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a b s t r a c t

The evolution of Earth’s biosphere, atmosphere and hydrosphere is tied to the formation of continental
crust and its subsequent movements on tectonic plates. The supercontinent cycle posits that the con-
tinental crust is periodically amalgamated into a single landmass, subsequently breaking up and
dispersing into various continental fragments. Columbia is possibly the first true supercontinent, it
amalgamated during the 2.0e1.7 Ga period, and collisional orogenesis resulting from its formation
peaked at 1.95e1.85 Ga. Geological and palaeomagnetic evidence indicate that Columbia remained as a
quasi-integral continental lid until at least 1.3 Ga. Numerous break-up attempts are evidenced by dyke
swarms with a large temporal and spatial range; however, palaeomagnetic and geologic evidence suggest
these attempts remained unsuccessful. Rather than dispersing into continental fragments, the Columbia
supercontinent underwent only minor modifications to form the next supercontinent (Rodinia) at 1.1
e0.9 Ga; these included the transformation of external accretionary belts into the internal Grenville and
equivalent collisional belts. Although Columbia provides evidence for a form of ‘lid tectonics’, modern
style plate tectonics occurred on its periphery in the form of accretionary orogens. The detrital zircon and
preserved geological record are compatible with an increase in the volume of continental crust during
Columbia’s lifespan; this is a consequence of the continuous accretionary processes along its margins.
The quiescence in plate tectonic movements during Columbia’s lifespan is correlative with a long period
of stability in Earth’s atmospheric and oceanic chemistry. Increased variability starting at 1.3 Ga in the
environmental record coincides with the transformation of Columbia to Rodinia; thus, the link between
plate tectonics and environmental change is strengthened with this interpretation of supercontinent
history.

� 2013, China University of Geosciences (Beijing) and Peking University. Production and hosting by
Elsevier B.V. All rights reserved.
1. Introduction

The formation of supercontinents in the Earth’s past is intrinsi-
cally linked with the evolution of the lithosphere, biosphere, at-
mosphereandhydrosphere (e.g.Worsleyet al.,1985,1986;Campbell
and Allen, 2008; Santosh, 2010; Piper, 2013b; Young, 2013b). The
concept of the supercontinent cycle, i.e. amalgamation anddispersal
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of continents, is based on evidence from the most recent super-
continents, e.g. Pangaea, Gondwana and Rodinia (see Nance et al.,
2013 for a review). Tracing the supercontinent cycle back though
deeper time leads to increasing difficulty, since the rock record be-
comes more fragmentary, rock units become more deformed, and
the ability to constrainpalaeopoles diminishes. Columbia (preferred
name toNuna;Meert, 2012), is perhaps thefirst true supercontinent
(Senshu et al., 2009); its amalgamation is evident from the
numerous collisional orogenic belts that can be found across most
continental fragmentswith ages of 2.0e1.7Ga.Maximumpackingof
this continent occurred at 1.9e1.85 Ga based on a peak of ages of
collisional orogenesis (Rogers and Santosh, 2009), but amalgam-
ation may have lasted until 1.6e1.5 Ga (Cutts et al., 2013). The
configuration of Columbia is still debated due to a lack of well-
constrained palaeopoles from the same period across all continen-
tal fragments (e.g. Evans and Mitchell, 2011). One key correlation
that exists in nearly all configurations, is the connection between
eking University. Production and hosting by Elsevier B.V. All rights reserved.
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Laurentia (North America and Greenland), and Fennoscandia,
known as the NENA connection (Gower et al., 1990). Break-up of the
Columbia supercontinent is postulated to have occurred at
1.25e1.35 Ga, inferred from ages of dyke swarms (Hou et al., 2008b;
Zhang et al., 2009b), but may have started as early as 1.6 Ga (Zhao
et al., 2004), or even as early as 1.8 Ga (Senshu et al., 2009).
Increasingly, however, it is becoming evident that this supercon-
tinent may not have broken-up and dispersed fully; only partially
breaking up before re-amalgamating into the next supercontinent
Rodinia (Bradley, 2011; Evans and Mitchell, 2011).

The supercontinent cycle has been linked to patterns of
crustal growth. Peaks in UePb crystallisation ages as well as
juvenile granitoid ages correlate with the periods of supercon-
tinent formation (Condie, 2004; Rino et al., 2004; Condie and
Aster, 2010). This was suggested to be a consequence of events
related to mantle convection, i.e. slab avalanches (Condie, 1998).
More recently however, it has been suggested that the correla-
tion represents preservation bias inherent in the supercontinent
cycle (Hawkesworth et al., 2009; Cawood et al., 2013; Condie et
al., 2011), whereby volumes of crust generated are greatest along
subduction margins, but preservation of crust generated in
collisional orogens is greater. Continental crust is largely formed
at convergent margins, i.e. accretionary orogens (Cawood et al.,
2009; Clift et al., 2009; Stern and Scholl, 2010). As well as be-
ing constructed at these margins, continental crust is also lost,
via tectonic erosion, subduction erosion and sediment subduc-
tion (see Stern, 2011 for a review). The balance between growth
and loss of continental crust across the globe at present is esti-
mated to be roughly equal, or slightly in favour of greater loss
(Scholl and von Huene, 2009; Stern and Scholl, 2010; Stern,
2011); since continental crust has grown over time since the
Hadaean (Belousova et al., 2010; Hawkesworth et al., 2010), this
balance must have favoured growth rather than loss for most of
Earth’s history. A deviation in calculated growth curves suggests
growth was quicker up to 3.0 Ga (Dhuime et al., 2012). As well as
decreasing over time, the balance between growth and loss will
change in relation to the supercontinent cycle. Periods of su-
percontinent break-up will feature the greatest continental
growth due to magmatism at retreating accretionary orogens and
continental rift zones, and periods of supercontinent amalgam-
ation will feature greatest loss, due to the increase in compres-
sional accretionary orogens and collisional zones that host a
greater volume of recycling into the mantle (Stern and Scholl,
2010; Yoshida and Santosh, 2011). This correlation was tested
with a global compilation of zircon UePbeHf data, using the Hf
trend through time as a proxy for continental growth versus loss
(Roberts, 2012); the data are compatible with increased conti-
nental loss during formation of Columbia, and increased growth
during the subsequent w500 million year period.

The period from w1.85 to 0.85 Ga has been referred to as the
‘boring billion’ (Holland, 2006), and more recently ‘barren billion’
(Young, 2013a); this results from the lack of climatic events or
dramatic changes in ocean and atmosphere composition. Tectoni-
cally, this period is far from boring, since it involved the formation
of the Columbia supercontinent at its onset, and the formation of
the Rodinia supercontinent during its latter half. What does seem
apparent, however, is a lack of dramatic events within the earth
system between w1.7 Ga and 1.2 Ga, thus, there may be some
coincidence between the tenure of the supercontinent Columbia,
and the stability of the ocean and atmospheric systems. This paper
looks at the Columbia supercontinent in terms of its age and tenure,
mechanisms by which it broke up and formed the next supercon-
tinent Rodinia, the plate tectonic regime and associated crustal
growth during these events, and the correlation to other earth
systems.
2. The Columbia supercontinent

Since its conception (Rogers and Santosh, 2002), numerous
variations on Columbia palaeogeographies have been postulated.
Two examples that are well-cited in the literature are those of Zhao
et al. (2004) and Hou et al. (2008a), the core of these both feature
well-known Laurentia, Baltica, Siberia and Australia connections.
Many other palaeogeographic reconstructions use these continents
at their core, but feature variable positions of other cratons, for
example Congo (Ernst et al., 2013), India (Kaur et al., 2013;
Pisarevsky et al., 2013), and North China (D’Agrella-Filho et al.,
2012; Zhang et al., 2012). New palaeomagnetic poles are being
published each year, which should eventually lead to some
consensus on Columbia’s palaeogeography. Fig. 1 shows four
different recent Columbia reconstructions. The reconstruction of
Piper (2013a,b) is based on a large database of palaeopoles, and
constraints are not biased towards well-known geological con-
nections. Some connections, such as Laurentia, Siberia, Baltica and
Australia remain, but Amazonia resides on the other side of the
supercontinent to Baltica. The reconstruction of Yakubchuk (2010)
is also based on a large database of palaeopoles, but linkage be-
tween Grenvillian belts and Palaeoproterozoic belts is taken into
consideration. The reconstruction of Zhang et al. (2012) is modified
from that of Evans and Mitchell (2011), with new data from North
China, and this original reconstruction is based on a rigorous
critique of palaeopoles; because of this, many cratons are not
included. The reconstruction of Kaur and Chaudhri (2013), is
modified from that of Hou et al. (2008a), based on geological in-
terpretations of Indian and Chinese cratons. A key difference in
making reconstructions is that some are dominated by palae-
omagnetic information, and some are based largely on geological
interpretations. It is evident that both will need to be taken into
account to provide all-inclusive and testable reconstructions that
stand the test of time.

Common to nearly all Columbia configurations are the correla-
tion of 1.8e1.3 Ga accretionary belts found across southern Lau-
rentia, Southwest Fennoscandia and western Amazonia; the
geological correlation of these belts was discussed by Johansson
(2009) and named the SAMBA connection. In the Kaur and
Chaudhri’s (2013) type reconstruction, this margin is extended
through India, North China and East Australia. Zhang et al. (2012)
also noted the accretionary margin in North China, but do not
extend it through Australia. However, although there is a difference
in accretionary style, this margin is postulated to have extended
from South Laurentia, to East Australia (Mawsonland) for at least the
early part of Columbia’s life (Betts et al., 2008). Thus, in the Zhang’s
reconstruction, the accretionarymargin canbedrawnarounda large
proportion of the included continents. Some continents lack evi-
dence for this accretionarymargin, i.e. Siberia, thus the accretionary
margin may not have surrounded the entire supercontinent, and
may even have been more one-sided (Fig. 1D). If we think of a
modern example, this may represent something like the Americas,
with the active Pacific margin on the west, and the passive Atlantic
margin on the east. If we take this analogy further, then we can
compare this long-lived accretionary beltwith the entire Pacific rim.
In this latter analogy, it is interesting to considerwhetherparts of the
margin may represent an Andean-type margin (i.e. dominantly
advancing accretionary orogeny; Cawood et al., 2009), or a Pacific-
type margin (i.e. dominantly retreating accretionary orogeny).

3. Break-up

The break-up history of Columbia remains uncertain. Many au-
thors have recorded mafic magmatism, typically as dykes, but
sometimes as larger bodies, and felsic intrusions, and related these



Figure 1. Palaeogeographic reconstructions of Columbia in the 1.7e1.5 Ga timeframe, after Piper (2013b), Yakubchuk (2010), Zhang et al. (2012) and Kaur and Chaudhri (2013). The
subduction margin in C and D shows the approximate location of 1.8e1.3 Ga accretionary belts.

N.M.W. Roberts / Geoscience Frontiers 4 (2013) 681e691 683
to possible break-up of the supercontinent. Dyke swarms occur in
the 1.38e1.24 Ga period across many continents (e.g. Ernst et al.,
2008 and references within; Hou et al., 2008b; Zhang et al.,
2009b; Goldberg, 2010; El Bahat et al., 2012; Puchkov et al., 2013).
These include large swarms such as theMacKenzie dyke swarm that
are advocated as plume-related (Hou et al., 2008b). Earlier mafic
intrusions are also found across many cratons of variable age, for
example in South America at 1.59,1.5 and 1.4 Ga (Bispo-Santos et al.,
2012; Silveira et al., 2013; Teixeira et al., 2013), at 1.5 Ga in South
China (Fan et al., 2013), at 1.46 Ga in India (Pisarevsky et al., 2013),
and at 1.45 Ga in Baltica (Lubnina et al., 2010). Although, the con-
tinents record various episodes of mafic magmatism typically
related to extensional tectonics, it is not clear that these provide
evidence for break-up of the supercontinent Columbia. Some ex-
amples of the dykes, for example the 1.3e1.2 Ga dykes in Southwest
Baltica, have been studied geochemically and isotopically, and
interpreted as manifestations of active margin tectonics (Söderlund
et al., 2005). These mafic intrusions thus relate to extensional tec-
tonics associatedwith a convergentmargin; themafic dyke swarms
may represent extension of brittle crust, whereas volcanosedi-
mentary basins closer to the inferred convergent margin are
interpreted as reflecting extension in warmer more mobile crust
(Roberts et al., 2011). Another example where the dyke swarm is
hypothesised to be unrelated to amantle plume and supercontinent
break-up is the Sudbury dyke swarm in Laurentia (Shellnutt and
MacRae, 2012). Thus, many dyke swarms that occur towards
craton margins rather than deep interiors may also be a conse-
quence of plate-margin related processese and not to the break-up
of the supercontinent. The extent of this across the temporal and
spatial range of dykes within Columbia remains to be investigated.

The evidence for break-up based on dyke swarms suggests
rifting and extension throughout most of Columbia’s lifespan. As a
continental rift matures, it will eventually lead to passive margin
sedimentation on its flanks. The record of passive margins
throughout earth history has been investigated by Bradley (2008,
2011), and is shown in Fig. 4. Passive margin abundance is very
lowduring Columbia’s tenure, and start dates that would record the
rifting of continents are non-existent until one at 1.25 Ga in North
Laurentia and three at 1.0 Ga in East Baltica and South Siberia that
coincide with Rodinia formation. This line of evidence suggests that
Columbia didn’t break-up into dispersed continents, as this would
produce a large increase in passive margins.



Figure 2. Simplified model for extroversion of Columbia into Rodinia. The movement of Baltica, Amazonia and the West African cratons is shown, but any potential movement of
the cratons on the opposing side of Laurentia is omitted for simplicity.
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Palaeomagnetic data also provide evidence that Columbia, or at
least many of its cratonic components, were juxtaposed for much of
the Mesoproterozoic, until at least 1.3 Ga. For example, palae-
omagnetic data suggest Australia and Laurentia were contiguous
from 1730 to 1595 Ma, but also allow for a continued association
until w1200 Ma (Payne et al., 2009). Siberia is linked with move-
ments of Laurentia and Baltica from w1600 to 1200 Ma (Salminen
and Pesonen, 2007; Wingate et al., 2009; Lubnina et al., 2010;
Pisarevsky and Bylund, 2010). North China also has a polar wander
path compatible with connection to LaurentiaeSiberia/Baltica to
1.35 Ga (Wu et al., 2005). Piper (2010, 2013a,b) takes this evidence
to the extreme, suggesting that Columbia was a quasi-integral su-
percontinent for the entire period between 2.7 and 0.6 Ga. The
palaeomagnetic record can be used to construct an estimate of
plate velocity (Piper, 2013b), which during Columbia’s lifespan re-
cords a period of low velocity (see Fig. 4). Thus, both the geological
record and the palaeomagnetic evidence are indicative of a stable
Columbia supercontinent from its formation at w1.9 to w1.3 Ga,
whereupon continental movements may have increased.

4. Transformation to Rodinia

The Rodinia supercontinent that formed at 1.1e0.9 Ga, after
Columbia’s lifespan, also has a debated palaeogeographic configu-
ration (e.g. Li et al., 2008). Except for Evans’ (2009) and Pipers’
(2013a,b) reconstruction, in which the Grenville belt originates as
an exterior accretionary orogen, all reconstructions feature the
Grenville Province as an interior orogenic belt within the centre of
the supercontinent. This orogenic belt is typically extended into the
Sveconorwegian domain on Fennoscandia, although structural ev-
idence in Laurentia (Gower et al., 2008), and a re-interpretation of
the Sveconorwegian orogen as non-collisional (Slagstad et al.,
2013), suggest this may be an oversimplification. The Grenville
belt is traditionally opposed to the Sunsas orogen of Amazonia (e.g.
Tohver et al., 2002; Li et al., 2008), and the recently defined Putu-
mayo orogen in Amazonia may have faced Baltica (Ibanez-Mejia
et al., 2011). Since correlation of the GrenvilleeSveconorwe-
gianePutumayoeSunsas domains may have existed in the
Columbia configuration also, it seems apparent that these conti-
nental fragments may have been adjacent throughout both the
Columbia lifespan and Rodinia formation. To form the collisional
Grenville belt, Fennoscandia and Amazonia must have rotated
around so that they face each other, rather than facing the same
ocean. This rotation is described by Yakubchuk (2010); in this
model, in addition to the Laurentia/Baltica/Amazonia fragments
(i.e. SAMBA) rotating around, the adjoined fragments that make up
the rest of Columbia while remaining intact, also rotated around.
Hence, supercontinents in this model are made up of various
continental supergroups that appear to have remained intact for
much of earth history; which fits with the quasi-integral conti-
nental lid hypothesis of Piper (2013a,b) also. Others have also noted
the similarity between Columbia and Rodinia, and have suggested a
lack of large-scale re-configuration between their formation (Evans
and Mitchell, 2011), or have argued that the lack of evidence for
continental movements in the geological record is indicative of this
(Bradley, 2011).

It has been established that supercontinents may form by two
end-member processes: introversion, where oceanic spreading
along interior orogens is transformed to collision along the same
orogens, and extroversion, where exterior accretionary orogens are
transformed into interior collisional orogens (Murphy and Nance,
2003, 2013; Murphy et al., 2009). An addition to this, is a recent
model of orthoversion (Mitchell et al., 2012), whereby a super-
continent forms orthogonal to its predecessor supercontinent,
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along the great circle defined by the subduction zones that encircle
the previous supercontinent. This may represent a form of intro-
version if interior oceans are consumed to produce the collisional
belts. The rotation of two large blocks (i.e. Nena and Atlantica), such
that their exterior accretionary orogenic belts became an interior
orogenic belt (i.e. Grenville), is compatible with a model of extro-
version for Rodinia’s formation (see Fig. 2). The history of the Ur
continents, i.e. South Africa, India, Australia and Antarctica is less
constrained. But based on evidence already discussed, it appears
that any rapid movement required to form the Rodinia supercon-
tinent from the Columbia supercontinent most likely happened
after w1.25 Ga.

What drives supercontinents to break-up and re-form is an
ongoing debate and won’t be discussed here; however, it has been
approached from a variety of modelling techniques and studies of
mantle behaviour (e.g. Gurnis, 1988; Condie, 1998; O’Neill et al.,
2007; Zhong et al., 2007; Santosh et al., 2009; Senshu et al.,
2009; Zhang et al., 2009a; Yoshida and Santosh, 2011). A process
that features in many models is that of superupwellings and
superdownwellings; the former can be thought of as superplumes.
Supercontinents form at superdownwellings, and break-up when
located over superupwellings (or geoid highs). Another concept is
that of Y-shaped subduction zone junctions (Santosh et al., 2009).
Where large subduction systems intersect these junctions, a
downwelling of subducting slabs forms that refrigerates the mantle
and in turn increases the convective downwelling; on the surface
all continental materials are drawn together to form a supercon-
tinent. What caused the shift from Columbia to Rodinia remains
speculative. In the model of extroversion proposed here (Fig. 2), a
downwelling may have occurred between Fennoscandia and Lau-
rentia, such that these continents were dragged around and
together. The opposing model would be that a geoid high devel-
oped over a superupwelling, and that this rifted the continents
apart so that they could re-amalgamate over a geoid low. Given the
tight rotation of the BalticaeAmazoniaeAfrica cratons recorded in
most reconstructions, this scenario seems unlikely since the up-
welling and downwelling would be very closely spaced. With
increasing confidence and evidence for Columbia and Rodinia re-
constructions, these hypotheses will become more amenable for
testing.

5. Crustal growth

The record of continental growth has been linked to the su-
percontinent cycle. One group of models indicate that crustal
growth is increased during formation of supercontinents due to
increasing convergent margin magmatism and/or plume-related
magmatism (e.g. Stein and Hofmann, 1994; Condie, 1998; Rino
et al., 2004; Parman, 2007). Another opposing model suggests
that crustal growth should decrease during supercontinent amal-
gamation, and increase during break-up (Stern and Scholl, 2010;
Yoshida and Santosh, 2011). Finally, the record of continental
growth is suggested to be biased, such that preservation of conti-
nental crust is greatest during supercontinent amalgamation
(Hawkesworth et al., 2009; Cawood et al., 2013). Roberts (2012)
suggested that the primary control of continental growth is
defined by the extent of interior collisional orogenesis, to that of
exterior accretionary orogenesis. The latter will feature greater
crustal growth, and the former greater crustal recycling and loss.
The secondary control is then defined as the ratio of advancing
accretionary orogens, to those that are retreating, since the latter
will feature greater volumes of new juvenile continental growth
than the former (Roberts, 2012). Using detrital zircon Hf isotope
data as a proxy for continental growth, Roberts (2012) showed that
continental growth appears to be greater during periods of
supercontinent break-up; however, one problemwith this proxy, is
that it shows relative changes in continental growth, but not
absolute.

Fig. 3 shows a compilation of global detrital Hf data, and the
derived growth curves based on mean and median trends from
Roberts (2012). A distinct feature of this database, and of all detrital
compilations (e.g. Belousova et al., 2010; Iizuka et al., 2010; Dhuime
et al., 2012), is that the time period of Columbia’s tenure (i.e.
w1.7e1.2 Ga), features a large proportion of juvenile (i.e. >CHUR)
values, and a lack of evolved (i.e. <CHUR) values. Based on the
concepts outlined in Roberts (2012), this is compatible with a lack
of interior orogenic belts that involve large degrees of recycling of
older crust, and of a greater ratio of retreating to advancing
accretionary orogens. This also fits the observations of Collins et al.
(2011), in that the increasing trend in εHf is compatible with Pacific-
type exterior margins. Accepting the caveats with this over-
simplified approach, it appears that Columbia, although not
breaking up till late in its history, was associatedwith an increase in
continental growth rate after its formation.

Does an increase in continental growth rate relate to an actual
increase in continental volume? Current thinking indicates that
loss of continental crust back to the mantle is just as prevalent
today as the growth of new continental crust (e.g. Clift et al., 2009;
Scholl and von Huene, 2009); extrapolating the balance back
through time between these processes remains elusive, since
proxies for continental loss and growth lack absolute abundances.
To help resolve this issue for the Columbia scenario, it is pertinent
to return to the geological record. The detrital record is dominated
by zircons derived from increasingly juvenile sources, this is
compatible with the large accretionary orogenic system that
wrapped around much of the supercontinent (see Fig. 1C and D). As
this accretionary margin retreated away from the continents, it
would have enabled growth of new continental crust in volcanic
arcs. Arc terranes would have accreted to the supercontinent dur-
ing periods of trench advance, or in some cases may have been lost
by subduction erosion. If this was the only plate tectonic activity
occurring during this time period, then continental volume is likely
to have increased as the supercontinent expanded. This increase
could be balanced if continental material was returned to the
mantle via subduction. The lack of high-grade metamorphic events
(see Fig. 4) in the geological record suggests that large-scale colli-
sional orogenies were rare to absent during Columbia’s tenure, this
indicates that continental reworking and/or continental loss in this
setting would have been minimal. If such events were existent,
then they should produce detrital zircon data that would fill in the
gap marked A in Fig. 3. The other way of balancing the expansion of
the continents through retreating subduction zones, is by eroding
the existing continents along advancing subduction margins.
Although the preservation of this process may be low, an advancing
subduction margin is likely to involve some magmatism that re-
cycles the older crust that is being intruded and eroded; this would
produce evolved isotopic signatures that are not prevalent in this
time period. To summarise, either the geological record is biased
such that the growth of new continental crust in accretionary
margins is well preserved and the loss of continental crust is poorly
preserved, in which case the record of increased continental
growth is an artefact, or, the record is compatible with increased
continental growth during Columbia’s tenure. The issue of preser-
vation remains critical to our further understanding of continental
growth and plate tectonic processes through time.

6. Plate tectonics

The onset of plate tectonics and how plate tectonic regimes have
changed through time remain hotly debated topics, with much



Figure 3. Compilation of global detrital zircon data and modelled trends (grey ¼ median, black ¼ mean) after Roberts (2012). The dashed box marked A shows the lack of zircons
with evolved signatures that would counterbalance those with more juvenile signatures if crustal growth and loss were equal.
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emphasis being placed on whether modern-day style plate tec-
tonics began in the Archaean or more recently (e.g. Van
Kranendonk, 2010; van Hunen and Moyen, 2012; Kusky et al.,
2013; Santosh et al., 2013b). Whereas many researchers have
advocated modern style plate tectonic processes, i.e. subduction, in
Archaean domains, others believe that these processes didn’t start
until the Neoproterozoic (Stern, 2005; Hamilton, 2011; Piper,
2013a). Some ambiguity exists between what defines modern
style plate tectonics, with Piper (2013a) defining three criteria: (1)
mobility of the plates, (2) subduction processes, and (3) continent
collision and break-up. Hamilton (2011) was happy to accept
compression and extension of the plates to form the basins and
orogens that are recorded in the Proterozoic and Archaean, but
maintains that subduction and seafloor spreading didn’t occur until
ca. 850 Ma. Stern (2005) amongst others, noted the lack of well
documented ophiolites, blueschists and UHP terranes before the
Neoproterozoic, and suggested this relates to the lack of modern
style subduction before this time.

The stability of the Columbia supercontinent, i.e. the lack of
differential plate mobility, argues against plate tectonics according
to Piper’s criteria. Piper (2013a,b) extends the existence of this
continental lid back as far asw2.7 Ga, and as young asw0.6 Ga. The
potentially limited movement of continents between Columbia and
Rodinia argues somewhat in Piper’s favour. However, the existence
of numerous collisional belts across most continental blocks (e.g.
Zhao et al., 2002, 2004), including those that hosted subduction
zones prior to collision (e.g. Trans-Hudson, Corrigan et al., 2009 and
references therein), is indicative of large-scale plate motion during
the formation of the Columbia supercontinent. Piper argues that
such orogenic processes result from small-scale movements be-
tween crustal blocks. Whereas it would seem possible that small-
scale movements may explain localised events within the interior



Figure 4. Compilation of geological records throughout Earth history (after Bartley and Kah, 2004; Brown, 2007; Bradley, 2008, 2011; Roberts, 2012; Piper, 2013b).
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of the Columbia continental lid, it seems unlikely that the wide-
spread orogenesis at 2.0e1.8 Ga is also a consequence of these.
Stern (2008) noted that these periods of heightened orogenic ac-
tivity may relate to some form of proto-plate tectonics, and that the
intervening periods of stability are related to some form of conti-
nental lid tectonics.

Columbia thus appears to resemble some form of continental
lid, formed during continental amalgamation between 2.0 and
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1.8 Ga, lasting as a stable supercontinent until at least 1.3 Ga, and
only partially breaking up before the maximum packing of the
Rodinia supercontinent. However, this does not discount plate
tectonic processes on the margins of this continental lid. As dis-
cussed previously, the margins of many continents record accre-
tionary processes during Columbia’s tenure. The best documents of
these are in Laurentia and Baltica, where numerous arc domains
have been defined and described. For example within the
1.8e1.2 Ga Labradorian, Pinwarian, Central Metasedimentary Belt,
Central Gneiss Belt, and Composite Arc Belts, where arc, back-arc,
rift and accretionary settings have been applied (e.g. Gower,
1996; Culshaw and Dostal, 1997, 2002; Rivers, 1997; Blein et al.,
2003; Slagstad et al., 2004; Dickin and McNutt, 2007; Culshaw
et al., 2013), and within the 1.8e1.2 Ga Transcandinavian Igneous,
Gothian and Telemarkian Belts of Southwest Baltica (e.g. Brewer
et al., 1998, 2004; Åhäll and Connelly, 2008; Roberts et al., 2011,
2013). These accretionary belts attest to plate tectonic (i.e.
subduction-related) processes occurring on the edge of the
Columbia supercontinent. The existence of numerous ‘anorogenic’
magmatic events during the timeframe of Columbia has been
related to processes resulting from lid tectonics (Piper, 2013a), i.e.
the effect of thermal blanketing of the mantle beneath the super-
continent (Anderson and Bender, 1989; Anderson and Morrison,
2005), or from mantle heat driven by a downwelling below the
supercontinent (Vigneresse, 2005). However, the AMC (Anortho-
site, Mangerite, Charnockite) and Rapakivi granites that are rather
unique to this period of ‘anorogenic’ magmatism, are increasingly
related to convergent margin settings, or at least to being a
consequence of convergent margin tectonics (e.g. Åhäll et al., 2000;
Bédard, 2009; Vander Auwera et al., 2011). Thus, with accounting
for differences in crustal thickness and mantle temperature due to
secular change within the Earth (e.g. Bédard, 2009), it seems that
modern style plate tectonics can explain most or all features of the
mid-Proterozoic period and the Columbia supercontinent.

7. A boring billion

The period roughly between 1.8 and 0.8 Ga has been referred to
as the ‘boring billion’ (Holland, 2006), this results largely from the
stability in the environment recorded by marine d13C (Brasier and
Lindsay, 1998), and was more recently termed the ‘barren billion’
referring to the lack of major glaciations (Young, 2013a). Even
earlier than this, the 1.6e1.0 Ga period was referred as the ‘dullest
time in Earth’s history’ (Buick et al., 1995), again referring to the
lack of environmental, biological or geological events. Postulated
links between environmental changes and the history of super-
continents have long been made (e.g. Squire et al., 2006; Campbell
and Allen, 2008; Maruyama and Santosh, 2008; Meert and
Lieberman, 2008). Various processes that affect the geochemistry
of the oceans and atmosphere act together to provide a complex
system, that combined with the secular changes in solar intensity
and mantle cooling (e.g. Young, 2013a) mean it is particularly
difficult to unravel cause and effect for particular environmental
events.

The stability of the boring billion begins after the amalgamation
of the supercontinent Columbia; it remains throughout Columbia’s
lifespan, and then includes the formation of Rodinia. Both the
break-up of Rodinia and the formation of Gondwana are both
postulated as strongly linked to the extreme climatic variations
seen in the late Precambrian (for a review see Santosh et al., 2013a).
In an idealised supercontinent cycle, Columbia would break-up and
disperse during the early to mid-Mesoproterozoic, and then would
re-amalgamate as Rodinia in the late Mesoproterozoic/early Neo-
proterozoic. The record of environmental events does not record
any great changes or fluctuations that could be postulated as
relating to this hypothesised break-up of Columbia and/or forma-
tion of Rodinia. This could be used as an argument against a direct
link between supercontinent cycles and environmental change.
Young (2013a) suggests that supercontinents have played a role,
but postulates that it is the complex balance between solar radia-
tion, atmospheric CO2 and plate tectonics that has produced the
two extreme climatic periods in Earth history. It is argued here that
environmental stability is highly compatible with the history of
Columbia. The w1.8e1.2 Ga continental lid of Columbia and its
minor re-configuration into Rodinia at w1.2e0.9 Ga, and the pro-
longed rifting of Rodinia after 0.9 Ga, produce a history of conti-
nental movements that is in accord with the record of ocean and
atmosphere stability.

Although the boring billionwas initially extended tow0.8 Ga, an
increase in isotopic variability is seen after 1.3 Ga (e.g. Kah et al.,
2001; Bartley and Kah, 2004; see Fig. 4); although this is only a
slight rise in comparison to the extreme Neoproterozoic variations,
it is comparable in size to the variations seen in Phanerozoic
seawater, and may represent a moderate oxygenation increase in
the biosphere (Kah et al., 2001). The onset of this isotopic variability
is correlative with rifting events within Columbia, and subsequent
Grenvillian mountain-building during transformation to Rodinia;
further strengthening the potential links between plate tectonics
and environmental change. Our knowledge of the evolution of life
on Earth has suffered the same fate. Whereas most of the boring
billion is seen as a time of limited cellular development and radi-
ation, increasing evidence from scarce Mesoproterozoic outcrops
has revealed some development in eukaryotes prior to the great
radiation in the Neoproterozoic (e.g. Butterfield, 2001, 2005; Javaux
et al., 2001, 2004; Leiming et al., 2005). That being said, the level of
diversity is still much lower in the Mesoproterozoic than occurs in
the Neoproterozoic (Javaux et al., 2004; Knoll et al., 2006). It is
worth noting also, that although the great radiation of life occurred
during the Neoproterozoic, the preceding period of stability is a
possible driver of evolution; Brasier and Lindsay (1998) suggested it
may have nurtured photosymbiosis within eukaryotes so that they
could evolve into autotrophs. It is evident that the period referred
to as ‘boring’, in fact remains rather interesting, as it provides clues
on the relationship between tectonics, the environment and
evolution.

8. Conclusions

The supercontinent Columbia formed at 2.0e1.7 Ga; maximum
packing based on collisional orogenesis likely occurred at
1.95e1.85 Ga (Rogers and Santosh, 2009). This supercontinent
remained as a quasi-integral continental lid for its entire duration.
Break-up was attempted but not successful. Some differential plate
movement was necessary after w1.3 Ga to produce the next su-
percontinent (Rodinia) at 1.1e0.9 Ga; this occurred via a form of
extroversion, whereby exterior accretionary belts were trans-
formed into interior collisional belts, i.e. the Grenville and equiva-
lent orogens. Continental growth outweighed continental loss
during Columbia’s lifespan as a result of accretionary processes
along its margin. The stable continental lid and lack of differential
plate movement during the 1.8e1.3 Ga period are linked to stability
in the chemistry of the Earth’s oceans and atmosphere, and
strengthens a possible causal relationship. The evolution and ra-
diation of life correlates with the environmental changes seen in
the late Palaeoproterozoic to Neoproterozoic, i.e. a period of envi-
ronmental stability, followed by a slow increase in variability after
1.3 Ga, and then by extreme variability afterw0.8 Ga that coincides
with break-up of Rodinia. Since plate tectonics seem inextricably
linked to the evolution of Earth’s environment and life, it is
necessary to unravel the past history of plate movements; it is
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apparent that the supercontinent cycle remains an over-
simplification, with the role of lid versus plate tectonics changing
though Earth’s history.
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