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ABSTRACT: Species distributions are influenced by spatial structure in environmental factors, but
the scales at which these dependencies occur and the effect of habitat patch diversity, connectivity
and spatial arrangement have rarely been investigated in deep-sea settings. In this study, spatially
limited photographic transects collected from Rockall Bank, NE Atlantic, were combined with
sidescan and multibeam sonar maps to model spatial patterns in species distribution and biodiver-
sity. Sediment interpretation maps were created and canonical ordination techniques were used
to examine relationships between fine-scale sediment characteristics extracted from the digital
stills as well as landscape metrics describing the patch mosaic structure of the surrounding areas.
Fine-scale sediment characteristics explained 45.1 and 63.8 % of the variation in species composi-
tion and biodiversity, respectively. This survey effectively captured variation in species distribu-
tion resulting from iceberg ploughmarks, occurring at a scale of <50 m — which would normally
go undetected by traditional ship-based studies. Our study suggests that fine-scale environmental
information is required to capture the spatial heterogeneity of complex seafloor areas in sufficient
detail to model species distributions and biodiversity.
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INTRODUCTION

Long-term stability in the deep sea was initially
suggested as an explanation for observed species
richness that was higher than expected (Sanders
1968). However, the importance of spatial heteroge-
neity (the uneven distribution of environmental vari-
ables over space) was soon recognized (Jumars 1976).
In a heterogeneous environment, a higher number of
niches are available —which allows resource parti-
tioning to occur, thereby reducing competitive exclu-
sion between species (Williams 1964). The hypothesis
that increased spatial heterogeneity leads to higher
species richness has been examined in terrestrial
(Pickett & Cadenasso 1995, Tews et al. 2004) and shal-
low water environments (Hewitt et al. 2005, Mellin et
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al. 2012), but for many deep-sea areas, spatial hetero-
geneity has not yet been mapped at sufficient resolu-
tion to represent fine-scale biodiversity patterns over
large spatial extents (Thrush et al. 2008, Levin &
Sibuet 2012). Yet this information would confer a sig-
nificant advantage for the implementation of manage-
ment measures, where precautionary decisions may
have to be made based on limited evidence. In this
case, seafloor heterogeneity, which can be rapidly de-
scribed via acoustic surveys, could be employed as a
proxy for biological diversity or conservation priority,
reducing the significant time investment associated
with biological data collection, identification and
manual quantification (Schoening et al. 2012).

Spatial patterns in species distribution can arise
from interactions between organisms (e.g. intraspeci-
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fic: reproduction or recruitment; and interspecific:
predation or competition) or be induced by spatial
structures exhibited by environmental factors (Le-
gendre 1993). Characterizing the relationships be-
tween environmental factors and species distributions
is a first step in accurately predicting species distribu-
tions and creating fine-scale habitat maps. Environ-
mental variables vary over different spatial scales to
form a mosaic of interspersed habitat patches on the
seafloor (Jumars 1976). However, in the deep sea the
scales at which these factors influence species distri-
butions have not yet been thoroughly investigated. At
broader spatial scales (i.e. 100 to 1000 km), deep-sea
studies on the relationships between environmental
variables and biodiversity have showed that water
mass and current-related factors (e.g. oxygen and
temperature), as well as flux of organic material have
the strongest influence on biodiversity (Levin et al.
2001, Sellanes et al. 2010, Williams et al. 2010). At
medium scales (i.e. 1 to 10s of km), the presence of
large geomorphological features such as submarine
canyons, nodule fields or habitat forming biological
structures are significant (Henry & Roberts 2007, Sell-
anes et al. 2010, Vetter et al. 2010). The importance of
sediment properties (e.g. hardness, grain size), food
resources (e.g. organic matter content) and distur-
bance rate appears only at finer spatial scales (i.e. m
to km) (Vetter & Dayton 1999, Gutt & Piepenburg
2003, McClain & Barry 2010).

The spatial relationships between habitat patches
and their effects on the distribution and composition
of the deep-sea benthic fauna has even more rarely
been examined (Wedding et al. 2011). The field of
‘landscape ecology’, developed in terrestrial environ-
ments, has focused on creating metrics to describe
the geometry and spatial arrangement of habitat
patches and their relationships to ecological proces-
ses (Turner & Gardner 1991). Class metrics are used
to describe properties of patches from a single sub-
stratum type, while landscape metrics consider all
patches present within a landscape (McGarigal et al.
2012). In shallow marine environments, a landscape
approach has been used to examine the effects of
habitat fragmentation in seagrass beds (Jackson et
al. 2006), the importance of patch size and connectiv-
ity in coral reefs (Grober-Dunsmore et al. 2007), spa-
tial patterns in rocky benthic species assemblages
(Garrabou et al. 1998) as well as the multi-scale influ-
ence of landscape structure on the spatial distribu-
tion of fish species (Pittman et al. 2004, Monk et al.
2011). Metrics such has fractal dimension have also
been found useful in describing irregular shapes
such as spatial patterns within mussel beds (Com-

mito & Rusignuolo 2000) and the morphology of mar-
ine branching sessile organisms (Kaandorp 1999).
Although application of spatial metrics in deeper
marine ecosystems had been limited owing to diffi-
culties associated with underwater mapping, it was
successful in explaining fine-scale (<1 m) benthic
species assemblages in the Antarctic (Teixid6 et al.
2002, Teixid6 et al. 2007). In deeper sites, the land-
scape is often characterized by sediment type, and
not by vegetation or biogenic structures (with the
exception of cold-water corals, carbonate mounds
and sponge aggregations (Klitgaard 1995, Howell et
al. 2011), resulting in more subtle changes in seafloor
structure which makes it inherently difficult to de-
lineate benthic habitats (Zajac 2008). However, re-
cent studies in automated seabed classification based
on sidescan or multibeam sonar backscatter have
greatly facilitated the creation of high resolution sed-
iment interpretation maps (Wilson et al. 2007, Lu-
cieer 2008, Brown et al. 2012). Analysis of these maps
from a landscape perspective has the potential to
increase the amount of ecologically meaningful infor-
mation extracted. Since no additional data collection
is required, this approach has the potential to reduce
the time needed to gather sufficient information to
address management issues.

As the anthropogenic footprint of activities such as
trawling extends deeper into our oceans, detailed
descriptions of seafloor habitats and the species they
harbour become increasingly important in order to
establish the baseline state of this ecosystem (Levin &
Sibuet 2012). As the environmental variables respon-
sible for spatial structuring in species distribution
vary over different scales, choice of resolution and
spatial extent will affect the ecological processes that
can be examined (Levin 1992). We must find sam-
pling resolutions that retain enough fine-scale varia-
tion to describe species distributions while remaining
coarse enough to be economically feasible (Przes-
lawski et al. 2011).

This study used a hierarchical survey to examine a
highly heterogeneous seafloor area characterized by
iceberg ploughmarks on Rockall Bank, NE Atlantic
(200 to 400 m depth). A fine-scale analysis of photo-
graphic transects was first carried out to identify
megafaunal species and map their distribution and
biodiversity. A landscape approach was then used to
examine whether the inclusion of metrics describing
the spatial arrangement of habitat patches could
improve the explanatory power of models using envi-
ronmental variables to describe species composition
and distributions. The amount of variation explained
by survey techniques of varying resolutions was also
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gin by Rockall Trough (Roberts 1971,
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1975). The seabed of the Rockall Bank has
a long history of investigation (Thomson
1874). The shallower areas of the western
bank have a heterogeneous seabed, in-
cluding partly buried rock outcrops, boul-
der and cobble fields as well as large
areas of carbonate sand cover (Roberts
1975). The deeper western and southern
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flanks (250 to 450 m water depth) are in-
cised with deep scours (<8 m) from ice-
berg keels having ploughed the seabed
during periods of Quaternary low sea lev-
els (Sacchetti et al. 2012). Over time, soft
sediment filled the centre of the plough-
marks while coarse debris remained at
the scar edges. The presence of dispersed
hard substratum has allowed colonization
by the cold-water coral Lophelia pertusa
(Wilson 1979a,b, Rogers 1999). A high di-
versity of organisms has been reported as-
sociated with L. pertusa patches (Jensen
& Frederiksen 1992, Wienberg et al. 2008)
but there has been little investigation of
the fauna of the softer sediments (Wilson
& Desmond 1986). In 2007, the North East
Atlantic Fisheries Commission estab-
lished a Fisheries Closure on the north-
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Fig. 1. Hierarchical survey carried out on Rockall Bank, Northeast Atlantic.  western flank of Rockall Bank. In 2010, a

Ship-based bathymetry displayed with superimposed outlines of the side-
scan sonar data (white) collected during 3 autonomous underwater vehicle
(AUV) missions. The 5 remotely operated vehicle (ROV) imagery transects

nearly overlapping area was proposed by
the Joint Nature and Conservation Com-

are shown in black. Insert shows the position of Rockall Bank in relation to ~ mittee (JNCC), an adviser group to the
Scotland; the black rectangle represents the location of the survey. The UK Government, as a candidate ‘Special

boundaries of the 2007 Fisheries Closure area and candidate for ‘Special
Area of Conservation' are illustrated in yellow and pink, respectively.
Background bathymetry of the Northeast Atlantic from GEBCO (General

Area of Conservation' (SAC) under the
EU Habitats Directive, with the aim to

Bathymetric Chart of the Oceans; IOC IHO and BODC 2003) protect the cold-water coral communities

examined, and the scale of variation in the biological
data was used to identify the process potentially
responsible for the spatial structure captured by the
survey.

MATERIALS AND METHODS
Study site

Rockall Bank, NE Atlantic (Fig. 1) is a shallower
part of the larger Rockall Plateau, a subsided and
submerged microcontinent which includes Hatton-
Rockall Basin and Hatton Bank to the northwest, and
which is separated from the Scottish continental mar-

from extensive deep-water fishing activi-
ties (Howell et al. 2009, JNCC 2010a)

Survey design and data collection
Map creation

A nested seafloor survey of the northwestern flank
of Rockall Bank (Fig. 1) (200 to 400 m depth) was
carried out during the RRS ‘James Cook' 060 cruise
in May and June 2011 as part of the '‘Marine En-
vironmental Mapping Programme' (MAREMAP:
www.maremap.ac.uk/index.html) and the 'COmplex
Deep-sea Environments: Mapping habitat hetero-
geneity As Proxy for biodiversity’ project (CODEMAP:
www.codemap.eu/). Three missions (M43, M44 and
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Fig. 2. (A) Image acquired via remotely operated vehicle illustrating megabenthic organisms and a mixed substratum. Laser

beams are separated by 10 cm. (B) Associated circular areas (green and yellow; 75 m and 30 m radii) as represented by the

sediment interpretation map. Soft, mixed and hard substratum types are represented in grey, tan and cream, respectively,
while coral stand are shown in blue. The red square illustrates the approximate area covered by the image

M45) by the autonomous underwater vehicle (AUV)
Autosub6000 were carried out, mapping 3 distinct
areas of seafloor (12.0, 12.0 and 13.0 km?, respec-
tively) using an EdgeTech high frequency (410 kHz)
high-resolution (resulting pixel size of 0.5 x 0.5 m)
sidescan sonar. These were located in areas within
(M43) and immediately outside (M44 and M45) the
Fisheries Closure, but still within the candidate SAC
(Fig. 1). Ship-board bathymetry of the surrounding
area (380 km?) was also collected using a Kongsberg
EM710 mutibeam echosounder (128 beams; resulting
pixel size of 20 x 20 m).

Thematic maps representing seafloor substratum
composition were produced, based on an unsuper-
vised classification of the sidescan sonar backscatter.
Unsupervised classification attempts to identify
structure within the data and segment it into units
without prior recourse to in situ reference points
(Brown et al. 2012). This classification used mean
backscatter, average grey level difference, and vari-
ance within a 9 x 9 pixel moving window to assign
each pixel to 1 of 6 classes: soft, mixed or hard sub-
stratum, coral stand or rubble, and exposed bedrock.
Mean backscatter represented substratum hardness
while variance at fine spatial scales was indicative of
more complex substratum structures such as coral
stands, where strong contrasts occur between the
high backscatter of the corals in combination with
the low backscatter caused by their shadows (Hu-
venne et al. 2002). Sediment patches of less than 12

pixels were filtered out; those pixels were assigned to
the sediment class represented by the majority of
neighbouring pixels.

Biological imagery

Within the areas surveyed by the AUV, 5 remotely
operated vehicle (ROV) photographic transects (Stns
91, 93, 96, 97 and 104) were conducted using a
SAAB SeaEye Lynx. Digital stills (Fig. 2) were taken
every ~40 s using an oblique mounted downward-
looking Kongsberg OE14-208 camera (focal length:
7.188 mm and maximum aperture: f/2) equipped
with parallel lasers for scale (10 cm separation), and
used for analysis of megabenthic invertebrates.
Using the image processing software Image J (http://
rsbweb.nih.gov/ij/), all images from a transect were
imported using the ‘Image Sequence' function to
form a ‘stack’ (multiple images displayed conse-
cutively in a single window); each organism was
identified, marked and its pixel position recorded to
avoid risks of double counting. Images of suboptimal
quality were removed as well as those collected
when ROV altitude varied beyond the 1 to 2.25 m
range. Each image was then georeferenced using the
ROV's ultra-short baseline (USBL) navigation system
which also recorded its depth and altitude. The ROV
position was estimated based on a moving average of
the navigation with a 4-reading subset, correspon-
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ding to 1 s. See Table 5 for average depth, transect
lengths and number of images collected per transect.
The ROV was also equipped with a SeaKing CTD
which showed average bottom temperatures of
9.26°C (SD = 0.10°C) and salinities of 34.8%. (SD =
0.025 %o).

When species-level identification would have re-
quired sample collection, visually distinctive taxa
were identified to the lowest possible taxonomic unit
and assigned to morphospecies. The use of morpho-
species is somewhat problematic, as cryptic species
will be considered under a single grouping while
other groups showing greater morphological varia-
tion (e.g. sponges) may be split into more groups, but
their use is common in marine studies where imagery
is used as the main sampling tool (Soltwedel et al.
2009, Schlacher et al. 2010, Compton et al. 2013).
Although the use of higher taxonomic levels is an-
other option to estimate biodiversity (Roy et al. 1996),
these tend to be more useful when investigating
broader scale patterns—and in the case of our
dataset, even family-level identification of sponges is
problematic without specimen collection. As such,
the diversity measures presented are likely under-
estimated, but represent the closest estimates that
can be achieved. Consultation with the image cata-
logue compiled by Howell & Davies (2010) for mor-
phospecies encountered in the surrounding area was
carried out, and a set of voucher images was assem-
bled. This set of images was deposited in the publicly
available SERPENT media archive (http://archive.
serpentproject.com/). In the case of encrusting spe-
cies, individual colonies were counted. For commu-
nity analysis, only morphospecies for which at least
10 individuals were observed and a presence re-
corded in at least 10 images were retained, but every
record was retained for biodiversity calculations
(Shannon index of diversity, H', Shannon 1948). To
examine the effect that cryptic species may have on
estimates of biodiversity, a percentage (5% and
20 %) of the number of taxa listed in OBIS (Ocean
Biogeographic Information System, www.iobis.org/)
for the North Atlantic Ocean was used as a potential
number of present, but undistinguishable cryptic
species. When 2 or more specimens of a morphos-
pecies of ascidians, bryozoans, cerianthids, cormat-
ulids, sponges, ophiuroids, sabellid worms or sipun-
cula worms were observed within an image, each
individual was randomly assigned, with replace-
ment, to a potential cryptic species, and biodiversity
estimates were recalculated. This analysis was con-
ducted in order to determine whether the uncertainty
created by the use of morphospecies was high

enough to effect the conclusions of the study. How-
ever, as the trends observed did not change, we argue
that the use of morphospecies is appropriate for this
study (results presented in Supplement 1 at www.int-
res.com/articles/suppl/m501p067_supp.pdf).

Imagery-derived environmental variables

Composition of the substratum was visually
assessed in each image based on grain size classes:
soft sediment, gravel, pebbles (4 to 64 mm), cobbles
(64 to 256 mm) and boulders (>256 mm) (Wentworth
1922). Pebbles of 4 mm could be measured in the
imagery, but only a visual distinction in texture could
be used to separate soft sediments from gravel. The
overall composition was first assigned to 1 of 7 sea-
bed facies: sand, sand and pebbles or gravel, sand
and cobbles, cobble-dominated, coral stand, coral
rubble and exposed bedrock (example images are
provided in Supplement 2 at www.int-res.com/
articles/suppl/m501p067_supp.pdf). To obtain a
quantitative description of substratum composition,
percentage covers were obtained by importing
images in the freely available statistical software R
(R Development Core Team 2011) and drawing 100
randomly located points for each image. Using a
custom-made R code with an interactive prompt, the
substratum (grain size class, exposed bedrock, coral
rubble or coral stand) at each location was recorded.

Sonar-derived environmental variables

The spatial structure (e.g. size, shape, composition,
spatial arrangement and diversity) of the seafloor
habitat patches represented in the sediment interpre-
tation of the sidescan sonar maps (complete extent
figures are available in Supplement 3 at www.int-
res.com/articles/suppl/m501p067_supp.pdf) was de-
scribed using the class and landscape metrics listed in
Table 1. Metrics were grouped into 5 general groups
‘area and edge’, ‘shape’, 'core area’, diversity’ (Peng
et al. 2010, McGarigal et al. 2012). The first group is
related to size of the patches and amount of edge, the
second group is used to characterize the geometry of
the different patches and the third grouping
examines patch sizes when the edge cells (only the
first one in this study) are removed. Spatial arrange-
ment of patches to each other is described by the
fourth group, while diversity measures (only available
for landscape analysis) form the last group. Refer to
McGarigal et al. (2012) for a thorough description of
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Table 1. Class and landscape level metrics considered in the analysis.
Class metrics were calculated for each of the 6 substratum classes pres-
ent in the sediment interpretation maps: soft, mixed or hard sub-
stratum, coral stand or rubble, and exposed bedrock. For formulas and

descriptions see McGarigal et al. (2012)

tion partitioning (explained below) was used
to select which 2 circle sizes provided the
most appropriate metrics to describe the bio-
logical variation observed.

Class metrics

Landscape metrics

Area and edge metrics
Patch number

Total area

Patch density

Edge length

Edge density

Mean patch area
Smallest patch area
Largest patch area

Shape metrics

Landscape shape index

Largest patch index

Perimeter area fractal dimension
Mean perimeter area ratios
Minimum perimeter area ratioa
Maximum perimeter area ratio
Mean shape index

Minimum shape index
Maximum shape index

Core area metrics
Total core area

Area and edge metrics
Patch number

Patch density

Edge length

Mean patch area
Smallest patch area
Largest patch area

Shape metrics
Landscape shape index
Largest patch index
Mean shape index
Minimum shape index
Maximum shape index

Core area metrics
Total core area

Mean core area
Smallest core area
Largest core area
Mean core area index

Aggregation metrics
Proportion of like adjacencies

For each image, the statistical mean and
variance in backscatter as obtained from
the original sidescan sonar maps were cal-
culated based on all pixels present within
the 2 circular areas. Area-weighted aver-
ages for slope, curvature, aspect, surface-
area ratio and bathymetric position index
(BPI) were calculated for the 4 m surround-
ing the position of each image. The layers
were derived from a 20 x 20 m resolution
base surface of the multibeam data (spatial
reference: World Geodetic System '84 Uni-
versal Transverse Mercator Zone 28N). As
BPI varies depending on neighbourhood
size, 2 layers were created: coarse and fine,
based on 10 pixels and 2 pixels neighbour-
hood radii (Wilson et al. 2007). Layers were
generated in ArcGIS using the ‘Spatial
Analyst Extension’' as well as the 'Land
Facet Corridor Tools’ and 'DEM Surface

Mean core area
Smallest core area
Largest core area

Aggregation index

Splitting index
Effective mesh size
Patch cohesion index

Aggregation metrics
Proportion of like adjacencies

Aggregation index Diversity metrics
Landscape division index Patch richness
Splitting index

Effective mesh size
Patch cohesion index

Landscape division index

Tools' developed by Jenness Enterprises
(Jenness 2012a,b).

Statistical analysis
Owing to the number of statistical meth-

ods employed, only a general description is
provided below; additional details are pro-

each measure and equations. In the present study,
circular areas of seafloor (1, 5, 10, 20, 30, 40, 50, 75
and 100 m in radius) were delimited around each im-
age (Fig. 2). Within those circular areas, class and
landscape metrics were computed using the ‘SDM-
Tools' (Species Distribution Modelling Tools) package
in R. Compared with the seafloor visible in the fine-
scale imagery, these class and landscape metrics pro-
vided a description of the broader seabed surround-
ing each image. The use of increasingly larger area
sizes was carried out in order to determine which one
would be most appropriate for the calculation of class
and landscape metrics as explanatory variables for
species composition and biodiversity. Using the sta-
tistical techniques described below (redundancy
analysis or linear regression with forward selection),
metrics were selected for each circle size, and the
amount of variation explained was calculated. Varia-

vided in Supplement 4 at www.int-res.com/
articles/suppl/m501p067_supp.pdf. Analy-
ses were carried out in the statistical software R using
the libraries ‘vegan’, 'labdsv' and ‘gstat’. A method-
ological flowchart is also presented (Fig. 3) with each
major step (as described below) represented by num-
bers (1 through 9). An extensive review of statistical
techniques for spatial analysis of community data,
including the ones employed in this study, is avail-
able in Dray et al. (2012).

Environmental variable selection

To determine which explanatory variables (e.g.
sediment percentage cover, class and landscape
metrics, and multibeam sonar-derived layers) could
best explain morphospecies distribution, (1) redun-
dancy analysis (RDA) was used. RDA is a type of
constrained ordination which allows the regression
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concept to be applied to a multivariate response
variable (such as a species matrix) (Legendre &
Legendre 1998). The morphospecies abundance
matrix was logo(x + 1) transformed before the ana-
lysis to reduce the influence of abundant species
(Clarke & Warwick 2001). (2) Forward selection
was carried out to obtain the most parsimonious
model and variance inflation factors (VIF) were
used to exclude additional explanatory variables
that showed strong collinearity with others present
within the model (Borcard et al. 2011). To compare
the information obtained from sampling tools of dif-
fering resolution (ROV images: <1 m, versus
acoustic maps: 1 to 20 m), this step was carried out
once using all explanatory variables and once
using only sonar-derived environmental variables.
As only lower resolution survey methods are gener-
ally available over large extents, (3) variation parti-
tioning (Peres-Neto et al. 2006) was used to exam-
ine the amount of variation that was no longer
captured when imagery-derived environmental
variables (e.g. sediment percentage cover) were no
longer available. The amount of variation in species
composition and biodiversity explained by the sedi-
ment class present at the location of the image and
the values of the multibeam-derived layers was
also calculated. This determined whether the inclu-
sion of landscape metrics increased explanatory
power when compared to the use of sediment inter-
pretation maps as abiotic proxies for species assem-
blages. These steps were also carried out using the
Shannon index of diversity (H') (Shannon 1948) as
a response variable, but linear regression was used
instead of RDA as the response variable was now
univariate.

Species assemblages

To identify clusters of images of similar morphos-
pecies composition, (4) K-means partitioning was
employed. This method aims at separating obser-
vations into a predefined number of clusters by
minimizing the distance between individual sam-
ples and the center of their assigned cluster (Harti-
gan & Wong 1979). The optimal number of cluster
was selected using the ‘simple structure index'
(Dimitriadou et al. 2002). (5) ANOSIM was used to
assess significant differences in morphospecies
composition between clusters and representative
species for each cluster were identified based on
‘species indicator values' (Dufrene & Legendre
1997).

Model evaluation

As an additional independent dataset was not
available, (6) model evaluation was carried out using
a 'holdout partition’ approach. A subset of the data
(300 randomly selected images) was removed from
the original dataset and the RDA parameters were
recomputed. The removed data points were then re-
classified, and the percentage of data points reas-
signed the same cluster was calculated. This process
was repeated 100 times to estimate variability in the
results obtained. Marine benthic studies employing
similar methodological approaches include Hewitt et
al. (2004), Teixid6 et al. (2007) and Verfaillie et al.
(2009)

Spatial dependency assessment

To determine how much of the spatial structure
present in the species dataset can be explained by
spatial structuring of environmental variables (in-
duced spatial dependence), (7) principal coordinates
of neighbour matrices (PCNM) were used (Borcard &
Legendre 2002, Dray et al. 2006). This approach yiel-
ded synthetic representations of potential spatial
structures based on distances between sampling
sites. These synthetic representations were then
compared to the spatial structure present in the spe-
cies dataset, and those found to be accurate repre-
sentations were included in the variation partitioning
Step (3) to assess how well the environmental vari-
ables described the biological spatial structures mod-
elled. (8) Gaussian variogram creation of the selected
spatial representations was used to determine the
scale of variation captured (the distance required for
2 points to be considered independent). As PCNM
represent the spatial structure present within the
species dataset, they can also be used to alleviate
issues associated with autocorrelation. This property
was used to compare differences in biodiversity at a
broader scale, between transects and substratum
facies.

Broader-scale spatial patterns

In order to assess broader-scale patterns, class and
landscape metrics were calculated within a 200 m
buffer around each transect line. Linear regressions
of diversity, organism abundance and substratum
percentage cover observed in each image were car-
ried out against depth. To examine differences in
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biodiversity (between transects and between seabed
facies), we first accounted for spatial autocorrelation
by filtering out the spatial structure previously mod-
elled (9). The biodiversity indices were first re-
gressed against the significant PCNMSs, and the
residuals were used as response variables in the ana-
lysis. Because transects length differed, data resam-
pling with replacement was carried out to obtain 75
images from each transect. The 95% confidence
intervals around the mean residual biodiversity for
each transect were built using a bootstrapping proce-
dure with 999 repetitions. For the seabed facies, the
same bootstrapping procedure was applied, but sam-
ple size was standardized to 30 images.

RESULTS

In the 1222 images analysed, a total of 7267 indi-
vidual organisms were observed from 81 morpho-
species (for a complete list see Supplement 5 at
www.int-res.com/articles/suppl/m501p067_supp.pdf).
Many of these were rare, and only 35 morphospecies
were seen in more than 10 images (Fig. 4). The squat
lobster Munida sarsi made up the largest percentage
(33.0%) of the organisms observed and was the dom-
inant species in all transects with the exception of
Transect 96, which was dominated by the holothu-
rian Parastichopus tremulus (40.3 % of fauna). How-
ever, across all transects, P. tremulus only repre-
sented 2.6% of the total observations. Only the
bryozoan Reteporella sp. (13.1 %) and colonies of yel-
low (9.8%) and white (6.2%) encrusting sponges
composed more than 5% of the total observations.

The class and landscape metrics calculated at vary-
ing scales showed that the most variation was cap-
tured using a radius of 40 m for both morphospecies
composition and biodiversity. However, when 2 cir-
cle sizes were considered, the highest variation
explained was achieved using metrics derived from
areas with radii of 30 m and 75 m for morphospecies
composition, and 20 m and 75 m for biodiversity
(results included in Supplement 6 at www.int-res.
com/articles/suppl/m501p067_supp.pdf). For simpli-
city, sonar-derived metrics calculated at 30 m and
75 m were used for the analysis.

Following forward selection, a large number of
environmental variables (substratum percentage
cover, class and landscape metrics as well as back-
scatter and bathymetric variables) significantly ex-
plained morphospecies composition and biodiversity
(Tables 2 & 3). The most parsimonious models in-
cluding all environmental variables explained 45.1 %

(p = 0.001) and 63.8% (p < 0.001) of the variation for
morphospecies composition and biodiversity, respec-
tively. When models relied solely on sonar-derived
environmental characteristics, lower percentages of
variation were explained: 24.7% (p = 0.001) and
40.6 % (p < 0.001) for morphospecies composition and
biodiversity, respectively. However, these percent-
ages were much higher than what was obtained
when only the sediment interpretation class and
multibeam-derived information were employed:
variation explained 13.0% (p = 0.001) for morpho-
species composition and 22.9% (p < 0.001) for bio-
diversity.

The first 14 axes of the redundancy analysis were
significant, but only the first 2 axes are illustrated in
the ordination graphs. Substratum percentage cover,
as obtained from the imagery, best explained varia-
tion in the morphospecies count data (Fig. 5A). The
first canonical axis illustrates a gradient in images
dominated by soft to hard substrata, while the second
axis represents the presence of coral rubble and
stands. The vectors representing species scores
(Fig. 5B) separate into 3 subgroups: upper right
quadrant, characterized by squat lobsters Munida
sarsi, a species of Actiniaria, yellow encrusting
sponges and Sabellid worms; lower right quadrant,
showing predominance of other small encrusting
sponge colonies and bryozoan species as well as the
asteroid Porania pulvillus; and lower left quadrant,
represented by the holothurian Parastichopus tremu-
lus. K-means partitioning showed a similar trend by
identifying an optimum of 3 clusters. However, the
use of 4 clusters allowed the separation of species
occurring on both corals and hard substratum from
those more closely associated with live coral stands.
As the 4 clusters differed significantly in their
morphospecies composition based on ANOSIM ana-
lysis (R = 0.85, p = 0.001), they were retained.

Between 3 and 15 morphospecies were representa-
tive for each cluster, as determined by indicator spe-
cies analysis (Table 4). However, no morphospecies
significantly represented the cluster associated with
soft sediment habitats, although this is likely a result
of the low densities of organisms observed in this
habitat. There was a clear separation in ordination
space of images assigned to each K-means cluster
(Fig. 6). At the transect level, morphospecies associ-
ated with soft sediments only represented 5.3% of
total organisms observed, while coral-associated
morphospecies represented 18.9 %. The remainder of
the organisms recorded represented hard bottom
(40.1 %) or more generalist morphospecies (e.g. asso-
ciated with hard substratum, coral stand and rubble;
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Table 2. Selected environmental variables for the most parsimonious models (with and without including fine-scale imagery-
derived information) for the morphospecies count matrix. o = class metrics, § = landscape metrics, y= sidescan sonar, § = multi-
beam sonar, ¢ = ROV imagery-derived variables

Sonar Imagery and sonar
Explanatory B Number of patches (75 m) ¢ Percentage cover cobbles
variables o Proportion of like adjacencies sand (30 m) ¢ Percentage cover rubble
o Total area coral (30 m) ¢ Percentage cover live coral
¥ Mean backscatter (30 m) ¢ (Percentage cover cobbles)?
o Mean shape index coral (75 m) € Rock (factor)
o Effective mesh size bedrock (30 m) € Rock - sand (factor)
d Aspect € Sand - cobbles (factor)
B Mean shape index (75 m) ¢ Cobbles - sand (factor)
o Minimum patch core area coral (30 m) o Proportion of like adjacencies sand (30 m)
o Patch density bedrock (30 m) o Mean shape index coral (75 m)
o Patch density rubble (30 m) € Percentage cover boulder
o Landscape shape index mixed (30 m) o Minimum patch core area coral (30 m)
B Largest patch index (30 m) ¢ (Percentage cover rubble)?
o Proportion of like adjacencies sand (75 m) o Proportion of like adjacencies sand (75 m)
o Largest patch index coral (75 m) o Effective mesh size bedrock (30 m)
o Mean shape index bedrock (30 m) o Total area coral (30 m)
o Minimum patch area bedrock (75 m) o Landscape shape index sand (30 m)
8 Mean core area index (75 m) € Percentage cover gravel
o Mean shape index mixed (75 m) o Patch density bedrock (75 m)
o Mean patch core area hard (75 m) o Mean shape index bedrock (30 m)
o Maximum shape index sand (75 m) o Landscape shape index hard (30 m)
Y Mean backscatter (75 m) o Landscape division index mixed (75 m)
B Maximum shape index (30 m) o Patch density rubble (30 m)
o Landscape shape index sand (30 m) ¢ Pebbles (factor)
v Variance backscatter (75 m) & Aspect
o Minimum shape index sand (75 m) o Maximum shape index sand (75 m)
o Mean patch area sand (75 m) o Mean patch core area mixed (30 m)
o Mean patch core area mixed (30 m) o Largest patch index coral (75 m)
o Mean shape index hard (30 m) B Number of patches (75 m)
o Minimum patch core area rubble (75 m) o Landscape shape index mixed (30 m)
o Mean shape index mixed (75 m)
B Maximum core area index (75 m)
o Patch cohesion index hard (75 m)
B Patch cohesion index (30 m)
Adjusted R? 24.7% 45.1%
F-value 12.1, df = 36, 1185 26.1, df =40, 1181
p-value 0.001 0.001

38.3 %). High percentages of hard bottom-associated
morphospecies were recorded for Transects 91
(49.0%) and 104 (46.9%). Organisms representing
morphospecies associated with corals ranged be-
tween 16.7 and 18.9% of the observations for Tran-
sects 91, 93 and 104, but fell below 5% for Transects
96 and 97. Morphospecies associated with soft sedi-
ments represented 54.5% and 14.2% of total obser-
vations for Transect 96 and 97, respectively, but less
than 5% in the remaining transects. Morphospecies
associated with the use of multiple sediment types
(hard substratum, coral stand and rubble) ranged
between 30.4 and 73.3 % of total observations. Char-
acteristic substrata and morphospecies images for
each observed assemblage are presented (Fig. 7).

In the case of the Shannon biodiversity index, per-
centage cover of sand and gravel had the strongest
association (p < 0.001) to lower biodiversity indices
(Table 3). Sites classified as containing cobbles, ex-
posed bedrock and pebbles had significantly higher
biodiversity (p < 0.001). Number of patches (p <
0.001) and patch cohesion, an index indicative of
greater connectivity (full model: p < 0.001, sonar-only
model: p < 0.05), also significantly increased bio-
diversity, while metrics indicative of large sandy
areas (e.g. proportion of like adjacencies) were asso-
ciated with a decrease in biodiversity (both models:
p < 0.001). Percentage cover of corals, and a few
associated indices indicative of larger, more closely
located patches (e.g. aggregation index [both mod-
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Table 3. Selected environmental variables for the most parsimonious models (with and without including fine-scale imagery-derived
information) for the Shannon diversity index (H'). o.= class metrics, B = landscape metrics, Y= sidescan sonar, = multibeam sonar, e = ROV
imagery-derived variables. ***p < 0.001, **p < 0.01, *p < 0.05, .'p<0.1

Sonar Imagery and sonar
Shannon diversity index Coefficient Shannon diversity index Coefficient
Explanatory o Aggregation index coral (75 m) 0.003 *** € Percentage cover sand -0.454 ***
variables o Proportion of like adjacencies sand (30 m) -0.456 *** ¢ Sand - cobbles (factor) 0.668 ***
o. Proportion of like adjacencies coral (30 m) 0.188 * o Aggregation index coral (75 m) 0.003 ***
Y Mean backscatter (30) <0.001 *** ¢ Percentage cover gravel —0.455 ***
o. Patch cohesion index hard (75 m) -0.188 € Rock - sand (factor) 0.927 ***
& Aspect NA € Rock (factor) 0.950 ***
o Mean shape index mixed (75 m) -0.193 ** ¢ (Percentage cover rubble)”2 -1.712***
o Effective mesh size bedrock (30 m) 0.000 ** ¢ Cobbles — sand (factor) 0.634 ***
o Effective mesh size coral (75 m) 0.039 ** o Mean patch area sand (75 m) <0.001
B Patch cohesion index (75 m) 0.271* B Patch cohesion index (75 m) 0.237 ***
o Mean perimeter area ratio hard (75 m) -0.076 * B Patch richness (75 m) -0.102 ***
B Number of patches (30 m) 0.012 *** o Proportion of like adjacencies sand (30 m) -0.263 ***
o Minimum patch core area rubble (75 m) 0.003 * ¢ Percentage cover rubble 0.011
o Landscape shape index sand (30 m) -0.044 * o Minimum patch area coral (75 m) 0.001 *
o Mean patch area sand (75 m) <0.001 ** ¢ Pebbles (factor) 0.169 ***
Y Mean backscatter (75 m) —-0.001 *** € Percentage cover coral 0.300 **
o. Minimum patch area coral (75 m) 0.002 * € Rubble (factor) 0.121 **
o Proportion of like adjacencies sand (75 m) -0.433 * o Maximum perimeter area ratio sand (75 m) 0.014 *
o. Minimum patch core area mixed (30 m) <0.001 * o Mean perimeter area ratio hard (30 m) 0.026 *
B Mean core area index (30 m) 0.918 ** B Mean shape index (30 m) 0.091
o Number of patches sand (75 m) 0.003 oo Minimum patch core area rubble (75 m) 0.002.
o Mean patch area bedrock (75 m) <0.001 o Proportion of like adjacencies coral (30 m) 0.088
B Division index (75 m) -0.191 d Slope 0.004
4 Bathymetric position index (coarse) 0.012.
o. Maximum perimeter area ratio sand (30 m) 0.012*
o. Patch cohesion index mixed (30 m) -0.136
o. Mean perimeter area ratio hard (30 m) 0.036 *
Yy Variance backscatter (75 m) <0.001
Adjusted R> 40.6% 63.8 %
F-value 25.6, df = 34, 1187 94.54, df =23, 1198
p-value <0.001 <0.001

els: p < 0.001], portion of like adjacencies [sonar-only
model: p < 0.05], mean core area index [sonar-only
model: p < 0.01] and effective mesh size [sonar-only
model: p < 0.01]), were also associated with increa-
sed biodiversity. Second-order relationships to per-
centage cover of rubble were also significant (p <
0.001), indicating that they can increase biodiversity
when present in intermediate quantities.

Variation partitioning of the models allowed for the
separation of the amount of variation explained by
imagery versus sonar-derived environmental vari-
ables. When the model considering all environmen-
tal parameters was partitioned between imagery and
sonar-derived environmental variables, fine-scale
characterization of substratum percentage cover ob-
tained from the imagery explained the most varia-
tion, contributing to a total of 38.6 % for community
composition and 59.0% for biodiversity (Fig. 8). Of
those percentages, 16.4 and 31.0%, respectively,

were also explained by the selected class and land-
scape metrics. However, as the full models explained
45.1 and 63.8% of the variation in community com-
position and biodiversity respectively, it is clear that
the variation explained by the class and landscape
metrics was almost entirely captured by the imagery-
derived substratum percentage cover. Forward
selection of PCNMs resulted in 2 sets of 50 PCNMs,
which identified 31.1 and 36.0% of the variation in
the morphospecies matrix and biodiversity index,
respectively, as resulting from spatial structuring (see
Supplement 7 at www.int-res.com/articles/suppl/
m501p067_supp.pdf). Of these percentages associ-
ated with spatial structuring, only 5.9% (morpho-
species composition) and 2.0% (H') could not be
explained by the environmental variables. This vari-
ation could be the result of unmeasured environmen-
tal variables or spatial autocorrelation resulting from
biological interactions. Gaussian variogram fitting of
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(A) Environmental variables: o = class metrics, B =landscape metrics; derived from y=sidescan sonar, 6 = multibeam sonar
and € = ROV imagery. (B) Morphospecies

site scores for significant canonical axes indicated originally computed using the full model. When only
that ranges in the spatial structure modelled varied sonar-derived environmental information was used,
between 20 and 50 m. values of 71.8% (SD = 3.9 %) were obtained.

When model validity was assessed following 100 At the broader scale, transects varied in morpho-
repetitions, on average 81.1% (SD = 2.5 %) of the 300 species composition, diversity and substratum com-
images removed were assigned to the same cluster as position. The 95 % confidence intervals for Transects

Table 4. Total counts based on 1222 images, K-means partitioning cluster association as well as indicator values and significance for the
operational taxonomic units observed. Cluster 1: soft sediments, Cluster 2: hard substratum, Cluster 3: coral associated and Cluster 4: occur-
ring on hard substratum, coral stand and rubble. Bold numbers indicate morphospecies presented in Fig. 4. ***p < 0.001, **p < 0.01, *p < 0.05,

'p<0.1
Morphospecies Count Cluster Indicator Morphospecies Count Cluster Indicator
value value
1 Parastichopus tremulus 185 1 0.06 4 Asterias rubens 28 3 0.02
24 Caryophyllia sp. 1 92 1 0.03 5 Henricia spp. 117 3 0.24***
34 Echinus sp. 3 (possibly E. elegans) 11 1 0.01 7 Lophelia pertusa 39 3 0.53***
6 Reteporella sp. 942 2 0.72*** 8 Sabellidae 272 3 0.93***
14 Brown cup sponge 942 2 0.72*** 9 Actinaria sp. 1 227 3 0.72***
16 Echinussp. 2 10 2 0.04** 10 Echinussp. 1 (possibly E. acutus) 19 3 0.24***
18 Cyclostomatida sp. 1 175 2 0.37*** 11 Portunidea sp. 1 24 3 0.08***
19 Orange encrusting sponge 138 2 0.29*** 15 Hippasteria sp.1 19 3 0.06**
20 White branching sponge 152 2 0.43*** 17 Translucent tunicate 96 3 0.09**
21 Brown lamellated sponge 69 2 0.16*** 25 Yellow columnar sponge 28 3 0.10***
22 White encrusting sponge 445 2 0.69*** 26 Ophiuroidea 263 3 0.16***
27 Yellow encrusting sponge 705 2 0.54*** 31 Hydroidae 35 3 0.21**
28 Porania pulvillus 10 2 0.01 2 Munida sarsi 2373 4 0.32***
29 Blue encrusting sponge 38 2 0.04* 3 Cidaris cidaris 59 4 0.05
30 Orange branching sponge 19 2 0.05** 12 Shrimp sp. 1 80 4 0.03
32 Tan columnar sponge 48 2 0.10*** 13 Orange worm sp. 1 233 4 0.04
33 Yellow spherical sponge 36 2 0.12*** 23 Brown anemone 13 4 0.01
35 Red encrusting sponge 60 2 0.08***
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Fig. 6. Position of each image in ordination space (plotted as ‘weighted averages of species scores' for the first 2 canonical

axes) following redundancy analysis using (A) both imagery and sonar-derived environmental variables, and (B) only sonar-

derived variables. Sites are colour-coded based on their association to K-means partitioning clusters: soft (grey), mixed

(brown) and hard (white) substratum and coral stands (rectangles). Black ellipses indicate the standard deviation surrounding
the centroid of each cluster

96 and 97 indicated a significantly lower biodiversity
than for the other 3 transects (Fig. 9A). Biodiversity
was lowest in soft sediment or rubble-dominated
images and highest when cobbles, bedrock or corals
were present (Fig. 9B). Significant negative relation-
ships were observed between diversity (R? = -0.167,
p < 0.001) and organism abundance (R? = -0.159, p <
0.001) versus depth. Percentage cover of hard sub-
stratum (R? = —0.079, p < 0.001) and coral stands (R? =
—-0.027, p < 0.001) also diminished with depth. Land-
scape metrics showed similarities across all 5 tran-
sects, but class metrics displayed greater variation.
At the transect level (200 m buffer), patch sizes aver-
aged 256 m? (SD = 41 m?), but greater differences
were apparent when separated by sediment grain
size classes: 9178 m? (soft), 537 m? (hard), 160 m?
(mixed), 21 m? (bedrock), 14 m? (rubble) and 20 m?
(coral). Soft sediments comprised the largest propor-
tion of the landscape, while exposed bedrock, rubble
fields and coral stands were rarely encountered.
Exposed bedrock was only recorded along Transects
91 and 104, while large rubble fields were only iden-
tified in the sonar maps of Mission 44. Live coral
stands of Lophelia pertusa were recorded along
Transects 91, 93 and 104. Estimates of the proportion
of landscape occupied by each substratum class were
highly dependent on the resolution of the obser-
vation method. Greater differences were observed
when comparing the high resolution imagery to the

sediment interpretation maps covering various ex-
tents (Table 5). Based on the imagery, soft sediments
represented the dominant substratum class in all
transects, but Transects 91 and 104 had mixed sedi-
ments as their dominant class if sediment interpreta-
tion maps were used instead.

DISCUSSION

This study employed community and landscape
analysis approaches traditionally employed in terres-
trial settings to examine species-environment rela-
tionships based on remotely acquired data of Rockall
Bank, NE Atlantic. This represents one of the first
applications of these techniques to a deep-sea envi-
ronment, and the results obtained suggest potential
applications for management and conservation
requiring fine-scale species distribution and biodi-
versity information.

Megafaunal distribution and biodiversity

A strong association between morphospecies dis-
tributions and substratum types was observed, yield-
ing 3 distinct assemblages: soft bottom, hard bottom
and coral-associated. Although not forming an inde-
pendent group, the addition of a fourth cluster en-



Robert et al.: Megafaunal distribution, biodiversity and heterogeneity on Rockall Bank 81

Fig. 7. Characteristic im-
ages for substratum classes
and associated morphos-
pecies. (A) Soft sediments;
(A.1) and (A.2): Parasticho-
pus tremulus, (A.3): Caryo-
phyllia sp. 1, (A.4): Echinus
sp. 3 (possibly E. elegans).
(B) Hard substratum; (B.1):
Reteporella sp., (B.2): Pora-
nia pulvillus, (B.3): Echinus
sp. 2, (B.4): Porifera (cup sp.
1). (C) Coral stands; (C.1):
Porifera (yellow columnar
sp. 1), (C.2): Sabellidea sp.
1, (C.3): Actiniaria sp. 1,
(C.4): Hippasteria sp. 1. (D)
Coral rubble; (D.1): Sipun-
cula sp. 1, (D.2): Caridea sp.
1, (D.3): Cidaris cidaris,
(D.4): Munida sarsi (species
also frequently present on
hard substratum and live
coral stands)
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Total
51.0%

this study, cup corals Caryophyllia
spp. were also observed on isolated
cobbles or boulders in soft sediment-
dominated areas. The majority of
morphospecies in the second assem-
blage were similar to descriptions of
the rocky reef habitat of the central
and eastern flanks of Rockall Bank
(Howell et al. 2009). Being mostly
dominated by encrusting sponge
colonies as well as bryozoan species

Total
65.8%

Fig. 8. Venn diagram showing, for the full model, percentages of variation in
species composition and biodiversity explained by selected environmental
variables extracted from the imagery (% substratum cover), the sonar maps
(backscatter, bathymetry, class and landscape metrics) and the principal
coordinates of neighbour matrices (PCNMs). (A) Morphospecies count matrix

and (B) Shannon diversity index (H')

abled the separation of morphospecies occurring in
multiple substratum classes (hard bottom, coral
stands and rubble) from those more closely associ-
ated with live coral stands. No morphospecies were
significantly associated with soft bottoms, but assem-
blages dominated by the sea cucumber Parasticho-
pus tremulus have been reported for sandy flat areas
by Howell (2010) in Rockall Trough, and Buhl-
Mortensen et al. (2012) in northern Norway. Howell
(2010) also reported the concurrent occurrence of the
pencil sea urchin Cidaris cidaris, but in our study this
species was mostly observed in coral rubble fields. In
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(Cyclostomatida and Reteporella sp.),
taxonomic identification was not pos-
sible without sample collection and
rendered comparisons between stud-
ies difficult. As previously reported
from other surveys of the region, squat
lobsters Munida spp. were commonly
observed associated with coarse sediments (gravel
and cobbles) (Howell et al. 2009, Howell 2010) as
well as on live coral stands and rubble (JNCC 2010a).
Finally, sabellid worms and unidentified morphos-
pecies of Actiniaria and Ophiuroidea were repeat-
edly observed in high densities on live coral stands.
Association of suspension feeders (i.e. actiniarians,
hydroids, hexactinellids and demosponges as well as
crinoids and brisingiids) with Lophelia pertusa has
been described for the Franken Mound area on west-
ern Rockall Bank (Wienberg et al. 2008) and the
nearby, though deeper Rockall Trough (Masson et al.
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Fig. 9. Difference in residuals between (A) the 5 imagery transects and (B) the seabed facies, after filtering out the spatial
structure of the Shannon diversity indices (H') using significant principal coordinates of neighbour matrices. A bootstrapping
procedure was used to standardize sample length. The box shows the median (thick line) as well as the first (lower edge) and
third (upper edge) quartiles while the whiskers show the minimum and maximum value excluding any outliers which are
illustrated as circles. Letters indicate factors which are not significantly different based on 95 % confidence intervals



Robert et al

.» Megafaunal distribution, biodiversity and heterogeneity on Rockall Bank 83

Table 5. Averaged characteristics for the 5 transects. Substratum percentage cover for each sediment grain size class is given as obtained from the imagery, the circular

(5 m radius) area surrounding each image and the 200 m buffer surrounding each transect. Gra: gravel; Peb: pebbles; Cob: cobbles; Bou: boulders; Bed: bedrock;

Rub: rubble; Cor: coral; Mix: mixed

Thematic maps
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2003). The distribution of similar habitats occupied
by many of the same species has been reported for
the nearby Hatton Bank (Roberts et al. 2008).

The assemblages observed in this study showed
similarities to others described in areas characterized
by iceberg reworking of the seabed (Gutt et al. 1996,
Gutt & Piepenburg 2003, Jones et al. 2007a). During
the Quaternary Period, the majority of the western
and southern flanks of Rockall Bank were left cov-
ered in scours averaging 2 to 2.3 km in length, rang-
ing between 50 and 200 m in width and up to 8 m in
depth (Sacchetti et al. 2012). As found in other areas
of the northwest European continental margin (Frei-
wald et al. 1999, Wheeler et al. 2007), iceberg debris
provided hard ground for cold-water coral colonies to
establish. Association of coral colonies with hard sub-
stratum originating from iceberg activity has also
been observed on the continental margin off Nova
Scotia and Newfoundland in the northwest Atlantic
(Edinger et al. 2011). Fine-scale distinctions in mor-
phospecies assemblages between the coarser and
finer sediments dominating, respectively, the edges
and centre sections of iceberg ploughmarks have
been reported for other NE Atlantic areas such as
Hatton Basin (JNCC 2012), the Wyville Thomson
Ridge (JNCC 2010b) and northwest of Shetland (Bett
2001). However, studies in areas of active iceberg
formation (Arctic and Antarctic) have shown that the
observed patterns in benthic species assemblages
and biodiversity are highly dependent on the time
elapsed since iceberg disturbance, particularly with
respect to slow growing organisms (e.g. sponges and
corals) whose presence can affect distributions of
associated species (Gutt et al. 1996, Gutt & Piepen-
burg 2003). Higher diversity on ploughmark edges
dominated by hard sediments has also been reported
for the Fimbul ice shelf region, Antarctica, and dom-
inance of bryozoans and encrusting sponge colonies
was mostly observed in less disturbed areas (Jones et
al. 2007a). At broader spatial scales, when higher
diversity is observed in areas of medium iceberg
activity levels, it often results from the coexistence of
various stages of succession and recovery (Jones et
al. 2007b, Teixid6 et al. 2007). In the case of Rockall
Bank, this high diversity is more likely the result of a
spatial dependence of distinct species assemblages
on substratum type which varies over fine spatial
scales.

Much variation in species-depth relationships oc-
curs at local scales. However, over regional scales, re-
ductions in faunal densities and biomass attributed to
a diminishing organic matter supply, and unimodal
responses in diversity have frequently been reported



84 Mar Ecol Prog Ser 501: 67-88, 2014

(Rex et al. 2006). In the current study, the depth range
encountered was relatively small (~100 m), and
showed strong collinearity with other environmental
variables. For example, higher number of coral
colonies and presence of exposed bedrock were ob-
served along the shallower transect, while the deeper
transects located at the northern end of the study area
were characterized by large expenses of coral rubble
fields (likely resulting from previous trawling activi-
ties). Those deeper transects had the lowest Shannon
diversity index. Cold-water coral stands increase
habitat complexity by providing 3-dimensional struc-
tures to which fishing activities such as trawling can
cause damage (Fossa et al. 2002). As many species are
associated with cold-water corals, their destruction is
expected to impact composition and diversity of ben-
thic fauna (Roberts & Hirshfield 2004, Henry &
Roberts 2007). Our study indicated that coral rubble
fields did not appear to be exploited by specific mor-
phospecies assemblages, and megabenthic diversity
was generally reduced. This contrasts with results ob-
tained by Roberts et al. (2008), who found high diver-
sity of epifauna associated with areas of naturally oc-
curring coral rubble on Hatton Bank. Although
images where coral stands were present did not have
a significantly higher biodiversity than images domi-
nated by cobbles or bedrock, corals did harbour a spe-
cific morphospecies assemblage whose positive influ-
ence on diversity was visible at the transect level.
Much of the diversity associated with cobbles or
bedrock substrata was composed by hard-to-distin-
guish small encrusting sponge colonies, while large
fish aggregations were seen surrounding coral
patches but were not included in this analysis.

Landscape approach and environmental variables

The importance of different environmental vari-
ables depended on whether multivariate morpho-
species distributions or a diversity index were con-
sidered. In both cases, environmental variables with
the highest resolution (~1 cm), such as substratum
percentage cover as obtained from imagery were
most useful in explaining the variation observed. The
use of landscape metrics explained 24.7 % of the vari-
ation in morphospecies distribution —values similar
to those reported by Teixidé et al. (2007) using simi-
lar analyses. Using canonical correspondence ana-
lysis to examine structural patterns (characterized by
landscape metrics) of successional stages of iceberg
disturbance and their effects on an Antarctic benthic
community, they found that the 2 first axes explained

11 % of the observed variation. In our study, although
sonar backscatter maps were available at high reso-
lutions (0.5 x 0.5 m pixel size), the presence of small,
single-coral colonies or isolated boulders which were
observed within pictures could not be identified in
the backscatter. However, their presence within
areas of homogeneous soft sediment did affect mega-
faunal composition. In this environment, these small
seafloor features may represent 'keystone structures’
(Tews et al. 2004) whose importance could only be
captured through ROV imagery. This difference in
resolution caused estimates of substratum percent-
age cover to vary more between acquisition methods
than between the different spatial extents considered
for the sediment interpretation maps. Hence, in this
highly heterogeneous setting, the sole availability of
high resolution acoustic surveys (even if covering
larger extent) would result in a ~35 to 45 % decrease
in the amount of biological variation that could other-
wise be explained by cm-scale substratum type infor-
mation. Similarly, the classification of substratum
types that was achieved visually provided additional
information that is not yet achievable via automated
seabed classification of backscatter data. The accu-
racy of the sediment class assigned is also likely to be
higher when based on photographs.

High-resolution sidescan sonar was effective in
mapping seafloor heterogeneity resulting from ice-
berg reworking, and highlighting a similar spatial
pattern in megafaunal distribution indicative of spa-
tial induced dependence. Indeed, the ranges identi-
fied by variogram fitting (20 to 50 m) were consistent
with iceberg ploughmark widths and patch sizes
observed over the larger transect extents (200 m
buffer). Taking into account this seafloor heterogene-
ity by examining the surroundings of each image col-
lected using class and landscape metrics resulted in
an additional 12 to 17 % of variation explained over
the use of only sediment interpretation maps and
bathymetry-derived information as proxies for mor-
phospecies assemblages or biodiversity.

The comparatively low resolution (20 x 20 m pixel
size), small bathymetric gradient (~100 m), limited
extent considered and absence of topographic fea-
tures may explain why other bathymetry-derived
variables showed poor predictive abilities. However,
in other seafloor regions where sediment characteris-
tics do not exhibit the high spatial heterogeneity
observed in this study, and where geomorphology
shows greater complexity, bathymetric parameters
such as slope, curvature and BPI may reveal signifi-
cant broad-scale patterns in species assemblages
(Jones & Brewer 2012).
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The majority of the metrics selected when mor-
phospecies distributions were considered described
patch area and shape, whereas metrics describing
areas of greater spatial heterogeneity, such as aggre-
gation metrics, were selected more often when
describing variation in biodiversity. In northern Nor-
way, diversity increased in areas of mixed sediment
(Buhl-Mortensen et al. 2012). In our study, this in-
crease in diversity resulted from very fine-scale par-
titioning of the seabed based on sediment hardness.
This fine-scale partitioning could be described by
substratum percentage cover analysis of the digital
stills, but was often lost in the sediment interpreta-
tion of the backscatter, yielding a transition zone of
mixed sediment class with higher biodiversity, but of
insufficient resolution to describe morphospecies
assemblages. Effects of patch edges and transition
zones on species composition and abundance have
also been frequently documented in terrestrial sys-
tems, showing positive, negative and neutral rela-
tionships (Ries et al. 2004). However, this important
concept of landscape ecology has very rarely been
examined in marine benthic ecosystems (but see
Zajac et al. 2003 for macrobenthos and Anderson et
al. 2009 for deep-water demersal fishes). Landscape
metrics will only provide valuable information if the
spatial patterns they describe can be linked to spe-
cific ecological mechanisms, and the development of
marine-specific metrics will be required (Wedding et
al. 2011). Three-dimensional metrics taking into
account the structure of the overlying water masses
affecting bentho-pelagic linkages would be one area
of potential research. Experimental manipulation of
landscape characteristics would also be required to
establish links between landscape spatial patterns
and specific ecological processes.

CONCLUSION

Our study showed that for the Rockall Bank area, a
strong association exists between morphospecies dis-
tribution and sediment characteristics resulting from
past iceberg activity. The identified relationships
were stronger when fine-scale (<1 m) imagery-
derived sediment percentage cover information was
available. However, taking into account the surroun-
ding (30 m and 75 m) spatial context in which sedi-
ment patches were located, using class and land-
scape metrics nearly doubled the amount of variation
in morphospecies composition and biodiversity that
could be explained when compared to the use of sed-
iment interpretation maps and bathymetry alone. As

the inclusion of this approach does not require that
additional time be spent collecting data, it shows
potential for increasing our understanding of the
links between environmental structure and ecologi-
cal processes, and may become a useful concomitant
step for informing management decisions.

Although we currently do not have the possibility
to describe large extents of seafloor to <1 m scale re-
solution levels, the scale (20 to 50 m) of the ecological
process described in this study clearly indicates that
most ship-based surveys, which for the depth consid-
ered are often processed to pixels sizes of 20 to 50 m
in resolution, would be inadequate to capture the
variation observed. For example, the European
Nature Information System (EUNIS) classification
(Connor et al. 2004) describes the western flank of
the Rockall Bank area as mixed sediments separated
by depth zones (deep circalittoral and upper slope).
Although accurate for the spatial extent and resolu-
tion considered, finer scale studies are still required
to understand how much of the biological complexity
might be underrepresented, and inform conservation
measures — particularly those aimed at specific spe-
cies such as cold-water corals.
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