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Abstract

The boundary conditions that govern ice sheet dynamics can change significantly with the development
of marine margins. This paper uses the glacial landscape in western Scotland to reconstruct changes in the
British-Irish Ice Sheet that accompanied the growth and decay of a marine sector over the Malin Shelf. Ice
advanced from a restricted mountain ice sheet with tidewater margins after ∼35 ka BP, and reached the
continental shelf in ∼7 ka (average rate of ∼30 m a−1). Early ice flow had been directed through north-
south, geologically controlled, over-deepened fjords that were carved during previous ‘restricted’ glaciations.
This flow regime was abandoned with development of the Malin Shelf ice sheet sector; ice flow direction
switched by ∼90◦ and was drawn westwards towards the shelf edge. The marine ice sheet phase saw
episodes of west-east ice divide migration by up to 60 km over west central Scotland, possibly linked to
ice streaming and calving events at the ice sheet margin. However, permanent and stationary ice divides
and zones of cold-based ice, associated with subglacial topographic highs, also characterised the marine
glacial stage over western Scotland. The North Channel ice divide remained a constant, though migratory
feature while the BIIS occupied the Malin Shelf; it finally collapsed at the end of the Killard Point Stadial
when the Irish Ice Sheet began to rapidly decay ∼ 16.5 ka BP. This permitted the Scottish Ice Sheet to
temporarily advance over north-east Ireland (previously identified as the East Antrim Coastal Readvance)
before it too retreated, at rates in the order of 102 m a−1. Although the imprint of extensive shelf-edge ice
sheet glaciation exists in the coastal landscape of western Scotland, the dominant landscape features relate
to a restricted, marine-proximal mountain ice sheet with markedly different flow configurations. Similar
first-order geomorphological features, relating to ‘restricted’ glacial conditions, are likely to be preserved in
subglacial highlands under interior parts of modern ice sheets.

1. Introduction1

The geological record left by past ice sheets provides information about their long-term evolu-2

tion and interaction with the landscape over timescales beyond that of contemporary glaciological3

observations (Boulton and Clark, 1990; Kleman et al., 2008, 2010). Large-scale ice sheet reorgani-4

sations identified in palaeoglaciological studies therefore add important context to recent changes5

seen in modern ice sheets (Retzlaff and Bentley, 1993; Conway et al., 2002), and can play a role in6
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predicting their future evolution as we discover more about the landscapes they submerge (Ross7

et al., 2012). Parts of the West Antarctic Ice Sheet (WAIS), for example, rest on complex topog-8

raphy, with deep basins in close proximity to subglacial highlands, which have been suggested to9

possess characteristics of former marine-proximal alpine glaciation (e.g. the Ellsworth Subglacial10

Highlands) (Holt et al. 2006; Vaughan et al. 2006; Ross et al. in press). Linking these new findings11

about the subglacial topographic setting of the WAIS with longer-term (104 yr) ice sheet dynamics12

is an exciting area of research, and one in which insights from former ice sheets can contribute.13

The BIIS is known to have had marine or partially marine sectors, which have been suggested to14

be analogous to parts of the present West Antarctic Ice Sheet, although smaller in scale (Bradwell15

et al., 2008; Graham et al., 2009; Clark et al., 2012). Recent systematic assessments utilising16

high-resolution elevation datasets, have considerably advanced our understanding of the overall17

configuration and flow paths during retreat of the BIIS (Clark et al., 2012). However, detailed time18

transgressive reconstructions of flow geometries and configurations during ice sheet build up and19

collapse do not yet exist for a number of important ice sheet sectors. Comprehensive investigations20

combining remote-sensing- and field-based investigations (eg. Livingstone et al., 2009) can provide21

this information and reveal how an evolving ice sheet interacted with its bed (e.g. Sugden, 1968;22

Hall and Sugden, 1987; Kleman and Glasser, 2007; Golledge et al., 2009), thereby providing a key23

link between long-term ice dynamics and the subglacial landscape.24

In this paper we examine the geomorphological record from the peninsula of Kintyre and the25

adjacent island of Arran (combined area of ∼ 825 km2) at the transition between the fjord-like26

coastal terrain of the western Scottish Highlands and the Malin Shelf to the west (Figs. 1,2),27

in order to reconstruct BIIS behaviour through the last glacial cycle. The area is ideally suited28

for detailed palaeoglaciological examination since: (i) the position of western edge of the BIIS29

meant that it was particularly sensitive to changes in oceanic and atmospheric circulation that30

characterised the North Atlantic region during the last glacial cycle (Rahmstorff, 2002; McCabe,31

2008); (ii) Kintyre and Arran contain a variety of landforms and sediments, some of which have been32

suggested to pre-date the growth of the last ice sheet, therefore providing insight into the extent33

of landscape modification that took place during the last glacial cycle; (iii) the southernmost point34

of Kintyre, the Mull of Kintyre, lies just 20 km from the Irish mainland, providing a unique link35

between the terrestrial geomorphological records of south-west Scotland and north-east Ireland,36

2



with the potential to greatly improve our understanding of the break up of the BIIS over the37

North Channel; and (iv) published data exist for adjacent parts of the BIIS (e.g. Greenwood and38

Clark, 2009; Finlayson et al., 2010; Dunlop et al., 2010; McCabe and Williams, 2012), which can be39

combined in a larger-scale synthesis of the advance and collapse its western margin. Despite these40

research opportunities, Kintyre and Arran have received little recent geomorphological examination41

in relation to the BIIS. The goal of this paper, therefore, is to review and re-examine the glacial42

geomorphology of Kintyre and Arran, and combine new data with published studies to examine the43

nature and scale of changes in the BIIS associated with the growth and decay its western marine44

margin.45

2. Setting46

2.1. Geology and relief47

Kintyre is a 68-km-long, north-south trending peninsula in the south-west of Scotland (Figs.48

1,2). It is no more than 19 km wide at any point and is bounded to the west by the Sound of49

Jura (200 m below sea level (b.s.l.)), to the east by the Kilbrannan Sound (120 m b.s.l.), part of50

the outer Firth of Clyde, and to the south by the North Channel, a tectonic basin up to 300 m51

b.s.l. (Maddox et al., 1993). West Loch Tarbert separates Kintyre from the Knapdale region to52

the north. Most of the solid rocks underlying Kintyre consist of psammites, semipelites and pelites53

belonging to the Dalradian Supergroup. In central- and north-western parts of Kintyre, these rocks54

possess a broad north-south trending strike, which is visible on digital surface models (Fig. 3). The55

central spine of the peninsula generally ranges between 100 m and 450 m above sea level (a.s.l.)56

in elevation. It is separated by a low-lying corridor, 10-50 m a.s.l., between Campbeltown Loch57

and Machrihanish Bay, where the underlying rocks consist of Carboniferous sandstones and lavas.58

Devonian conglomerate is present under the south-eastern corner of the peninsula and outcrops of59

Permian sandstone are present along parts of the western coastline, both resting unconformably60

on the underlying Dalradian rocks.61

The Island of Arran (435 km2) is separated from Kintyre by the Kilbrannan Sound and bounded62

to the east by the North-east Arran Trough (170 m b.s.l.)(Figs 1, 2). The northern half of the island63

is dominated by the Northern Granite Pluton, which was intruded into Dalradian metasediments64

and Devonian sandstones during the Tertiary Period. The pluton comprises an outer coarse-65
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grained granite and an inner fine-grained granite. It now forms an elevated massif, which is alpine66

in character with steep-sided corries, valleys and arêtes, and several summits that exceed 700 m67

– the highest being Goatfell (874 m). These northern hills are surrounded by a well-developed68

surface at approximately 300 m in elevation, known as the ‘Thousand Foot Platform’ (Tyrrell,69

1928). This surface, which crosses geological boundaries, possesses immature drainage, and is cut70

by glaciated valleys, has been suggested to be part of a preglacial, possibly Pliocene age, plateau71

(Gregory, 1926; Tyrrell, 1928). The bedrock surface on the southern half of the island principally72

comprises Devonian, Permian and Triassic sandstones, with a smaller central granitic intrusion and73

numerous sill complexes. In the south of the island the relief rarely exceeds 400 m in elevation.74

2.2. Glacial history75

2.2.1. Pre-Main Late Devensian sediments and landforms76

Sediments and landforms, which have been interpreted to pre-date the last major glacial cycle77

(the Main Late Devensian (MLD), Marine Isotope Stage 2, Greenland Stadial 5-1 (Lowe et al.,78

2008)) have been reported from Kintyre. Shell-bearing clays underlie till at three sites in and79

around Tangy Glen (Fig. 2) on the west coast (Horne et al. 1896). These clays, found at ele-80

vations of between 40 and 60 m a.s.l., were reported to contain molluscs, ostracods and forams81

indicative of both arctic and warmer temperate environments, and were argued by Munthe (1897)82

to record a period of deposition spanning a glacial-interglacial-glacial transition. The shelly clays83

have subsequently been interpreted as being either in situ remnants of Middle Quaternary marine84

deposits from a period of significantly higher relative sea levels (Sutherland, 1981), or emplaced as85

a glacial raft by the advancing MLD ice sheet (Synge and Stephens, 1966). A rock platform at 1386

m a.s.l. also exists underneath till at Glenacardoch Point on the west coast (Sinclair, 1911; Gray,87

1978). The platform is one of the few sites in Scotland where low-level shore platforms have been88

seen to pass beneath till, and it has been suggested to relate to an interglacial period pre-dating89

the last glacial cycle (Sissons, 1981; Gray, 1993).90

Deposits containing both cold and warm water shells have also been discovered under and91

within till in the south of Arran, at elevations up to 55 m a.s.l. (Watson, 1864; Bryce, 1865).92

Sutherland (1981) argued that the shell beds cannot have been transported glacially and are largely93

in situ, because they are present in an area where ice flow indicators on the land surface show that94

the last ice movement was towards, not from, the sea. However, an in situ interpretation is not95
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consistent with the original descriptions of the sediments by Watson (1864), who wrote that, ‘the96

layers of sand curve sharply upon themselves, as if they had been thrust forwards under a heavy97

weight from behind, and forced to over-ride one another’. Furthermore, recent MLD ice sheet98

reconstructions depict a stage of west-north-westward ice flow, presenting at least one possible99

mechanism for the transport of sediments from the sea across the southern edge of Arran (Salt and100

Evans, 2004; Finlayson et al., 2010; Livingstone et al., 2012).101

2.2.2. The Late Devensian glacial cycle (MIS 2)102

Early research on Kintyre used erratic dispersal patterns and glacial striae to recognise that103

the peninsula had been predominantly overridden by ice flowing westward towards the Malin Shelf104

during the MLD (Horne et al., 1896; Geological Survey of Scotland, 1913). Synge and Stephens105

(1966) suggested that this westerly flow was preceded by an advance from the north, presumably106

directed along the deep rock basins of the Sound of Jura and Kilbranan Sound, which had ‘plugged’107

Tangy Glen with the shelly deposits. These authors also considered the final movement of ice on108

Kintyre to have been north to south, proposing that a former ice limit formed ‘thick morainic109

accumulations’ near Kilchenzie on the west coast. A general north to south pattern of ice movement110

through the Kilbrannan Sound and Firth of Clyde is also evident from striae on Arran, although111

this flow was diverted around the high ground where an independent ice dome was nourished during112

the MLD (Tyrrell, 1928; Gemmell, 1973).113

There are no available dates from Kintyre to constrain the timing of deglaciation. However,114

dated samples obtained from sediment cores in surrounding marine waters indicate that postglacial115

sediment accumulation had begun by 13.1 - 12.7 14C (14.9 - 14.5 cal) ka BP (Peacock, 2008; Peacock116

et al., 2012) (Fig. 1). McCabe and Williams (2012) have recently proposed that deglaciation of the117

western central zone of the last BIIS was punctuated by a major ‘North Channel Readvance’, c.118

15-15.5 cal ka BP, which they suggest formed coeval moraines in East Antrim, Stranraer, and the119

Ayrshire and Clyde basins (Fig. 1). These authors envisaged general westward or south-westward120

ice flow over Kintyre at that time. No subsequent glacier margin readvances or stillstands have121

been identified on Kintyre. However, two subsequent advances of locally-nourished glaciers took122

place on Arran, the latter during the Younger Dryas (12.9-11.5 ka BP) (Ballantyne, 2007).123
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3. Methods124

A combined remote sensing and field-based approach was employed to characterise the sub-125

glacial and ice marginal geomorphological assemblages on Kintyre and Arran. In order to refine126

the deglacial chronology in the area, ice marginal landform assemblages were sampled for cosmo-127

genic dating.128

3.1. Remote sensing evidence129

Glacial landforms were mapped within a Geographical Information System (GIS), using a130

combination of hill-shaded surface models (DSMs) derived from the NextMap Britain elevation131

dataset, georeferenced 1:10,000 scale, colour aerial photographs, and offshore bathymetry from the132

BGS Digbath-250 dataset. The NEXTMap Britain DSM has a 1.5 m vertical and 5 m horizontal133

resolution and was viewed at scales ranging from 1:10,000 to 1:100,000. A sub-sampled version of134

the DSM, with a horizontal resolution of 50 m was also used for investigation at scales of greater135

than 1:100,000. The DSMs were illuminated from both the north-west and north-east in an attempt136

to reduce the effects of azimuth biasing (Smith and Clark, 2005). The landforms that were recorded137

during the remote sensing survey include: major rock basins and troughs, streamlined bedforms,138

eskers, meltwater channels, moraines, and deltas. The presence and general trend of bedrock139

structures at the land surface were also noted as a crude indicator for the presence of sediment140

cover, and for its orientation relation relative to streamlined bedforms.141

3.2. Field evidence142

Field mapping was carried out on Kintyre and parts of Arran in 2010, using a ruggedized tablet143

PC with a built-in GPS and GIS software. The field mapping enabled verification of landforms144

identified during the remote sensing survey and helped identify smaller features that were not145

visible using the remote sensing datasets, such as tors, glacial erratics, and smaller moraines.146

Natural sections were also logged during the field investigation.147

3.3. Compilation and utilisation of geomorphological data148

All features observed during the remote sensing and field investigations were captured within a149

spatially attributed GIS database. Trommelen et al. (2012) highlighted the importance of integrat-150

ing remotely-sensed and field-based geomorphological data in their Glacial Terrain Zone approach.151

6



This is particularly true when dealing with fragmented palaeoglaciological records, such as those152

found elsewhere in western Scotland (Salt and Evans, 2004; Finlayson et al., 2010). The data were153

collectively used to infer different glaciological conditions based on established process-form rela-154

tionships. This ‘inversion’ approach is a well-established tool in palaeoglaciological reconstruction155

(Kleman and Borgstrőm, 1996; Kleman et al., 1997; Stokes et al., 2009). Landforms and sediments156

that were produced, or survived, under the ice -sheet allow inferences to be made about the action157

of the ice sheet on its bed. Consistently aligned clusters of streamlined bedforms may be grouped158

as ‘flow sets’ and used to infer episodes of warm-based ice sheet motion in a particular direc-159

tion (Boulton and Clark, 1990; Kleman et al., 1997; Livingstone et al., 2009; Stokes et al., 2009).160

Marginal landforms such as moraines and meltwater channels can be used to interpret patterns of161

ice margin retreat (Clark et al., 2012).162

3.4. Cosmogenic nuclide analysis163

A number of radiocarbon ages constrain the deglaciation chronology in the inner Firth of Clyde164

(Hughes et al., 2011) (Fig. 1). However, fewer ages constrain the timing of deglaciation in the165

outer Firth of Clyde, and in particular, the decay of ice across the North Channel. In an attempt to166

improve chronological constraints on deglaciation, boulders from Glen Dougarie in western Arran167

and Glen Lussa in eastern Kintyre were sampled for cosmogenic nuclide analyses (Fig. 2). In Glen168

Dougarie, two granite erratics from the top of two linked broad lateral moraines ( 50 m apart) at169

45 m a.s.l. were sampled in order to date the formation of the moraines. Although a number of170

Arran granite erratics are present on Kintyre, difficulties were encountered finding suitable samples171

with a correct (ice marginal landform) context in areas not affected by anthropogenic activity. No172

single landform with granite erratic boulders on top was identified; as a result samples in Glen173

Lussa were taken from three granite erratics resting on gently undulating ground, within a wider174

area of deglacial features, comprising meltwater channels, boulder spreads and low ridges. Since175

the samples do not specifically relate to any ice marginal landform, they were collected to provide176

a minimum age for the ground becoming free of glacier ice. Skyline topography was measured in177

the field at 15 degree increments at all of the sample locations to allow calculation of topographic178

shielding.179

The samples were prepared at the University of Glasgow Cosmogenic Isotope Laboratory at180

the Scottish Universities Environmental Research Centre (SUERC). Beryllium was extracted from181
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Quartz, which was separated and purified following modified procedures adopted from Kohl and182

Nishiizumi (1992). BeO targets were prepared for 10Be/9Be analysis using procedures modified183

from Child et al. (2000). Between 215 and 219 µg Be was added as carrier and between 20184

and 25 g of each sample was dissolved. The 10Be/9Be ratios were measured with the 5 MV185

accelerator mass spectrometer at SUERC (Xu et al., 2010). 10Be/9Be ratios were normalised186

to NIST SRM 4325 with a 10Be/9Be ratio of 2.79 ∗ 10−11 (in agreement with Nishiizumi et al.,187

2007). Process blanks prepared with the samples yielded an average 10Be/9Be ratio of 4.1 ∗ 10−15.188

Blank-corrected 10Be/9Be ratios of the samples ranged from 53 to 114 ∗ 10−15. Total one-sigma189

uncertainties for the concentrations determined at the SUERC-AMS Laboratory include the one-190

sigma uncertainty of the AMS measurement and a 2% uncertainty as a realistic estimate for possible191

effects of the chemical sample preparation, which includes the uncertainty of the Be concentration192

of the carrier solution. Exposure ages were calculated using the CRONUS-Earth online calculator193

(Developmental version; Wrapper script 2.2, Main calculator 2.1, constants 2.2.1, muons 1.1; Balco194

et al., 2008) and calibrated using a locally derived 10Be production rate based on 10Be concentration195

in samples from erratic boulders on the terminal moraine of the Loch Lomond glacier advance196

(Fabel et al., 2012), approximately 75 km from the sites in this study. These sample ages are197

independently controlled by the radiocarbon ages of microfossils associated with a varve sequence198

deposited in a glacial lake at the time that the Loch Lomond moraine formed (Macleod et al.,199

2011). The calculated 10Be concentrations from the moraine boulders resulted in a reference 10Be200

production rate of 3.92 ± 0.18 atoms g−1a−1. The exposure ages reported here (Table 1) are201

based on the time-dependent Lm scaling scheme of the CRONUS-Earth online calculator (Lal,202

1991; Stone, 2000), and assumption of a sampling surface erosion rate of 0 mm ka−1. For exposure203

ages <20 ka, the other scaling schemes (the St, Du, De and Li schemes) available via the online204

calculator produce ages that differ on average from the Lm scheme by less than 1% of sample age.205

Similarly, for ages <20 ka, assumption of an erosion rate of 1 mm ka−1 increases our calculated206

exposure ages by 1.1%.207

4. Geomorphology and sediments208

Glacial geomorphological features are synthesised in Figure 3. The details of individual assem-209

blages are described below.210
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4.1. Subglacial assemblages211

4.1.1. Tors212

Well developed granite tors are present on some of the highest summits on Arran, such as213

Caisteal Abhail (859 m a.s.l.), known as ‘The Castles’ (Fig. 4A), and Beinn Tarsuinn (826 m214

a.s.l.). These tors are high relief (up to 10 m), and possess delicately balanced blocks and deep215

joint sets. Large granite tors elsewhere in Scotland have been shown to develop over long periods216

(105-106 years), requiring preservation during the glacial cycles of the middle and late Quaternary217

(Phillips et al., 2006). The tors on Arran exist in close proximity to major, north-south aligned,218

erosional breaches on the island (see below). Glacially transported ‘perched’ granite boulders also219

exist on several of the highest summits of Arran, demonstrating that these peaks were overwhelmed220

by ice during maximum stages of past glaciations (Ballantyne, 2007).221

4.1.2. Erosional basins and breaches222

Kintyre and Arran sit between three major north-south trending rock basins (Figs. 1,3). The223

Sound of Jura is a basin that reaches a depth of 200 m below present sea level, closely follows224

the strike of the underlying Dalradian metamorphic rocks, and is located over the position of the225

Ericht-Laidon Fault (B.G.S., 1985). The Kilbranan Sound is a basin between Kintyre and Arran226

that reaches a depth of 120 m below present sea level, and is located in a zone where Permian227

and Triassic sandstones have most likely been down-faulted into the harder underlying Dalradian228

rocks. The basin of the Northeast Arran Trough reaches a depth of 160 m below present sea229

level, and is positioned over down-faulted Permo-triassic sandstones, bounded by the Sound of230

Bute Fault and the Brodick Bay Fault. Kintyre is also dissected by one major east-west breach231

between Campbeltown and Macrihanish Bay. Here the Dalradian metamorphic rocks, which form232

the bedrock surface for much of the peninsula, are replaced by unconformably overlying and down-233

faulted Carboniferous and Devonian sedimentary rocks and lavas. The contrast in land surface234

elevation is particularly pronounced along the Kilchenzie Fault, which marks the boundary between235

the Dalradian and younger rocks. In each of these cases the deepening or breach is located over236

fault zones, often associated with an increase in fracture density and weathering depth, or softer237

rocks relative to the surrounding lithologies. A series of alpine-style glacial breaches also exist on238

the Isle of Arran, within the mountains of the Northern Granite Pluton (Fig 4B). These breaches239

are relatively clear of weathered rock, and possess ice-moulded bedrock surfaces with perched240
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boulders. Tyrrell (1928) noted that the main ‘through’ valleys tend to have an approximate north-241

south trend, which runs parallel to structural zones within the granite.242

4.1.3. Streamlined bedforms243

The streamlined bedforms observed on Kintyre and the south-western side of Arran comprise244

streamlined hills, crag-and tails, and drumlins. These bedforms can be grouped into individual245

flowsets based on their alignment, geographical distribution and relationship with topography (Fig.246

3). Flow set statistics are shown in Table 2.247

Flow set 1. Flow set 1 comprises west-north-westward aligned streamlined hills, crag and tails248

(Fig. 4C) and drumlins, which are present across the southern half of Kintyre. These bedforms249

maintain a similar alignment at all elevations on southern Kintyre, although they are absent on250

the far southern and south-eastern margins of the peninsula.251

Flow set 2. Bedforms belonging to flow set 2 generally comprise west-south-westward aligned252

drumlins, streamlined hills and crag and tails, which are present over areas of thick till on the253

western central part of Kintyre. The eastward extent of these bedforms is marked by the transition254

from: (i) smooth, till-covered terrain on the western side of the central spine of the peninsula, to255

(ii) bedrock with little till cover in the east, where the north-south strike dominates morphology of256

the land surface. On the west coast of Kintyre, some of the flow set 2 bedforms are deeply incised257

by (sub)marginal meltwater channels (see below).258

Flow set 3. Flow set 3 comprises west-south-westward aligned drumlins and crag-and-tails that259

occupy ground below 200 m a.s.l. around West Loch Tarbert. As observed for flow set 2, these260

bedforms are confined to the western dipping slopes to the west of the central spine of the peninsula.261

Their trend is slightly oblique to the dominant south-west strike of the underlying metasedimentary262

bedrock.263

Flow set 4. Flow set 4 comprises two subsets of crag-and-tails and drumlins on the southern half264

of Kintyre that are diverted around the high ground in the south-west. Flow set 4a displays a265

westward pattern of convergence towards Macrihanish Bay, while flow set 4b displays a south-266

westward convergence around the Mull of Kintyre.267
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Flow set 5. Flow set 5 comprises, generally southward trending drumlins and crag-and-tails in268

south-western Arran, and sparse rock drumlins and crag-and-tails on eastern Kintyre and north-269

west Arran, which are locally oriented parallel to the metasedimentary bedrock strike. The drum-270

lins and crag-and-tails on Arran show a weakly convergent pattern on the southern side of the271

island’s southern hills.272

4.1.4. Subglacial sediments273

Thin, gravelly, shell-bearing tills have been identified locally on the eastern coast of Kintyre274

(Synge and Stephens, 1966). Thick deposits of subglacial diamicton, which exceed 20 m in places,275

are generally only present in the west. The margins of the western distribution of thick sediment is276

clearly represented by the appearance of bedrock structures which can be seen at the land surface277

across eastern parts of the peninsula (Fig 3). Sediment exposures in western Kintyre generally278

reveal a firm to very stiff, red to dark reddish brown, massive to fissile, matrix supported, silty279

clay diamicton, containing predominantly sub-angular, striated and faceted clasts (Fig. 5A). Clast280

content is dominated by metasedimentary lithologies, although some volcanic and rare granitic281

clasts are also present. Locally the diamicton contains lenses or pods of sorted sands. In general,282

the thick diamicton observed in western Kintyre possesses the characteristics of a subglacial traction283

till (Evans et al., 2006).284

The three sites at Tangy Glen where shelly clays had been observed under till during the late285

19th and early 20th Centuries were visited in 2010. At the time of field investigation, blue grey286

clays were exposed only at and below the water level of Tangy Burn. At Drumore Burn, 15 m of till287

was observed overlying 6-8 m of clast-supported, sub-rounded to sub-angular cobbles and gravels,288

with a sandy matrix (Fig. 5B). In places these moderately sorted gravels have a weakly developed289

herring-bone cross stratification. They are tentatively interpreted as beach gravels and overlie290

a clear platform cut into red Permian sandstone, which dips gently towards the coast. At this291

location, the platform surface lies at approximately 18 m a.s.l., only a few metres higher than the292

pre-last glacial cycle rock shore platform that was described by Gray (1978, 1993) at Glenacardoch293

Point to the north.294

On Arran, Tyrrell (1928) noted that thick deposits of subglacial sediments are generally re-295

stricted to southern parts of the island, corresponding with the smooth, southward streamlined296

terrain observed on modern digital surface models (Fig. 3). The till in northern Arran is generally297
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thinner, and sandier than in the south. At a number of the valley mouths, pale brown to grey,298

granite dominated till crosses geological boundaries, indicating radial transport from the central299

granite complex to the coastline – an observation also made by Gemmell (1973).300

4.2. Ice marginal assemblages301

4.2.1. Meltwater channels302

A well-preserved set of north-east to south-west trending marginal or sub-marginal meltwater303

channels are present over an 8 km stretch of the western coastline of Kintyre (Fig. 6). Individual304

channels are continuous for at least 3 km, their lower reaches having been erased by erosion of305

cliffs along the coastline. The channels are up to 150 m in width, and incise the surrounding till306

and the bedforms belonging to flowset 2, by up to 20 m. Isolated meltwater channels are present307

elsewhere on Kintyre, and Gemmell (1973) described a series of meltwater channels that descend308

along the western flanks Arran. In general, the meltwater channels on Kintyre and western Arran309

descend in an overall westward and southward direction.310

4.2.2. Perched delta311

A former delta, which is open to the North Channel, exists at an elevation of 130 m a.s.l at312

Innean Glen in south-west Kintyre (Fig. 7). It consists of 20 m of westward dipping, stratified313

sands and imbricated gravels and cobbles, which overlie a stiff, red, matrix supported, sandy314

clay diamicton. The diamicton contains isolated, striated and faceted, subangular clasts, and is315

interpreted as a subglacial till. At 130 m a.s.l., the delta surface lies far above any lateglacial or316

postglacial relative sea level high stand (Synge and Stephens, 1966). It must therefore relate to317

subaerial drainage ponding against a low-profile ice sheet margin that was grounded offshore, the318

local water depth being insufficient for floatation of ice that was at least 170 m thick (height of319

delta surface minus sea bed surface) at that time.320

4.2.3. Moraines321

Prominent moraines are rare on Kintyre. The ‘thick morainic accumulations’ described by322

Synge and Stephens (1966) near Kilchenzie, are interpreted here as drumlins and thick undulating323

till deposits, which have been deeply incised by meltwater channels (Fig.6). This reinterpretation is324

supported by exposures of stiff, subglacial traction till within these features. Some isolated moraines325

are, however, present on Kintyre. Subdued mounds with boulders scattered on their surfaces exist326
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in Glen Lussa; they occur in association with westward descending meltwater channels. Three327

erratic boulders of Arran granite, having been transported at least 20 km across the Kilbrannan328

Sound, were selected from the Glen Lussa landform assemblage for cosmogenic nuclide analyses,329

to place a minimum constraint on the time since deglaciation.330

Suites of moraines on Arran have been described by previous workers (Gemmell, 1973; Bal-331

lantyne, 2007). In the north of the island, a number of valleys and corries possess an inner suite332

of clear, boulder moraines (Fig. 8). These were previously interpreted by Gemmell (1973) as333

evidence for a late stillstand or readvance during the final stages of the Younger Dryas, and sub-334

sequently reinterpreted by Ballantyne (2007) as the maximum limits of glacier advance during335

the Younger Dryas, based on the mutually exclusive relationship with Lateglacial periglacial fea-336

tures. Both workers also recognised sets of more subdued outer moraines close to the coast at the337

valley mouths. Gemmell (1973) suggested that these outer moraines represented three separate338

stages during deglaciation (the innermost of the three he attributed to the Younger Dryas), while339

Ballantyne (2007) concluded that they pointed towards a pre-Younger Dryas (re)advance340

A series of exposures reveal the stratigraphy in the vicinity of a set of ‘outer’ moraines at341

Dougarie, between 0.1 km and 0.7 km up the valley from where a prominent delta surface exists342

at 30-32 m a.s.l. (Fig. 9A). At the time of field investigation, four lithofacies were recognised in343

sections.344

LFA 1 consists of stiff, thinly laminated, very pale brown, grey and white silts and clays,345

which show varying degrees of folding and attenuation (Figs. 9B,C). In places, the laminations346

are clearly graded. These silts and clays contain rare, isolated, sub-angular gravel- and cobble-347

sized clasts. Sedimentary structures around the clasts include wrapped foliation and asymmetrical348

inclined folds indicative of an east to west sense of shear. Locally, the silts and clays are cut by349

sand-filled hydrofractures, which appear to have exploited detachments within the silts and clays.350

Small rafts of attenuated and folded silts and clays are contained within the sand. The base of351

LFA1 was not exposed. Where observed, the upper contact with LFA2 is erosional (Fig. 9D). LFA352

1 is interpreted as a glacitectonite. It represents a period of proglacial deposition in a subaqeous353

environment, followed by phases of deformation associated with a local glacier advance from the354

east.355

LFA 2 varies in thickness between 0 and 1.5 m. It comprises a dense, grey to pale brown, gener-356
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ally massive to locally stratified, matrix-supported diamicton, containing sub-angular clasts. The357

clasts are faceted and consist predominantly of granite (erratics) and metasedimentary lithologies.358

No primary bedding was observed in LFA 2. The upper contact with LFA 3 is gradational. LFA359

2 is interpreted as a subglacial till, deposited by the overriding glacier360

LFA 3 comprises a variably loose to dense, poorly sorted, clast-supported bouldery diamicton361

with coarse sandy matrix and infrequent lenses of sorted, bedded sands (Fig. 9E). LFA 3 is domi-362

nated by granite erratics, which are sourced from farther up the valley, and rare metasedimentary363

clasts. This lithofacies forms the topographic expression of the set of moraines, which vary in364

elevation from 25 - 40 m a.s.l. in the valley centre. These moraines were deposited during local365

glacier retreat, following its advance.366

LFA 4 is sporadically present between moraines, and consists of loose, westward dipping, upward367

coarsening, stratified sands and gravels, which form delta foresets (Fig. 9F). LFA 4 probably368

represents deposition into ponds formed in proglacial depressions, during glacier retreat.369

Collectively, these sediments support the views of both Gemmell (1973) and Ballantyne (2007),370

that glacier oscillations took place at the lower end of some valleys in Arran, during overall deglacia-371

tion. Many of the moraine (LFA 3) surfaces in the valley centre are lower than the surface elevation372

of the delta farther down the valley (Fig. 9A). Therefore their deposition during overall retreat is373

likely to have occurred after sea level had fallen from the highpoint marked by the delta surface374

at 32 m a.s.l. No clear surface boulders exist on the moraines where the sections were exposed.375

However, two boulders from low lateral moraine fragments, approximately 500 m farther up the376

valley, were sampled for cosmogenic nuclide analyses in an attempt to constrain the timing of377

moraine deposition.378

5. Chronology results379

Exposure ages for the sampled boulders in Glen Dougarie, Arran and Glen Lussa, Kintyre are380

shown in Table 1. The samples from Glen Dougarie on Arran yielded overlapping exposure ages381

with a mean of 16.23 ± 0.969 ka. The Dougarie ages pre-date, and are therefore consistent with,382

dated sediment accumulation in the outer Firth of Clyde (Peacock et al., 2012). They are only383

slightly older than the 16 ka ice margin isochrone, which was placed just 20 km to the south384

by Clark et al. (2012), lending support to the framework ice sheet retreat chronology proposed385
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by these authors. The ages also support previous suggestions by Gemmell (1973) and Ballantyne386

(2007) that these lowermost moraines on Arran pre-date the Younger Dryas.387

Given their sampling context (discussed above), the Glen Lussa ages represent only a minimum388

period of time since deglaciation. This is confirmed since: (i) GL1 and GL2 are younger than389

calibrated radiocarbon ages and fauna assemblages obtained from sediment cores at the southern390

end of the Kilbranan Sound (Peacock et al., 2012); (ii) the ages are younger than those from391

Arran, contrary to the geomorphological evidence for the pattern of north-westward ice retreat392

(see below); and (iii) the ages are internally inconsistent, with the youngest sample (GL2, 13.0 ±393

0.8 ka) and oldest sample (GL3, 15.0 ± 0.9 ka) not sharing overlapping uncertainties. Nonetheless394

the oldest sample, GL3, together with the Glen Dougarie samples, provide additional independent395

support to the contention by Peacock et al. (2012) that the outer Firth of Clyde was deglaciated396

before the opening of the Lateglacial Interstadial (Greenland Interstadial-1, 14.7 ka BP).397

6. Ice sheet evolution over Kintyre and Arran398

The simplest interpretation of the growth and decay of the last BIIS over Kintyre and Arran,399

based on the geomorphological evidence reviewed above, is shown in Figure 10.400

6.1. Stage I: Southward ice sheet advance (Fig. 10A)401

Synge and Stephens (1966) interpreted the shell beds at Tangy Glen as glacial rafts and similar402

interpretations have been proposed for high-level shell beds and shelly tills elsewhere in Scotland403

(Merritt, 1992; Peacock and Merritt, 1997; Phillips and Merritt, 2008). If a rafting origin is correct,404

an advancing outlet glacier from the north is the most likely mechanism to have glacitectonically405

deposited the shelly clays on the eastern Kintyre coastline. A northern sourced advance is supported406

by the southerly transport of Glen Fyne granite erratics onto Arran (Tyrrell, 1928; Sissons, 1967),407

and by the north-south oriented over-deepened basins around Arran and Kintyre (Figs. 1,3). These408

geologically controlled, glacially carved fjords are too deep to have been cut during a single glacial409

cycle (Kessler et al., 2008), and the preservation of pre-MLD rock shore platforms and sediments410

at margin of the Sound of Jura are illustrative of an area where erosion during the last glacial cycle411

was limited. The over-deepened basins may therefore be considered products of ‘average glacial412

conditions’ through the Quaternary (Porter, 1989; Clapperton, 1997; Golledge et al., 2009). They413

determined the flow of the advancing, mostly land-based, MLD ice sheet before it expanded onto414
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the Malin Shelf – a configuration that is replicated in numerical simulations of ice sheet flow during415

the build up phase (Hubbard et al., 2009).416

6.2. Stage II: non-topographically constrained west-north-westward ice flow onto the Malin Shelf417

(Fig. 10B)418

Bedforms belonging to flow set 1 were formed under west-north-westward directed ice move-419

ment. At that time ice flow was no longer topographically confined and warm-based ice movement420

occurred over southern Kintyre at all elevations (Table 2). West-north-westerly flow to the south421

of Arran, and across southern Kintyre is also supported by dispersal patterns of erratics from Ailsa422

Craig and Loch Doon, SW Scotland (Sissons, 1967). The pattern of ice flow could have trans-423

ported shelly deposits from offshore to onshore over southern Arran (Watson, 1864). An ice sheet424

shear zone is inferred across southern Arran and central Kintyre separating southern warm-based425

ice that flowed towards the Malin Shelf, from northern cold-based, internally deforming ice. The426

cold-based ice to the north is suggested by: (i) the absence of west-north-westerly aligned bedforms427

over northern Arran and northern Kintyre; (ii) the preservation of delicate tors on some summits of428

northern Arran; and (iii) the absence of west-north-westward transported erratics of Arran granite429

on northern Kintyre (Horne et al., 1896; Eyles et al., 1949).430

6.3. Stage III: non-topographically constrained south-westward ice flow into the North Channel and431

flow divergence over southern Kintyre (Fig. 10C)432

Flow set 2 bedforms and some of the flow set 5 bedforms developed under warm-based ice433

moving towards the west-south-west and south-south-west, into the North Channel. West-south-434

westward ice motion occurred easily over the smooth terrain of western central Kintyre, where435

bedforms were developed in the thick traction till that must have protected the underlying pockets436

of shelly clays, beach gravels, and the rock platform. South-south-westward ice motion occurred437

over southern Arran, where bedforms are preserved on the present land surface. The absence of438

streamlined bedforms and the preservation of tors on northern Arran (Fig. 4A) suggests that it439

remained largely overlain by cold-based ice at that time. However, some localised warm-based ice440

flow through the north-south oriented glacial breaches, which possess ice-moulded rock surfaces,441

could have fed the south-south-westward directed ice movement. The high ground of southern442

Kintyre, where no south-westward oriented bedforms exist, may have been cold-based at that443

time.444
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6.4. Stage IV: progressively topographically constrained south-westward ice flow and glacier retreat445

(Fig. 10D)446

Bedforms belonging to flow sets 3, 4a and 4b, and 5 were forming under warm-based ice as447

glacier flow became topographically confined in the outer Firth of Clyde and Sound of Jura during448

deglaciation. The high ground of southern Kintyre deglaciated first, as indicated by the presence449

of the perched delta which fed into a lake that was ponded against a grounded glacier offshore450

(Fig. 7). On western Kintyre, ice marginal / sub marginal meltwater subsequently cut deep451

channels across thick deposits of traction till, dissecting some of the bedforms belonging to flow452

set 2 (Fig. 6). During this phase of events ice flow in the outer Firth of Clyde was directed453

through the fault-controlled gap between Campbeltown and Machrihanish Bay, demonstrated by454

the convergent pattern of flow set 4a, which generally occurs at a lower elevation than, and is455

partially superimposed on, flow set 1. Southward-flowing ice in the Firth of Clyde was diverted456

around the high ground of northern Arran, although some basal ice motion may have taken place457

through the southward oriented valleys and glacial breaches transporting sub-rounded granite458

boulders to the south and south-west. The spreads of sand and gravel offshore around Kintyre459

(Fig 3) probably accumulated as ice-proximal subaqeous fans during this overall phase of events.460

6.5. Stage V: fjord glacier retreat and oscillations of Arran icefield (Fig. 10E)461

The distribution and orientation of ice marginal meltwater channels shows that the major462

pathways of glacier retreat was along corridors of low lying ground, and principally through the463

over-deepened, fault controlled, glacially carved basins of the Kilbrannan Sound and North East464

Arran Trough. The pattern of deglaciation suggested here supports that deduced earlier by Gem-465

mell (1973). Rapid glacier retreat in the main basins would have been aided by calving as the466

ice margins thinned and pulled back into deeper water. The sediments and geomorphology at467

Dougarie, on western Arran, indicate that an advance of a locally sourced glacier took place fol-468

lowing separation from the main outlet glacier in the Kilbrannan Sound. Retreat from this local469

advance took place ∼ 16.2 ka, and probably post-dated a fall in relative sea level from the high-470

stand that produced the main delta at 32 m (Fig. 9A) and other high lateglacial shorelines that471

are only present on the southern half of the island (Gemmell, 1973). This timing supports relative472

sea level simulations for the area, where a falling relative sea level is modelled between ∼16.5473

and ∼15 ka BP (Shennan et al., 2006). Glaciers are inferred to have advanced or oscillated at474
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similar positions in other valleys on Arran at that time (Gemmell, 1973; Ballantyne, 2007). This475

may reflect internal adjustments of the Arran ice field as it responded to either: (i) the retreat476

of larger confining glaciers in the surrounding Kilbrannan Sound and North-east Arran Trough,477

or (ii) enhanced snowfall over the high ground of northern Arran, following the deglaciation of478

offshore areas farther to the west. The overall configuration proposed at this stage is very similar479

to that envisaged by Gemmell (1973). The general timing proposed here is broadly similar to the480

timing of retreat proposed by Clark et al. (2012), and supports simulations of large marine-based481

ice losses in the North Channel region and outer Firth of Clyde between 17 ka and 16 ka BP482

(Hubbard et al., 2009).483

6.6. Stage VI: Advance of Arran glaciers during the Younger Dryas (Fig. 10F)484

The suites of clearly defined, sharp-crested moraines that exist in the upper reaches of the485

valleys of northern Arran (Figs 3, 8) point towards an episode of alpine glaciation when small corrie486

glaciers grew. These moraines have been recognised by several previous authors (e.g. Tyrrell, 1928;487

Gemmell, 1973; Ballantyne, 2007). Detailed mapping of the moraine limits and their mutually488

exclusive relationship with periglacial features led Ballantyne (2007) to conclude that this last489

phase of glaciation took place during the Younger Dryas (12.9-11.5 ka BP). This view is supported490

by the observations made during this study.491

7. Regional ice sheet evolution492

Combining our reconstructed sequence of events with recently published interpretations from493

south-west Scotland (Salt and Evans, 2004), west-central Scotland (Finlayson et al., 2010), northern494

England (Livingstone et al., 2012), north-east Ireland (Greenwood and Clark, 2009; McCabe and495

Williams, 2012), and the Malin Shelf (Dunlop et al., 2010) allows us to attempt to synthesise the496

overall growth and decay of the western zone (Clyde-North Channel-Malin Shelf) of the last BIIS497

(Figs. 11 A-G, 12).498

Published dates from interstadial deposits that underlie till indicate that ice advance into the499

Clyde and Ayrshire basins occurred after ∼35 ka BP (Bos et al., 2004; Brown et al., 2007; Jacobi500

et al., 2009). Prior to that, a more restricted ice cap, which intermittently terminated at the501

marine limit, existed over the western Scottish Highlands from ∼45 ka BP (Knutz et al., 2001;502

Scourse et al., 2009). The advancing outlet lobes of the ice cap encountered reverse slopes in503
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the Clyde and Ayrshire basins, and in the north-east Arran Trough, the Kilbrannan Sound, and504

Sound of Jura (Figs 10A, 11A). These topographic settings, combined with the presence of water505

at the ice margins provided favourable conditions for glacitectonic deformation (Aber et al., 1989),506

and glacitectonic structures have been recognised in sediments in the Clyde basin (McMillan and507

Browne, 1983; Browne and McMillan, 1989).508

The Western Highlands ice cap joined with a smaller ice cap centred over the Southern Uplands,509

prior to a major expansion of the BIIS, which occurred after 29 ka BP (Scourse et al., 2009). This510

phase was marked by the western advance (average rate of ∼ 30 m a−1) of marine-based ice sheet511

sectors over the Malin Shelf (Dunlop et al., 2010), and elsewhere on the western British-Irish512

continental shelf (Clark et al., 2012; O’Cofaigh et al., 2012; Everest et al., 2013; Howe et al., 2012).513

An ice divide had developed over Arran, most of Kintyre, and the adjacent marine areas at that514

time, acting as a link to the ice dome over the western Highlands (Fig. 11B). Eastward ice flow515

occurred over west central Scotland (Finlayson et al., 2010), and through topographic corridors in516

northern England (Livingstone et al., 2012). Slow moving ice in the vicinity of the ice divide did517

not significantly modify the landscape of Kintyre and Arran. An ice ridge had also developed over518

the North Channel, bridging the British and Irish ice centres (Greenwood and Clark, 2009).519

The ice divide that was positioned over Arran and Kintyre migrated ∼ 60 km to the east520

during a phase, or phases, of enhanced drawdown to the western marine margins of the ice sheet,521

drained by the large Barra-Donegal Fan / Hebrides Ice Stream (Dunlop et al., 2010; O’Cofaigh522

et al., 2012; Howe et al., 2012) (Figs. 10B, 11C). This was associated with the development of523

west-north-west oriented streamlined bedforms at all elevations over southern Kintyre, and possibly524

also transport of shelly till onto southern Arran (Fig 10, stage II). Ice flowing over southern Arran525

and Kintyre merged with powerful north-westerly flowing ice which overwhelmed the topography526

of Islay (Cousins, 2012). However, delicate landforms on northern Arran were preserved beneath527

a cold-based ice sheet sticky spot, which existed within an overall area of accelerating ice flow.528

Recent analysis of geochronological data from the Irish Sea Basin show that the retreat of the Irish529

Sea Ice Stream slowed between ∼23 and ∼20 ka BP, as the margin entered the constriction between530

Ireland and Wales (Chiverrell et al., 2013). Slowing of the Irish Sea Ice Stream, combined with531

drawdown to the Barra-Donegal Fan / Hebrides Ice Stream could have driven the North Channel532

ice divide to the south-east over the northern Irish Sea. Such a migration is captured in both533
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the geomorphological reconstruction by (Greenwood and Clark, 2009) and numerical simulations534

by (Hubbard et al., 2009). Peaks in IRD concentrations observed in core MD95-2006, from the535

Barra Fan, suggest that distinct pulses of iceberg discharge took place, from ∼ 27 ka BP (Fig. 11).536

These pulses may relate to earlier ice stream drawdown and ice berg discharge events, possibly537

documenting interplay of the Barra-Donegal Fan / Hebrides Ice Stream and the Irish Sea Ice538

Stream as the BIIS altered between configurations approximating those presented in Figures 11B539

and 11C.540

A significant iceberg discharge event at the Barra Fan, which may have been associated with541

large ice losses over the Malin Shelf, ceased ∼ 18.5 ka BP (Fig. 11) (Knutz et al., 2001). Fol-542

lowing this, the BIIS is suggested to have thickened again over north-east Ireland, advancing at543

its margins during the Killard Point Stadial, at or soon after ∼17 ka BP (McCabe et al., 1998;544

McCabe, 2008)(Fig. 11D). Livingstone et al. (2012) summarised the evidence for a readvance of545

Scottish-sourced ice into northern England at a similar time, although they note that chronolog-546

ical constraints are insufficient to conclusively link the two events. The ice sheet may also have547

thickened over Arran, most of Kintyre, and the North Channel at this stage, under which little548

landscape modification took place (Fig 11D), although some south-westward ice flow may have549

begun to occur over westernmost parts of Kintyre.550

McCabe and Williams (2012) provided strong evidence for a later advance of Scottish-sourced551

ice onto the East Antrim coast of Northern Ireland (the East Antrim Coastal Readvance). We552

suggest that the East Antrim Coastal Readvance was caused by the delayed response of Scottish-553

sourced ice to warming at the end of the Killard Point Stadial (17-16.5 ka BP)(Fig. 12). The Irish554

Ice Sheet is reconstructed to have been only ∼500 m thick during the Killard Point Stadial, and555

therefore extremely sensitive to any rise in equilibrium line altitude (Clark et al., 2009), while the556

Scottish sector was larger and thicker, with its core positioned over the western Scottish Highlands557

(Fig. 12A). In addition, initial ice sheet break up over the Malin Shelf and the opening of a marine558

embayment may have allowed more precipitation to reach Scottish source areas, as suggested by559

McCabe and Williams (2012). As a result, rapid wasting of the Irish Ice Sheet meant that it no560

longer obstructed Scottish-sourced ice. The North Channel ice divide collapsed and the Scottish561

Ice Sheet margin was allowed to temporarily advance over the East Antrim coast (Figs. 10C, 11E,562

12B), before it too rapidly retreated across reverse slopes, reaching the inner Firth of Clyde in ∼563
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500 years or less – requiring retreat rates in the order of 102 ma−1 (Figs. 10D, E and 11F, G). Minor564

readvances or stillstands occurred during that time, possibly as local outlet glaciers responded to565

the retreat of larger confining ice masses, or as the wasting ice sheet allowed precipitation to be566

focused elsewhere. We suggest that this overall phase of rapid thinning and retreat of the Scottish567

Ice Sheet (south-west sector) may be associated with a peak in iceberg calving, identified in the568

Barra Fan IRD record at ∼16 ka BP (Knutz et al., 2001) (Fig. 11).569

Our scenario differs somewhat to the proposal by McCabe and Williams (2012) that the East570

Antrim Coastal Readvance was part of a larger ‘North Channel Readvance’ approximately 15-571

15.5 ka BP, with contemporary ice margins across the East Antrim Plateau (∼ 300 m), at the572

Kilmarnock moraine (100 m a.s.l.) in the Ayshire basin (Finlayson et al., 2010) and Blantyreferme573

moraine (50 m a.s.l.) in the Clyde basin (Browne and McMillan, 1989) (Fig. 1). We find it difficult574

to support the overall configuration and timing of the ‘North Channel Readvance’, proposed by575

McCabe and Williams (2012) for two reasons. First, linking the East Antrim Coastal Readvance576

with glacier limits in the Ayrshire and Clyde basins would require ice surface slopes along eastward577

flow lines to be ∼5 times steeper that those flowing onto the north-east Irish coastline. The unusual578

ice surface topography would necessitate much higher basal shear stresses along eastern flow lines,579

which is difficult to reconcile with the soft sediment (marine) bed in the outer Firth of Clyde, and580

the presence of streamlined eastward directed bedforms (mean elongation ratio: 4.3) in Ayrshire581

(Finlayson et al., 2010). Furthermore, the thickness of ice required to over top the Antrim Plateau582

(300 m a.s.l.) means that it would have been grounded in the North Channel at the time of the583

advance, ruling out the existence of a very low gradient ice shelf as a potential solution to the584

reconstruction by McCabe and Williams (2012). Second, McCabe and Williams’ proposed timing585

of 15-15.5 ka BP is within error of radiocarbon ages from molluscs in sediment cores, suggesting586

that glaciomarine conditions existed around Islay and in the outer Firth of Clyde at that time587

(Peacock et al., 2012). The exposure ages from moraines at Dougarie on Arran, also suggest that588

the Kilbrannan Sound and outer Firth of Clyde were ice free by ∼16.2 ka BP, and therefore that589

the East Antrim Coastal Readvance must have occurred slightly earlier than this. The scenario590

presented here also differs from part of the reconstruction of Finlayson et al. (2010) (their Fig.591

17B), who considered ice marginal oscillations in East Antrim and the outer Firth of Clyde (though592

not necessarily contemporaneous) to be of the same overall phase of events at the GS-2 to GI-1593
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transition. These events were probably earlier, with the ice sheet having retreated from much of594

the outer Firth of Clyde by ∼16 ka BP, supporting the more recent reconstruction of Clark et al.595

(2012).596

8. Ice sheet evolution and the glacial landscape597

Our results and reconstruction based on the geomorphological record concurs with the prevailing598

view of a dynamic former BIIS (e.g. Bradwell et al., 2008; Greenwood and Clark, 2009; Livingstone599

et al., 2012). The ice sheet expanded from a mountain ice cap with tidewater margins, to the600

continental shelf edge in ∼7 ka or less. The addition of the marine sector to the ice sheet was601

accompanied by a marked change in ice-flow directions in the vicinity of Arran and Kintyre.602

Initially, ice flow had been directed through the geologically influenced north-south oriented fjord603

basins. These over-deepened glacial troughs probably represent a position that was often reached604

by restricted, marine-proximal mountain ice sheets during the middle and late Quaternary. Ice flow605

along these corridors was then abandoned once the extensive Malin Shelf sector became established,606

with powerful ice sheet drawdown towards the continental shelf forcing ice to flow at right angles607

to the initial flow direction.608

The marine terminating phase of ice sheet glaciation was strongly influenced by episodes of ice609

divide migration, possibly linked to ice streaming and large calving events. Importantly, however,610

stable ice sheet configurations were also a feature of the marine-influenced phase. For example,611

while the main west-east ice divide migrated by up to 60 km over low relief areas in the outer Firth612

of Clyde and Clyde and Ayrshire basins, it remained a relatively stable, stationary feature over613

the western Scottish Highlands. Similarly, the zone of cold based ice (ice sheet sticky spot?) over614

northern Arran was probably a permanent and stationary feature through the whole marine phase615

of the ice sheet cycle. These stable features in the BIIS provide some support to recent suggestions616

of long term stability (over 104 years or more), influenced by subglacial topography, for parts of617

the West Antarctic Ice Sheet (Ross et al., 2011).618

The North Channel ice divide linked an ice ridge over the Southern Uplands in Scotland with the619

higher ground of north-east Ireland. Although it migrated over time due to the interplay between620

the Barra-Donegal Fan / Hebrides Sea Ice Stream and the Irish Sea Ice Stream, it remained a621

constant feature of the marine BIIS until the Irish Ice Sheet rapidly decayed on land, after 17 ka622
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BP (Fig 12). Collapse of the North Channel ice divide allowed the Scottish Ice Sheet to temporarily623

advance over north-east Ireland, before it too retreated back into the coastal fjords, at rates in the624

order of 102 m a−1, and readopted the restricted north-south, fjord-aligned ice flow pattern. This625

represents a relatively rapid phase of ice sheet decay, exceeding the overall average retreat rate626

from the shelf edge, which was in the order of 101 m a−1, similar to the rates identified by Clark627

et al. (2012).628

The landscape of Kintyre and Arran lay under both a small land-based ice sheet with tidewater629

margins and larger ice sheet with significant marine sectors. These different ice sheet configurations630

and the variability in conditions at the ice sheet bed are highlighted by the composite landscape631

that is now preserved; it includes: (i) tors of probable middle Quaternary age; (ii) breaches and632

rock basins that are hundreds of metres in depth; (iii) an (interglacial?) rock shore platform,633

which was cut prior to the last glacial cycle; (iv) preserved pre-Late Devensian marine sediments,634

which may have been emplaced by glacitectonic rafting at the start of the last glacial cycle; (v)635

streamlined bedrock and soft sediment bedforms that were developed during the maximum phases,636

and subsequent retreat phases of the last BIIS; and (vi) ice marginal assemblages formed during a637

readvance of alpine-style glaciers during the Younger Dryas.638

The first order components of the glacial landscape are the deep, geologically controlled, north-639

south aligned rock basins, used by Clayton (1974) in his ‘relatively high glacial erosion’ (Zone III)640

classification of the landscape. We have demonstrated that these features do not relate to the most641

recent period of extensive marine-terminating ice sheet glaciation. The scales (102 m vertical, and642

103-104 m horizontal) of the rock basins indicate that they have been cut over repeated glacial643

cycles (Kessler et al., 2008). The rock basins extend ∼50-100 km from lines of maximum glacial644

erosion modelled in the Scottish Younger Dryas ice cap by Golledge et al. (2009) suggesting western645

Scotland has often supported a mountain ice sheet with tidewater margins, slightly larger than646

the Younger Dryas ice configuration. This ‘restricted, mountain ice sheet with tidewater outlets’647

configuration is suggested to have been the dominant glacial mode in Britain for large parts of648

the Quaternary, and particularly prior to 1.1 Ma BP (Lee et al., 2012). Similar patterns in the649

Quaternary glacial landscape have been recognised in Fennoscandia, where parts of the landscape650

were shaped exclusively during restricted mountain ice sheet phases, which dominated the early651

and middle Quaternary (Fredin, 2002; Kleman et al., 2008). These findings have implications for652
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studies on present ice sheets, where modern geophysical techniques are now being used to map653

the glacial landscape under the ice (e.g. Smith et al., 2007; King et al., 2009). At the margins654

of the Ellsworth Subglacial Highlands, for example, erosional basins at 102-103 vertical and 104655

horizontal scales have been suggested to have formed under an early marine-proximal, mountain ice656

sheet, and do not relate to flow of the present marine WAIS (Ross et al., 2013). These suggestions657

are supported by our reconstruction of the BIIS and its relationship with the glacial landscape of658

western Scotland.659

9. Conclusions660

The following conclusions can be drawn by synthesising the new findings from Arran and661

Kintyre with published work from the wider area.662

• The glacial landscapes of the Kintyre peninsula and the island of Arran preserve a record of663

both restricted, marine-proximal mountain glaciation and shelf-edge glaciation. The diverse,664

composite landscape has enabled the evolution of the western marine margin of the last BIIS665

to be reconstructed.666

• Ice advance was initially directed through north-south aligned, geologically-controlled basins667

that have been carved during successive glacial cycles. These basins record a restricted,668

marine-proximal mountain ice sheet configuration, slightly larger than the Younger Dryas669

glacial extent, which probably existed for large parts of the middle and late Quaternary.670

• Published dates indicate that ice advanced to the shelf edge after ∼35 ka BP, at an average671

rate of ∼ 30 m a−1. The development of a marine sector was marked by a 90◦ shift in ice flow672

direction over Arran, Kintyre and the adjacent marine areas. The marine phase of the western673

BIIS margin saw ice divide migration by up to 60 km, possibly linked to ice streaming and674

calving events. However, stable ice sheet features also persisted over subglacial topographic675

highs.676

• A significant calving event at the western margin of the BIIS was followed by ice sheet re-677

growth during the Killard Point Stadial (KPS). The KPS ended ∼16.5 ka BP with rapid678

wasting of the Irish Ice Sheet on land. The North Channel ice divide collapsed as a result, al-679
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lowing grounded Scottish ice to advance over north-eastern Ireland (the East Antrim Coastal680

Readvance).681

• Subsequent retreat of Scottish ice to the inner fjords was rapid, in the order of 102 m a−1.682

Overall ice retreat was accompanied by oscillations of the Arran ice field, possibly due to683

removal of confining fjord glaciers, or refocusing of precipitation.684

• The ‘restricted’ and ‘extensive’ ice sheets had very different flow regimes over Arran, Kintyre685

and the surrounding area. First order features in the glacial landscape relate to the former.686

Similar first order features, relating to restricted glacial conditions, may be identified in geo-687

physical surveys used to map subglacial highland landscapes under interior parts of modern688

ice sheets.689
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Flow set Elongation ratio Centroid elevation (m)

Range Mean SD Range Median

1 (n = 86) 1.6-5.8 3.2 0.9 11-335 122

2 (n = 76) 2.1-7.7 3.4 1.3 31-363 81

3 (n = 52) 2.1-7.7 3.8 1.1 28-167 91

4a(n = 108) 1.2-4.9 2.7 0.9 17-154 81

4b(n = 62) 1.9-4.7 3.1 0.7 25-99 59

5 (n = 180) 1.6-5.4 3.4 0.7 15-312 85

Table 2: Streamlined bedform summary statistics. ‘Centriod’ refers to the middle point of each streamlined bedform.
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Figures904

Figure 1: Fig. 1. Location of the Kintyre Peninsula and Island of Arran, between the fjord coastline of western

Scotland and the Malin Shelf to the west. KMB: Kilmarnock moraine belt; BM: Blantyreferme moraine. 15, 16, and

17 ka ice retreat isochrones are taken from Clark et al. (2012). Calibrated radiocarbon ages (black circles) from the

database of Hughes et al. (2011) and from Peacock et al. (2012). Areas in white show maximum glacier extent during

the Younger Dryas (12.9-11.7 ka BP), based on Clark et al. (2004) and Ballantyne (2007). Hill-shaded surface models

built from Intermap Technologies NEXTMap Britain elevation data and Land and Property Services mapping data

(Crown Copyright). Bathymetry from BGS Digbath-250 dataset. Inset: Location within a national context. The

white line gives the approximate extent of the last BIIS, based on Bradwell et al. (2008) (solid line) and Clark et al.

(2012) (dashed line).
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Figure 2: Fig. 2. Topography and simplified bedrock geology of Kintyre and Arran. Red lines on the geology map

indicate faults.
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Figure 3: Fig. 3. Glacial geomorphology of Kintyre and Arran. Distribution of raised marine sediments and offshore

gravel deposits compiled from published BGS maps. Right hand panel shows streamlined bedforms grouped into

flow sets (fs) (Table 2). Hill-shaded surface models built from Intermap Technologies NEXTMap Britain elevation

data.

Figure 4: Fig. 4. Examples of landforms that were preserved, modified or created under the last ice sheet. A: tor

on Caisteal Abhail, northern Arran. B: North-south directed glacial breach, northern Arran.C; Elongated crag-and

-tail, southern Kintyre.
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Figure 5: Fig. 5. Subglacial sediments exposed on western Kintyre. A: stiff, red subglacial traction till, which forms

thick sequences over the western central part of Kintyre. B: 15 m of subglacial traction till overlying weakly, herring

bone cross-stratified gravels, interpreted as beach deposits. These rest on a platform cut into Permian sandstones at

approximately 18 m a.s.l, only a few metres higher than the pre-last glacial cycle rock shore platform described by

Gray (1978, 1993) at Glenacardoch Point to the north.
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Figure 6: Fig. 6. Meltwater channels (bottom left of image) dissecting west-south-west streamlined bedforms formed

in subglacial till, western Kintyre. Hill-shaded surface models built from Intermap Technologies NEXTMap Britain

elevation data.
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Figure 7: Fig. 7. Perched delta at an elevation of 130 m a.s.l. on south-western Kintyre. The delta formed as water

ponded against an outlet glacier flowing along the low ground offshore.

Figure 8: Fig. 8. Clear boulder moraine at the head of north Glen Sannox, Arran. This moraine probably formed

during a Younger Dryas glacier advance.
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Figure 9: Fig. 9. Sediment exposures at the mouth of Glen Dougarie, Arran. A: Geomorphological context. Filled

black polygons indicate the position of moraines. The locations of samples D1 and D2 are shown. HRBD: Holocene

raised beach deposits. B: Photograph of lithofacies association 1 (glacitectonite). C: Line drawing highlighting

deformation structures in lithofacies association 1. D. Section revealing the contact between lithofacies association

1 and lithofacies association 2 (subglacial till). E: Lithofacies association 3 (moraine). F lithofacies association 4

(delta foresets).
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Figure 10: Fig. 10. Interpretation of ice sheet stages that affected the landscape of Kintyre and Arran.
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Figure 11: Fig. 11. Growth and decay of the last BIIS over western Scotland, the North Channel, and north-east

Ireland. This reconstruction is synthesised from work presented here and existing published research (Salt and Evans,

2004; Dunlop et al., 2010; Finlayson et al., 2010; Livingstone et al., 2012; Clark et al., 2012; McCabe and Williams,

2012).Diagonal shading indicates probable cold-based ice. Dashed line denotes suggested ice divides. KPS: Killard

Point Stadial; S.R: Scottish Readvance; E.A.C.R.: East Antrim Coastal Readvance. Lower right: Lithic grains

observed in core MD95-2006 (Barra Fan) and GISP 2 Oxygen isotope record, from Knutz et al. (2001).
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Figure 12: Fig. 12. Interpretation of ice sheet / ice cap configuration prior to and during the East Antrim Coastal

Readvance. KPS: Killard Point Stadial; SR: Scottish Readvance; EACR: East Antrim Coastal Readvance. Diagonal

shading indicates probable cold-based ice. Dashed line denotes suggested ice divides.
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