

dependent demographic matrix B(x, y) and matrix of dispersal kernels K(x−y, y) to satisfy conditions which

are typical for IDE wave-speed analysis [23] and are commonly satisfied for population matrix modelling [15]:

I. The demographic matrix B(u, y) is nonnegative and irreducible for all u and y, i.e. the transition rate

between every pair of stages is non-negative, and the presence of individuals in any state will affect the

number of individuals in any other state at some future time.

II. The intrinsic growth rate is greater than one (the zero population state is linearly unstable), and

at every y ∈ R the non-linear population projection matrix B(u, y) is bounded elementwise by its

linearisation at zero, A(y) := B(0, y),

B(u, y)u ≤ A(y)u for all u ≥ 0 .

We observe numerically that this causes linear determinacy (that the asymptotic wave-speed of solu-

tions to nonlinear IDE are the same as for the solutions of its linearisation). This condition is satisfied

whenever higher populations cause reduced growth rates (through competition for resources, overcrowd-

ing, etc), which is true for most species. Linearly determinacy [41] has been proven rigorously only

for the smaller class of cooperative systems. However, realistically, stage structured populations will

exhibit competition between stages, and will not be cooperative.

III. Each element of the matrices of dispersal kernels from the good patches, KG(z) and bad patches, KB(z)

have moment generating functions, i.e. the dispersal kernels are exponentially bounded. This ensures

that solutions have finite wave-speeds and do not accelerate [26].

For our analysis of the heterogeneous landscape, we require two additional conditions,

IV. For the stage transitions where dispersal occurs, the scale of dispersal is much greater than the length

L1 of the good patches Gj (see Figure 1b). For this we require the (i, j)th element of the matrix of

dispersal kernels from the good patch, KGi,j(z) to be either

(a) a Dirac delta function δ(z). No dispersal occurs for individuals transitioning from the ith to the

jth demographic stage, or

(b) approximately constant over other (neighbouring) good patches, i.e. for landscape period L and

good patch length L1,

KG(nL+ z) ≈ KG(nL) for z ∈
[
−L1

2
,
L1

2

]
and n ∈ Z\{0} .
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This condition is satisfied by species in habitats where the scale of dispersal is greater than the sizes of

the individual habitat patches.

V. The population projection matrix in the good patches BG(x) is much larger than the population

projection matrix in the bad patches εBB(x), i.e.

BG(x)� εBB(x)

where inequalities are calculated component-wise. Generally, and by definition, the demographic rates

of species are much lower in the bad patches than in the good patches.

2.4. Method Outline

To find an analytical approximation capp to the asymptotic wavespeed ĉ of solutions to (5) where B and

K are the demographic matrix and kernel given by (6) and (7), and where the solution has compact initial

conditions (the initial distribution u0(x) has compact support), we first linearise around the zero-population

state. Since the zero-steady state is unstable, the population projection matrix is bounded by its linearisation

at zero (Condition II) and density dependence is local, the dynamics of the invasion are dominated by the

wavefront [28, 29]. For the mathematical analysis, though not the later simulations, we will assume this

Linear Conjecture [29], which has been proved rigorously for a narrower class of problem (see Appendix A).

This allows us to explore solutions of a simpler, linear IDE, which has solutions with the same wave-speed

as (5).

We then look for solutions to the linearised IDE which are the product of an L-periodic stage-structured

(vector-valued) population distribution and an exponential travelling wave e−s(x−c(s)t) [42] which propagates

with speed c(s), where s is the wave-number, and arbitrary a-priori. This gives us an eigenvalue equation

for ρs := es c(s), with the principal eigenvalue corresponding to the physically meaningful solution of the

linearised IDE [23]. Therefore, for each wave-number s, the wave-speed is given by

c(s) =
1

s
log (ρs)

and the asymptotic wave-speed ĉ is

ĉ = min
s>0

[
1

s
log (ρs)

]
(8)

Given the small demographic rates in the bad patches, we can write the operator in the eigenvalue equation

as the sum of an O(1) operator, Fs,0 and an O(ε) operator, εFs,1 allowing us to solve the eigenvalue equation

as a perturbation problem. We then approximate the O(1) operator with a more tractable one, F app
s,0 (we

justify this numerically in §3.1.4). This gives us the eigenvalue problem
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F app
s φapp

s = ρapps φapp
s (9)

where ρapps is the principal eigenvalue of F app
s = F app

s,0 + εFs,1. Finally, we expand ρapps and φapp
s in terms of

the small parameter ε and equate the coefficients of εn (n = 0, 1, ...) in the expansion of (9). The expansion

of ρapps is given by

ρapps = ρapps,0 + ε ρapps,1 + · · · .

Our approximation to the wave-speed capp depends only on ρapps,0 and (where non-zero higher order terms

exist) the second non-zero term in the expansion of ρapps . i.e.

capp =

 mins>0

[
1
s log

(
ρapps,0

)]
if ρapps,j = 0 for all j 6= 0

mins>0

[
1
s log

(
ρapps,0 + εnρapps,n

)]
where n is the smallest integer s.t. ρapps,n 6= 0

. (10)

So if ρapps,1 is non-zero, then our approximation to the wave-speed is mins>0

[
1
s log

(
ρapps,0 + ερapps,1

)]
. If the O(ε)

terms cancel to make ρapps,1 = 0, then we use the O(ε2) term and take capp = mins>0

[
1
s log

(
ρapps,0 + ε2ρapps,2

)]
.

If the O(ε2) terms also cancel and ρapps,2 = 0, we go to even higher order terms, and if all higher order terms

are trivial, we take capp = mins>0

[
1
s log

(
ρapps,0

)]
.

In the full derivation in Appendix A, we show that the principal eigenvalue ρapps of the approximate

operator F app
s differs from the principal eigenvalue of ρs of the exact operator Fs by O

(
(L1/α)2

)
where α is

dispersal parameter. Since ρapps,0 +εnρapps,n (where n is the smallest integer such that ρapps,n 6= 0) differs from ρapps

by O
(
εn+1

)
, ρapps,0 + εnρapps,n differs from ρs by O

(
(L1/α)2, εn+1

)
. Since we must have ρs ≥ 1 for an invasion

to occur, we can expand log(ρapps ) in ε and L1/α and find that log(ρapps )/s = log(ρs)/s+ O
(

(L1/α)
2
, εn+1

)
.

Therefore, we expect the minima of these two functions of s to differ by O
((

L1

α

)2
, εn+1

)
, and the error of

our approximation is O
((

L1

α

)2
, εn+1

)
.

2.5. The Approximation

We find (see Appendix A for the full derivation), that the first term ρapps,0 in the expansion of ρapps is the

principal eigenvalue of

M0(s) =
∑
n∈Z

[
KGapp(nL) ◦AG

]
esnL . (11)

where KGapp(nL) is a discretisation of the dispersal kernel of propagules from the good patches given by

KGapp(x− nL) =


∫ L1/2

−L1/2
KGapp(y)dy for n = x = 0

L1K
G
app(x− nL) otherwise

(12)
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and where AG is the linear population projection matrix in the good patches (i.e. BG(ut(x)) at the zero-

population state).

The second term ρapps,1 is given by

ρapps,1 =
ψ̃ · [M1(s)ψ]

ρapps,0 ψ̃ ·ψ
(13)

where ψ and ψ̃ are the principal eigenvectors of (11) and its transpose, where M1(s) is given by

M1(s) =

 ∑
m,n∈Z

∫ L−L1
2

−L1
2

(
KB(nL− y) ◦AB(y)

)(
KGapp(mL+ y) ◦AG

)
es(n+m)Ldy


and where AB is the linear population projection matrix in the bad patches.

Therefore, using the definition of capp in (10), the asymptotic wavespeed of solutions to (5) can be

approximated by

capp = min
s>0

[
1

s
log
(
ρapps,0 + ερapps,1

)]
. (14)

This is the spatially heterogeneous equivalent to the expression for the asymptotic wave-speed of solutions

to the spatially homogeneous IDE (2).

2.6. Inhospitable Bad Pathces

If the bad patches are completely inhospitable, i.e. the demographic matrix in the bad patches, BB ≡ O,

then the higher order terms ρapps,j (j > 0) in the expansion of ρapps are equal to zero. So, by the definition of

capp in (10),

capp = min
s>0

[
1

s
log
(
ρapps,0

)]
where ρapps,0 is the principal eigenvalue of M0(s) in (11). The principal eigenvalue of this matrix is the ratio

of the density distributions at t + 1 and t, where the density distribution at t is an exponential wave with

wave-number s. This is a spatially discrete analogue of the matrix H(z) in (4).

3. Examples

3.1. Analytical Approximations

In this section, we first present approximations for the asymptotic wave speed of solutions to (5) where the

demographic parameters vary between good and bad patches, but the choice of dispersal kernel (Gaussian or

Laplace) and the dispersal parameters do not. We will find the first two non-zero terms in the expansion for
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ρapps for non stage-structured populations with Laplace (§3.1.1) and Gaussian (§3.1.2) dispersal kernels and

stage-structured population with Laplace and Gaussian dispersal kernels (§3.1.3). In §3.1.4, we will justify

the approximation of dispersal from a good patch with dispersal from a point source (the replacement of the

integral operator Fs,0 by F app
s,0 ) used in §2.4.

Throughout our non stage-structured simulations we use the Beverton-Holt growth function for B. This

is widely used as a population growth function and has been used to model plant populations [43], with the

population after the growth phase being given by the current population u multiplied by the growth rate

f(u) =
rK

K + (r − 1)u
.

where u is the scalar population before the growth phase, r is the zero-population growth rate (f(0) = r)

and K is the carrying capacity of the environment (here, without loss of generality, we set K = 1). Since the

approximation depends only on the zero-population growth rate, we could have used any growth function

satisfying Condition II in §2.3 [26].

3.1.1. Example with Laplace Kernel

The non stage-structured Laplace dispersal kernel [33] is

k(x− y) =
1

2α
exp

(
−|x− y|

α

)
with mean dispersal distance given by α for dispersal from any point in the landscape. Since this is a non

stage-structured population, the linearised demographic growth matrices are the scalar growth rates r (in

the good patches) and εr (in the bad patches). For the good patches, the discretised kernel, given by (12), is

KG
app(x− nL) =

 1− e
−L1
2α for n = x = 0

L1

2αe−
|x−nL|
α otherwise

. (15)

Using the result (11) from §2.5, we find an expression for ρapps,0 ,

ρapps,0 = r

L1

2α

∑
n 6=0

e
−L|n|
α +sLn +

(
1− e

L1
2α

)
=
rL1

2α

[(
e
L
α+sL − 1

)−1
+
(

e
L
α−sL − 1

)−1]
+ r

(
1− e

L1
2α

)
.

To get an expression for ρs,1 we use (13),

11



ρapps,1 =
1

ρs,0

εr2L1

4α2

∑
n,m∈Z

esL(n+m)

∫ L−L1
2

L1
2

e
−1
α (|Ln−y|+|Lm+y|)dy

=
1

ρs,0

εr2L1

4α2

∑
n,m∈Z

e
−L
α sL(n+m)An,m

where

An,m =


1

4α2 (L− L1)e
−1
α |(m+n)L| where sign

(
m+ 1

2

)
= sign

(
n− 1

2

)
1
4αe

−1
α sign(m+ 1

2 )(m−n+1)L sinh
(
L−L1

α

)
where sign

(
m+ 1

2

)
6= sign

(
n− 1

2

) .

We then substitute our expressions for ρapps,0 and ρapps,1 into (14) to get an analytical expression for the wave-

speed which we will compare with numerical results in §3.2.

3.1.2. Example with Gaussian Kernel

The non stage-structured Gaussian dispersal kernel [33] is

k(x− y) =
1

σ
√

2π
exp

(
−(x− y)2

2σ2

)
with dispersal parameter σ throughout the good and bad patches. The linear (zero-population) growth rates

are r (in the good patches) and εr (in the bad patches). Given the smoothness of the Gaussian kernel around

x− y = 0, we can take our discretised kernel

KG
app(z) = L1k(z) for all z ∈ R (16)

further simplifying the expression for KG
app in (12). By (11) we have that

ρapps,0 =
rL1

σ
√

2π

∑
n∈Z

e
−n2L2

2σ2
+snL

and where erf is the error function, we have by (13),

ρapps,1 =
1

ρapps,0

r2L1

2πσ2

∑
m,n∈Z

esL(n+m)

∫ L−L1
2

L1
2

e
−(Ln−y)2−(Lm+y)2

2σ2 dy

=
r2L1

4
√
πσρapps,0

∑
m,n∈Z

e
−L2(n+m)2

4σ2
+sL(n+m)

[
erf

(
L(m− n+ 2)− L1

2σ

)

−erf

(
L(m− n) + L1

2σ

)]
.
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We again substitute our expressions for ρapps,0 and ρapps,1 into (14) for an analytical expression for the wave-

speed. The numerical evaluation of these expressions is straightforward, and as the terms in the infinite series

become exponentially small as n or m tend to ±∞, they can be truncated to a finite number of terms (see

Appendix B).

3.1.3. Stage-Structured Example with Laplace and Gaussian Kernels

We now find the first two non-zero terms in the expansion of ρapps for a stage-structured population with

both Laplace and Gaussian kernels. The population has two stages (juveniles and adults), in which dispersal

occurs only as juveniles are born. This is a modified version of the example in [23]. The population projection

matrix in the good patches is

BG(ut(x)) =

 ν(1− γ) φ exp(−ut1(x)− ut2(x))

νγ θ

 .

where ν and θ are the juvenile and adult survival rates (the proportion of individuals surviving to the next

time-step), with γ denoting the maturation rate (the proportion of juveniles advancing to adulthood) and

φ exp(−ut1(x)− ut2(x)) is the density dependent birth rate (the number of births per adult). The population

projection matrix in the bad patches is εBG(ut(x)). Where new juveniles disperse with parameter α, the

dispersal kernel is

K(z) =

 δ(z) K(z)

δ(z) δ(z)


where

K(z) =


1
2α exp

(
−|z|
α

)
for the Laplace kernel

1
σ
√
2π

exp
(
−z2
2σ2

)
for the Gaussian kernel

. (17)

We use (12) to define the discretised kernel

Kapp(z) =

 δ(z) Kapp(z)

δ(z) δ(z)


where, for the Gaussian and Laplace kernels, Kapp is defined as for the non stage-structured Gaussian and

Laplace examples in (15) and (16). Substituting Kapp and the linearisation of BG into (11), we find that for

the Laplace kernel, ρapps,0 is the principal eigenvalue of

13



∑
n 6=0

 δn,0
L1

2α exp
(
−|nL|
α

)
δn,0 δn,0

 esnL +

 δn,0 1− exp
(−L1

2α

)
δn,0 δn,0


 ◦

 ν(1− γ) φ

νγ θ

 (18)

and for the Gaussian kernel, ρapps,0 is the principal eigenvalue of

∑
n∈Z

 δn,0
L1

σ
√
2π

exp
(
−(nL)2

2σ2

)
δn,0 δn,0

 ◦
 ν(1− γ) φ

νγ θ

 esnL . (19)

This means that

ρapps,0 =
1

2

(
ν(1− γ) + θ +

√
(ν(1− γ) + θ)2 − 4νγφB(s)

)
where

B(s) =


L1

2α

[(
e
L
α+sL + 1

)−1
+
(

e
L
α−sL + 1

)−1]
+
(

1− e
−L1
2α

)
for the Laplace kernel

L1

σ
√
2π

∑
n∈Z e

−(nL)2+snL

2σ2 for the Gaussian kernel .

Where ψ̃s and ψs are the left and right eigenvectors of (18) for the Laplace kernel, or (19) for the Gaussian

kernel, by (13), ρs,1 is given by

ρapps,1 =
ψ̃sM1ψs

ρs,0ψ̃sψs

where

M1 =
∑
m,n∈Z

∫ L−L1
2

L1
2


 0 Kapp(nL− y)esnL

0 0

 ◦
 ν(1− γ) φ

νγ θ




×


 0 Kapp(mL+ y)esmL

0 0

 ◦
 ν(1− γ) φ

νγ θ


 dy = O .

So, for both kernels, we have that ρapps,1 = 0, and to find the second non-zero term in the expansions of ρapps ,

we must investigate the third term ρapps,2 in the expansion of ρapps . To do this, we must find an expression for

the second term φapp
s,1 in the expansion of the eigenvector φapp

s . Since ρapps,1 = 0, the coefficients of ε in the

expansion of the eigenvalue problem (9) satisfy

(F app
s,0 − ρ

app
s,0 )φapp

s,1 + F app
s,1 φ

app
s,0 = 0 (20)
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and by choice of φapp
s,1

〈φ̃
app

s,0 |φ
app
s,1 〉 = 0 . (21)

Both conditions (20) and (21) are satisfied by

φapp
s,1 =

1

ρapps,0

I[L1
2 ,L−L1

2 )(x)
∑
m∈Z

 0 ν(1− γ)φ

0 νγφ

K(x−mL) es(x−mL)ψs

where K(z) is the dispersal kernel of newborn juveniles defined in (17). Taking the coefficients of ε2 in (9),

we have

(F app
s,0 − ρ

app
s,0 )φapp

s,2 + (F app
s,1 − ρ

app
s,1 )φapp

s,1 = ρapps,2 φ
app
s,0 .

Taking the inner-product with φ̃
app

s,0 , the first term on the left hand side becomes zero (φ̃
app

s,0 is the eigenvector

of the adjoint operator of F app
s,0 with eigenvalue ρapps,0 ), and so

ρapps,2 =
〈φ̃

app

s,0 |F
app
s,1 φ

app
s,1 〉

〈φ̃
app

s,0 |φ
app
s,0 〉

=
L1φ

2νγψ̃1
sψ

2
s

(ρapps,0 )2ψ̃sψs

∑
m,n∈Z

esL(m+n)

∫ L−L1
2

L1
2

K(nL− y)K(mL+ y)dy

=
L1φ

2νγψ̃1
sψ

2
s

(ρapps,0 )2ψ̃sψs

∑
m,n∈Z

esL(m+n)An,m

where, for the Laplace kernel

An,m =


1

4α2 (L− L1)e
−1
α |(m+n)L| where sign

(
m+ 1

2

)
= sign

(
n− 1

2

)
1
4αe

−1
α sign(m+ 1

2 )(m−n+1)L sinh
(
L−L1

α

)
where sign

(
m+ 1

2

)
6= sign

(
n− 1

2

)
and for the Gaussian kernel

An,m =
1

4
√
πσ

e
−L2(n+m)2

4σ2

[
erf

(
L(m− n+ 2)− L1

2σ

)
− erf

(
L(m− n) + L1

2σ

)]
.

We now have expressions for ρapps,0 and ρapps,2 and have found that ρapps,1 = 0. The approximation to the

asymptotic wave-speed is given by (10),

capp = min
s>0

[
1

s
log
(
ρapps,0 + ε2ρapps,2

)]
. (22)
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(a) (b)

Figure 2: (Colour online) wave-speeds for 2 ≤ r ≤ 50 and 2 ≤ 1/L1 ≤ 50 for r2 = 0.1, L = 1 for (a) a Laplace kernel with
α = 0.3 and (b) a Gaussian kernel with σ = 0.3. The wave-speed is constant along the lines of the form r = A/L1 (explicitly
highlighted for A = 1).

3.1.4. Justification of the Point Source Approximation

By approximating dispersal from each good patch with dispersal from a point source (approximating the

integral operator Fs,0 with F app
s,0 ) in §2.5, we assumed that the widths of the good patches are sufficiently

small that neglecting the effect of spatial structure within each good patch, except when considering the

quantity of dispersers remaining in the same patch, does not affect the asymptotic wave-speed of solutions

to (5).

For small populations, the quantity of propagules leaving the good patch is proportional to the linearised

scalar population growth rate multiplied by the width of the good patches, r L1. For our approximation to

hold, the asymptotic wave-speeds of solutions to (5) must be constant as L1 → 0 with constant r L1.

We simulated solutions to the non stage-structured IDE (5) for the Laplace and Gaussian dispersal kernels

defined in §§3.1.1-2 using the Beverton-Holt population growth function (§2.7) with different values of the

good patch zero-population growth rate r and good patch width L1 while keeping the dispersal parameters

(which do not vary between the good and bad patches), landscape period L and bad patch zero-population

growth rate r2 constant (see Figure 2). We found that the contour lines (lines of constant wave speed) are

given by

r L1 = Const. (23)

and that changing the landscape parameter’s position on the line (23) does not affect the asymptotic wave-

speed of solutions to (5). This justifies the use of a point source approximation and hence using F app
s,0 as an

approximation to Fs,0 to get the analytical results in §2.5.
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3.2. Numerical Results

We simulate solutions to (5) for the population projection matrices B(ut(x), x) and dispersal kernels

K(x− y) of each of the above examples (see Appendix B for numerical details). We simulate solutions for a

range of values of the total proportion of good habitat p = L1/L and landscape period L. Since the dispersal

pattern of a given plant species is somewhat fixed, we fix the dispersal parameters, α = 1 (for the Laplace

kernel) or σ = 1 (for the Gaussian kernel), and vary the total proportion of good habitat in the landscape p

and the landscape period L.

Additionally, we choose the population growth rates in the good patches (i.e. the principal eigenvalue of

the demographic matrix) to be higher than those used in applications of homogeneous IDEs (e.g. [17]). For

homogeneous IDEs, the most appropriate approach would be take a spatial average of demographic rates. In

the heterogeneous model, we distinguish between the demographic rates in the good and bad patches, and

would expect higher and lower demographic rates in good and bad habitat patches respectively.

We investigate the effect of these parameters on the relative errors of the approximations from §§3.1.1-3

compared to the simulated wave-speed in §3.2.2, and investigate their effect on the simulated wave speed in

§3.2.3.

3.2.1. Effect of the Bad patches on the wave-number

For both the Laplace and Gaussian kernels, the first-order approximation of the wave-speed is given by

(14) in §2.5. In Figure 3, we plot the zeroth (considering only ρapps,0 ) and first order approximations to the

wave-speed c(s) for a range of wave-numbers s for both non stage-structured examples. The minima of the

first order approximation give significantly better agreement with the simulated wave-speed than the minima

of the zeroth order approximation. The first order approximation also has a higher minimum wavespeed than

the zeroth order approximation, and these minima correspond to different wave-numbers (see Figure 3).

3.2.2. Relative Errors

For the examples in §§3.1.1-3, we found that for the values of the total proportion of good habitat

p = L1/L and landscape period L where the simulated wave-speed, csim 6= 0 (the relative error is not defined

for csim = 0) the relative error

E =

∣∣∣∣capp − csimcsim

∣∣∣∣
is no more than 0.1, except for values of csim close to 0 (see Figure 4). The error is small, and we have shown

that the minima of the log of the first two non-zero terms of the expansion of ρapps divided by the wave-

number, s gives good agreement to the long-term wave-speed of simulated solutions to (5). Therefore the

first two non-zero terms in the expansion of ρapps correspond to an accurate approximation to the asymptotic
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(a) (b)

Figure 3: (Colour online) zeroth order c0(s) (blue) and first order c1(s) (red) approximations to the wave-speed c(s) of a
travelling wave of the linearised IDE where r = 10, L1 = 0.2 and L = 1 as a function of the wave-number s, for (a) a Laplace
kernel where α = 1 and (b) a Gaussian kernel where σ = 1. The red and blue dots show the location of the minima of c1(s)
and c0(s) respectively. The horizontal black line c∗ shows the asymptotic wave-speed found through simulation.

wave-speed for the range of parameters studied for both (1) cases where the first two non-zero terms are ρapps,0

and ρapps,1 (see Figure 4a-d), and for (2) cases where the first two non-zero terms are ρapps,0 and ρapps,2 (see Figure

4e-h)

3.2.3. Effects of Fragmentation

When studying the effect of fragmentation on landscape invasibility and invasion speed, we consider both

the overall amount of habitat and the level of isolation of the patches. To explore the effect of habitat loss,

we vary the total proportion of good habitat p = L1/L, and to explore the effect of patch isolation, we vary

the landscape period L (the scale of the landscape relative to the scale of dispersal).

For all examples, increasing the total proportion of good habitat p increases the wave-speed (For each of

the plots in Figure 5, increased p corresponds to higher wave-speeds). Similarly, increasing the ratio ε of the

demographic rates in the bad patches relative to the rates in the good patches increases the wave speed (the

wave speeds in Figure 5b,d,f,h are higher than for the corresponding values of L and p in Figure 5a,c,e,g).

For both the non-stage structured and stage-structured examples, the relationship between the landscape

period L and invasion speed differs between the two dispersal kernels. For the Gaussian kernel, and the

values of p (the proportion of good habitat) for which an invasion occurs when the landscape period L ∼ 1,

the wave speed decreases with increased L (except for a small region of parameter space in Fig 5d, where a

minor increase occurs). For the Laplace kernel, increasing L increases the wave speed.

For both non stage-structured examples (Figure 5a-d) and for both stage-structured examples with ε = 0

(Figure 5e,g), we found that increasing the landscape period L decreases the total proportion of good habitat,

p needed for an invasion to occur. Our results do not show this for the stage-structured examples with ε = 0.25

(Figure 5f,h) as all values of p and L correspond to an invasion.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4: (a)-(d) The relative errors of the first order analytic approximation (14) to the simulated wave-speeds of the non-stage
structured IDEs with r = 10 and (a)-(b) Laplace Kernel with α = 1 and (a) ε = 0, (b) ε = 0.05. (c)-(d) Gaussian kernel with
σ = 1 and (c) ε = 0, (d) ε = 0.05. (e)-(h) Relative errors of the second order analytic approximation (22) to the stage-structured
IDE with ν = 0.8, γ = 0.625, θ = 0.2, φ = 30 and α = 1 and (e)-(f) Laplace kernel with α = 1 and (e) ε = 0, (f) ε = 0.25.
(g)-(h) Gaussian kernel with σ = 1 and (g) ε = 0, (h) ε = 0.25. The blank space at the left of each plot corresponds to values of
L and p for which the wave cannot propagate, and the relative error is not defined. For both kernels, where the relative error
is defined, it is less than 0.1 for a wide range of the parameters of interest. A table of parameters is given in Appendix C.
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To spread, a species with given dispersal and growth parameters requires a lower total proportion of good

habitat when the landscape period is greater (the width of the black region corresponding to no spreading

decreases as L increases in Figure 5a-d,e,g).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5: (a)-(d) Simulated asymptotic wave-speeds of non stage-structured IDEs with r = 10 for 0.01 ≤ L1/L ≤ 0.2 with
(a)-(b) Laplace Kernel with α = 1 and (a) ε = 0, (b) ε = 0.05. (c)-(d) Gaussian kernel with σ = 1 and (c) ε = 0, (d) ε = 0.05.
(e)-(h) Simulated wave-speeds of the stage-structured IDE with ν = 0.8, γ = 0.625, θ = 0.2, φ = 30 and α = 1 and (e)-(f)
Laplace kernel with α = 1 and (e) ε = 0, (f) ε = 0.25. (g)-(h) Gaussian kernel with σ = 1 and (g) ε = 0, (h) ε = 0.25.
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4. Discussion

In this paper, we have derived an approximation for the asymptotic wave-speeds of solutions to stage-

structured IDEs on periodic landscapes by finding the minimum of the principal eigenvalues for the operators

Fs. Approximating wave-speeds is useful because it yields analytically justified results and does not rely on

numerical simulation, which is time-consuming, does not provide the same insight as an analytical approxi-

mation (e.g. sensitivity to certain parameters) and does not allow extensive parameter sweeps.

This is the first approximation to incorporate both stage-structure and landscape heterogeneity. The

averaging approximation of Dewhirst and Lutscher [33], which approximates the sum of the density of dis-

persal from each patch as a Riemann integral, is valid only for landscapes in which the landscape period

L (and therefore the extent of the good/bad patches) is much less than the dispersal scale, L � α, σ, and

breaks down when the landscape period is too large. Here, we have removed any condition on the landscape

period, and replaced it with the less restrictive condition that the length scale of the good patch L1 satisfies

L1 � α, σ (Condition IV). This is sufficient to justify the approximation of the operator Fs in §2.4 with the

discretised operator F app
s . Additionally, we require the demographic rates in the bad patches to be related

to the corresponding rates in the good patches by the small parameter ε� 1 (Condition V). Taken together,

these two assumptions allow us to express the principal eigenvalue ρapps of F app
s as an expansion in ε, with

the terms in the expansion given as expressions of the demographic and dispersal parameters. Breaking the

first of these assumptions (that L1 � α, σ) makes our approximation of Fs by F app
s unreasonable. Therefore,

we do not expect this approximation to work when L1 is of the same or a greater scale than the dispersal

parameter. Increasing ε will increase the impact of higher order terms on the wave-speed, and when ε ∼ 1

we would no longer expect the first few terms in the expansion in ε to correspond to an approximation to

the wave-speed.

We compared our approximation against numerical simulations for a range of parameters for Laplace

and Gaussian dispersal kernels and for stage-structured and non-stage-structured populations. We found

that the relative error of the approximation (compared to the simulations) is small (Figure 4), i.e. that the

approximation of ĉ given by capp is accurate for the values of the parameters studied. The approximation is

valid for any of the more complex exponentially bounded kernels which are often used in ecology [44]. For

these kernels, terms in the expansion of the eigenvalue in ε may not have explicit analytical expressions and

will need to be calculated numerically.

In this manuscript, we showed that increasing the quality of the bad patches increases invasion speed.

This is in agreement with previous studies showing the importance of the bad patches (habitat matrix)

[45, 46]. For both kernels, increasing the landscape period L reduces the total proportion of good habitat

required for an invasion to occur. This is in agreement with the theoretical findings of Shigesada et al

(1986) [47] and Kinezaki et al (2010) [48], who found that larger fragmentation scales L reduced the total
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proportion of suitable habitat needed for an invasion to occur in partial differential equation (PDE) models

of invasion. Furthermore, we found, with the exception of a small region of parameter space in Figure 5d,

that for proportions of good habitat p corresponding to a successful invasion for low landscape periods L,

increasing the landscape period increases the wave speed ĉ for the Laplace kernel, and decreases the wave

speed for the Gaussian kernel. It is important and interesting that the choice of kernel affects the relationship

between landscape structure and wave-speed, and further work is needed to explore this finding for a range

of kernels. Given that increasing good patch size L1 increases the wave-speed, and increasing the distance

between good patches L − L1 decreases the wave-speed, we hypothesise that the effect of increasing the

landscape period (i.e. both patch-size and isolation simultaneously) will depend on the relative strengths of

the two effects. For the Laplace kernel, the increase in wave-speed due to the increased L1 outweighs the

decrease due to increased distance between good patches. For the Gaussian kernel, its thinner tail (compared

to the Laplace kernel) increases the effect of increased distance between good patches, to the extent that the

effect of increased distance outweighs the effect of increased patch-size. In general, therefore, it is important

to have a detailed characterisation of the kernel, if we are to determine the effects of spatial heterogeneity

on spread.

The dispersal kernel of a species may vary with habitat quality [17]. For example, plant height is affected

by habitat quality [49], and mechanistic models (e.g. [50]) demonstrate that seed release height strongly

affects the dispersal kernel. Here, we have presented a method for deriving the propagation speeds of popu-

lations in an IDE model where the kernel, the population projection matrix and their associated parameters

take different values in the good and bad patches, but for simplicity, have looked only at examples where the

dispersal kernel and parameters are constant throughout the landscape. Incorporating heterogeneous disper-

sal could help understand the way in which spatially heterogeneous dispersal affects populations’ spreading

speeds. We report on this elsewhere.

Here, we have required the ratio of all the demographic rates in the bad patches to the corresponding

rates in the good patches to be O(ε), and have found that the wave-speeds of stage-structured populations

with two demographic stages differ from the ε = 0 case by O(ε2). Ecologically, some species may only be

affected by patch type at particular points in their life history, e.g. it may be much more difficult for a juvenile

to become established outside the good habitat, but once established will exhibit similar demographic rates

to established individuals in the good habitat (for example, see [17]). In some of these cases, it may still

be possible for our model to work (by weakening Condition V). For example, our analysis would still be

valid where the O(1) rates in the bad patches could be incorporated into the operator Fs,0 without affecting

the value of the principal eigenvalue ρapps,0 (i.e. Fs,0 is determined only by behaviour in the good patches).

Whether this is possible will depend on which demographic stages disperse and which stages are adversely

affected by poor habitat. Weakening this condition would allow us to incorporate a wider range of behaviours
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in the bad patches.

We have considered single species invasions. A natural extension would be to consider multi species in-

vasions, either where multiple co-operative species are invade together, or where an invader out-competes an

existing species. The possibility of extending this methodology to multi-species systems depends on whether

solutions are propagating into unstable steady states, and on whether the wave-speeds of the solutions are

determined by their linearisation around the unstable population state. Multi-species systems differ from

single-species systems in that the linearisation A of the demographic matrix B is not generally irreducible.

Weinberger [41] has shown analytically that systems with reducible matrices in which the population projec-

tion matrix is cooperative/order-preserving (u(x) ≥ v(x) =⇒ B(u(x), x)u(x) ≥ B(v(x), x)v(x)) or can be

transformed to one by a change of variables have linearly determined wave speeds, but this is not applicable

in general. Whether the cooperativity requirement can be relaxed to Condition II for reducible matrices

requires further investigation.

In conclusion, we have provided analytical approximations to the wave-speeds of solutions to IDEs in

periodic landscapes in which the landscape scale is not constrained by the dispersal scale. We have found

them to be accurate, highlighting the sensitivity of the relationship between the landscape parameters and

the spreading speed with respect to the choice of kernel. Finally, we have shown the approximations to be

extendible to different scenarios.
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Appendix A. Full Derivation of the Approximation

We now provide a full derivation for the approximations given in §2.5.

Linear Conjecture

Following Neubert and Caswell (2000) [23], we assume that Condition II (§2.3) is sufficient to guarantee

the wave-speeds of solutions to stage-structured IDEs propagating into an unstable zero population state are

determined by their linearisation around the zero population state (the wave-speed is linearly determined),

and that these conditions extend periodic stage-structured IDEs.

Weinberger (2002) and Lui (1989) rigorously proved linear determinacy for non-stage structured periodic

IDEs [42] and multi-species co-operative homogeneous IDEs [51] (mathematically, this includes single-species
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stage structured IDEs) under the conditions in §2.3, together with the condition that the IDE is order-

preserving, which is guaranteed when the population projection matrix or growth function is order preserving,

i.e. for stage structured populations

u(x) ≥ v(x) =⇒ B(u(x), x)u(x) ≥ B(v(x), x)v(x)

where the inequalities are calculated component-wise. The linearisation of (5) is

ut+1(x) =

∫ ∞
−∞

[K(x− y, y) ◦A(y)]ut(y)dy (A.1)

where A(y) is the value of B(ut(y), y) at the zero population state. This has solutions of the form

es(ct−x)φs(x) , (A.2)

where φs(x) is L-periodic [42]. Solutions to (A.1) with compact initial conditions are bounded above by a

multiple of a solution of the form (A.2) for every s > 0. Therefore the wave-form cannot be travelling faster

than the infimum of c(s). Furthermore, since the wavefronts of solutions to (5) are observed numerically to

become exponential in shape as t → ∞, the asymptotic invasion speed of solutions to (A.1) with compact

initial conditions must attain one of the wavespeeds of these solutions. Therefore, this wavespeed is the

infimum of the wavespeeds of the solutions of form (A.2).

Substituting (A.2) into (A.1), we have that for s > 0,

es c(s)φs(x) =

∫ ∞
−∞

[K(x− y, y) ◦A(y)] es(x−y)φs(y)dy (A.3)

for some L-periodic function φs(y). For each s, this is an eigenvalue problem, with the principal eigenfunction

φs(x) and eigenvalue ρs := es c(s) corresponding to the physical solution [23].

Since φs(y), K(z, y) and A(y) are L-periodic in y, we will write (A.3) as

ρsφs(x) =
∑
n∈Z

∫ L

0

[K(x− y − nL, y) ◦A(y)] es(x−y−nL)φs(y)dy . (A.4)

Asymptotic Expansion in ε

We now use Conditions IV and V to find an analytic expansion for ρs, by (i) formulating the integral

operator in (A.4) as the sum of an O(1) and O(ε) operator, (ii) approximating the unperturbed operator with

an analytically tractable one, and (iii) finding asymptotic expansions for the eigenvalues and eigenvectors of

the approximation to the operator.

In §2.2, we chose B such that its linearisation on [−L1/2, L− L1/2) can be written as
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A(y) = AGI[−L1
2 ,

L1
2 )(y) + εABI[L1

2 ,L−L1
2 )

where AG = BG(0) and AB = BB(0). This allows us to write (A.4) as

ρsφs(x) =
∑
n∈Z

(∫ L1
2

−L1
2

[
KG(x− y − nL) ◦AG

]
es(x−y−nL)φs(y)dy

+ε

∫ L−L1
2

L1
2

[
KB(x− y − nL) ◦AB

]
es(x−y−nL)φs(y)dy

)

=(Fs,0 φs)(x) + ε (Fs,1 φs)(x) .

To find the approximate value of ρs, we will use a more analytically tractable operator F app
s,0 to approximate

the operator Fs,0

Fs,0u(x) =
∑
n∈Z

∫ L1
2

−L1
2

[
KG(x− y − nL) ◦AG

]
es(x−y−nL)u(y)dy . (A.5)

By condition IV in §2.3 we have that the dispersal kernel KGi,j(x) for individuals transitioning from stage j

to stage i is either (i) a Dirac delta function (individuals going from stage j to stage i do not disperse), or

(ii) an exponentially bounded (Condition III) dispersal kernel, such that for |x| > L1/2 and y ∈
[−L1

2 , L1

2

)
we have that KGi,j(x−y) ≈ KGi,j(x). This means that the integrand of each integral in the sum corresponding

to dispersal between a good patch and a bad patch or a different good patch (n 6= 0 or |x| > L1/2) in (A.5)

is approximately constant over y ∈
[−L1

2 , L1

2

]
. The terms corresponding to dispersal between a good patch

and a bad patch or a different good patch (n 6= 0 or |x| > L1/2), can therefore be approximated by taking

the first term in the Taylor expansion of

[
KG(x− y − nL) ◦AG

]
es(x−y−nL)u(y) (A.6)

in y. Substituting the O(1) term into (A.5), we have

∫ L1
2

−L1
2

[
KG(x− y − nL) ◦AG

]
es(x−y−nL)u(y)dy ≈ L1

[
KG(x− nL) ◦AG

]
es(x−nL)u(0) .

where higher order terms, of O((L1/α)2) (or O((L1/σ)2)) or higher, are ignored. When |x| ≤ L1/2, we find

that for the n = 0 term, the integrand varies more quickly.

To approximate this integral, we consider the volume of propagules remaining in their original good patch

(having dispersed from some point y in the patch). This quantity shows little sensitivity to the location of x

in the good patch (as L1 is small compared to the scale of dispersal), and is equal to the integral of KGi,j(x−y)

over y ∈
[−L1

2 , L1

2

]
. Due to this lack of sensitivity to x, we take the first term in the Taylor expansion of
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(A.6) around x = 0,

∫ L1
2

−L1
2

[
KG(x− y) ◦AG

]
es(x−y)u(y)dy ≈

[∫ L1
2

−L1
2

KG(y)dy ◦AG
]
u(0)

with terms of O((L1/α)2) (or O((L1/σ)2)) and higher ignored. Therefore, where the discretised kernel,

K̂Gi,j(nL) is either (i) the Kroenecker delta function (corresponding to the integrals of the dirac delta func-

tions), or (ii) an approximate integral of KGi,j(z) over
[
x− nL− L1

2 , x− nL+ L1

2

]

K̂Gi,j(x− nL) =


∫ L1/2

−L1/2
KGi,j(y)dy for n = x = 0

L1K
G
i,j(x− nL) otherwise

and Fs,0 can be approximated by the operator F app
s,0

F app
s,0 u(x) =

∑
n∈Z

[
KGapp(x− nL) ◦AG

]
es(x−nL)u(0) .

where KGapp(z) =
(
K̂Gi,j(z)

)N
i,j=1

. This is the Point-Source approximation, which we justify numerically in

§3.1.4, and we expect the principal eigenvalue ρapps to be a good approximation to ρs and that

min
s>0

[
1

s
log (ρapps )

]
≈ min

t>0

[
1

t
log (ρt)

]
.

The problem now is to find the principal eigenvalue ρapps of F app
s = F app

s,0 + εFs,1 for each s > 0. To do

this, we expand the principal eigenvalue, ρapps and eigenfunction φapp
s of Es,

ρapps = ρapps,0 + ε ρapps,1 + ε2 ρapps,2 + · · ·

φapp
s (x) = φapp

s,0 (x) + εφapp
s,1 (x) + ε2 φapp

s,2 (x) + · · ·

We will evaluate the coefficients of ε0 and ε. At O(1), we have that ρapps,0 and φapp
s,0 are the principal

eigenvalue and eigenvector of the unperturbed problem

F app
s,0 φ

app
s,0 = ρapps,0 φ

app
s,0

and at O(εn) (for n ≥ 1), we have

F app
s,0 φ

app
s,n + Fs,1 φ

app
s,n−1 −

n∑
j=0

ρapps,j φ
app
s,n−j = 0 (A.7)
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Properties of F app
s,0

Evaluating (F app
s,0 φ

app
s,0 )(x) at x = 0 we have that

(F app
s,0 φ

app
s,0 )(0) =

∑
n∈Z

[
KGapp(nL) ◦AG

]
esnLφapp

s,0 (0)

and that the principal eigenvalue ρapps,0 of F app
s,0 is the principal eigenvalue of

∑
n∈Z

[
KGapp(nL) ◦AG

]
esnL . (A.8)

This is the result given in (13). The corresponding eigenfunction is given by

φapp
s,0 (x) =

∑
n∈Z

[
KGapp(x− nL) ◦AG

]
es(x−nL)ψ (A.9)

where ψ is the principal eigenvector of (A.8). In order to find ρapps,1 from (A.7), we will need to consider the

adjoint operator F app∗
s,0 of F app

s,0 , which is defined with the inner product

〈u|v〉 =

∫ 1

0

[u(x) · v(x)] dx .

The adjoint of F app
s,0 in the inner product space L2

([−L1

2 , L− L1

2

))
is

(F app∗
s,0 u)(x) = δ(x)

∑
n∈Z

∫ L−L1
2

−L1
2

[
KGapp(y − nL) ◦AG

]T
es(y−nL)u(y)dy .

Putting u(x) = δ(x)v(x), we find that

(F app∗
s,0 u)(x) =

(∑
n∈Z

[
KGapp(nL) ◦AG

]T
esnL

)
δ(x)v(x)

and that the principal eigenvalue of F app∗
s,0 is the principal eigenvalue of the transpose of (A.8), which is ρapps .

The corresponding eigenfunction is

φ̃
app

s,0 (x) = δ(x)ψ̃ (A.10)

where ψ̃ is the principal eigenvector of the transpose of (A.8). We can now reconsider (A.7)

(F app
s,0 − ρ

app
s,0 )φapp

s,n + Fs,1 φ
app
s,n−1 −

n∑
j=1

ρapps,j φ
app
s,n−j = 0 (A.11)

which defines φapp
s,n and ρapps,n in terms of lower order terms. We find ρapps,n by taking its inner product with

φ̃
app

s,0
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〈φ̃
app

s,0 |(F
app
s,0 − ρ

app
s,0 )φapp

s,n 〉+ 〈φ̃
app

s,0 |Fs,1φ
app
s,n−1〉 −

n∑
j=1

ρapps,j 〈φ̃
app

s,0 |φ
app
s,n−j〉 = 0 . (A.12)

By the properties of the inner product and the adjoint operator F app∗
s,0

〈φ̃
app

s,0 |(F
app
s,0 − ρ

app
s,0 )φapp

s,1 〉 = 〈(F app∗
s,0 − ρapps,0 )φ̃

app

s,0 |φ
app
s,0 〉 = 0 .

Substituting this into (A.12) and rearranging, we have an expression for ρapps,n in terms of lower order

terms in the asymptotic expansions of ρapps and φapp
s ,

ρapps,1 =
〈φ̃

app

s,0 |F
app
s,1 φ

app
s,0 〉

〈φ̃
app

s,0 |φ
app
s,0 〉

ρapps,n =
〈φ̃

app

s,0 |F
app
s,1 φ

app
s,n−1〉 −

∑n−1
j=1 ρ

app
s,j 〈φ̃

app

s,0 |φ
app
s,n−j〉

〈φ̃
app

s,0 |φ
app
s,0 〉

for n > 1

(A.13)

For φapp
s,n , we must solve (A.11). Since F app

s,0 −ρ
app
s,0 has a non-trivial null-space, we have freedom to choose

φapp
s,n such that

〈φ̃
app

s,0 |φ
app
s,n 〉 = 0 .

Combining this projection constraint with (A.13), we have that

ρapps,n =
〈φ̃

app

s,0 |F
app
s,1 φ

app
s,n−1〉

〈φ̃
app

s,0 |φ
app
s,0 〉

for n ≥ 1 . (A.14)

This is analogous to standard results from matrix perturbation theory [52, 53], which for n = 1 are derived

rigorously in [54]. For ρapps,1 , we use the definitions of φapp
s,0 and φ̃

app

s,0 from (A.9) and (A.10), to give us an

expression for the numerator and denominator in (A.14) in terms of K and B,

〈φ̃
app

s,0 |F
app
s,1 |φ

app
s,0 〉 = ψ̃ ·

 ∑
m,n∈Z

∫ L−L1
2

−L1
2

(
KB(nL− y, y) ◦AB(y)

)(
KGapp(mL+ y) ◦AG

)
es(n+m)Ldy

ψ
〈φ̃

app

s,0 |φ
app
s,0 〉 = ψ̃ ·

[∑
n∈Z

(
KGapp(nL) ◦AG

)
esnL

]
ψ

= ρapps,0 ψ̃ ·ψ

Substituting these into (A.14) gives us the definition of ρapps,1 in (13).
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Appendix B. Numerical Methods

In §3 (Examples), we compare our analytical results to simulations of the IDE. We now discuss some of

the methods used.

Analytical Approximation

For exponentially bounded kernels, the terms in (11) and (13) corresponding to large n,m become expo-

nentially small. We have found numerically that the relative errors from taking only the |n| ≤ 20 terms in

(11) and the |n|, |m| ≤ 20 terms in (13) are less than 10−2 for both kernels studied (Gaussian and Laplace).

Therefore, in calculating our approximations, we use only the |n|, |m| ≤ 20 terms.

Simulations

We simulate the IDEs by discretising the population density function and dispersal kernels into domains

of non-dimensional length ≈ 0.0015. Since the kernel in the good patch KG(x− y) and the kernel in the bad

patch KB(x − y) are dependent only on the dispersal distance x − y, the RHS of (5) can be written as the

sum of two terms, with one referring to dispersal from the good patches, and the other to dispersal from the

bad patches. Since the dispersal pattern from each type of patch does not vary within that patch type, the

integrals are convolutions of the population density function in that patch type and the dispersal kernel from

that patch type. Under the discretisation, the integral convolution of the population density function and

dispersal kernel becomes a discrete convolution which we calculate using the Fourier convolution theorem and

Fast Fourier Transform (FFT) [55]. We assume the solution will have settled into a travelling wave by t ∼ 50,

we run the simulation for 100 time-steps and use the positions of the wave-front (the maximum of x such

that the juvenile stage of the nondimensionalised population density ut1(x) > µ) for t = 75, ..., 100 to find the

asymptotic wave-speed by fitting a linear function to the data. Numerically, we find that (after an initial

transient) the wave-front maintains the same exponential shape and shifts by a fixed distance. Therefore,

the observed wave-speed is independent of the final time choice, and our choice of numerical threshold for

invasion µ which we thereafter take as µ = 0.0005.
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Appendix C. Parameter Table

Parameter Symbol Range

Time t [1 100]

Spatial Variables x, y

Population density at x at t ut(x)

Landscape Period L [0.25 10]

Good Patch size L1 [0.01 0.2]

Proportion of Good Habitat, p = L1/L p [0.001 0.8]

Ratio of Demographic Parameters in Good and Bad Patches ε 0, 0.05, 0.25

Non-stage structured zero-population growth rate in Good patches r 10

Gaussian Dispersal Parameter σ 0.3, 1

Laplace Dispersal Parameter α 0.3, 1

Wave-number s

Wave-speed c(s)

Principal Eigenvalue of (A.4) ρs

Approximation to ρs using Point-Source Approx. ρapps

n-th order term in asymptotic expansion of ρapps in ε ρapps,n

Asymptotic wave-speed ĉ

Simulated asymptotic wave-speed csim

Analytical approximation of ĉ capp

Numerical density threshold for invasion µ 0.0005

(Stage-Structured Example) Birth rate φ 30

(Stage-Structured Example) Juvenile survival Rate ν 0.8

(Stage-Structured Example) Maturation rate γ 0.625

(Stage-Structured Example) Adult survival Rate θ 0.2
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