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ABSTRACT   20 

Recent Ar-Ar and U-Pb zircon geochronology from across the British and Irish Caledonides 21 

has revealed a prolonged period of arc/ophiolite formation (c. 514-464 Ma) and accretion (c. 22 

490-470 Ma) to the Laurentian margin during the Grampian orogeny.  The Slieve Gallion 23 

Inlier of Northern Ireland, an isolated occurrence of the Tyrone Volcanic Group, records the 24 

development of a peri-Laurentian island-arc/backarc and its obduction to an outboard 25 

microcontinental block.  Although a previous biostratigraphic age constraint provides a firm 26 

correlation of at least part of the volcanic succession to the Ca1 Stage of the Arenig (c. 475-27 

474 Ma), there is uncertainty on its exact statigraphic position in the Tyrone Volcanic Group.  28 

Earliest magmatism is characterized by light rare earth element (LREE) depleted island-arc 29 

tholeiite.  Overlying deposits are dominated by large ion lithophile and LREE-enriched, 30 

hornblende-phyric and feldspathic calc-alkaline basaltic andesites and andesitic tuffs with 31 

strongly-negative εNdt values.  Previously published biostratigraphic age constraints, 32 

combined with recent U-Pb zircon geochronology and new petrochemical correlations, 33 

suggest the Slieve Gallion Inlier is equivalent to the lower Tyrone Volcanic Group.  34 

Temporal and petrochemical correlations between the Slieve Gallion Inlier and Charlestown 35 

Group of Ireland suggest they may be part of the same arc-system which was accreted at a 36 

late stage (c. 470 Ma) in the Grampian orogeny.  A switch from tholeiitic volcanism to calc-37 

alkaline dominated activity within the Lough Nafooey Group of western Ireland occurred 38 

prior to c. 490 Ma, approximately 15 to 20 Myr earlier than at Tyrone and Charlestown. 39 

 40 
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INTRODUCTION  44 

The Caledonian-Appalachian orogen provides a rare window through the mid to lower crustal 45 

levels of an evolving orogenic belt.  Early Paleozoic closure of the Iapetus Ocean resulted in 46 

extensive arc-ophiolite accretion to the Laurentian margin (=Grampian-Taconic orogeny) 47 

prior to continent-continent collision (=Acadian orogeny) (Dewey 2005; van Staal et al. 48 

2007; Chew 2009; Cooper et al. 2013).  Modern subduction systems, such as the W and SW 49 

Pacific, reveal complexities during episodes of large-scale ocean closure, including: 50 

diachronous and/or oblique arc-continent collision, arc-arc collisions, subduction polarity 51 

reversals, subduction rollback, triple junctions, arc-interactions with propagating rifts and 52 

spreading centres, and the presence of microcontinental blocks and oceanic plateaus.  Despite 53 

these complexities, forward modeling of collision between Australia and the Asian continent 54 

has produced remarkably linear orogenic belts when associated with sinistral oblique 55 

convergence (see van Staal et al. 1998).  Pseudo-simplistic linear orogenic zones can conceal 56 

complex histories and geometries, especially if poorly exposed and subjected to terrane 57 

excision and strike-slip duplication (van Staal et al. 1998).  It is only through detailed study 58 

of individual terranes, and their inter-relationships, that orogens may be understood 59 

 60 

The Grampian-Taconic orogeny resulted from widespread and episodic arc-ophiolite 61 

accretion to the Laurentian margin between the Late Cambrian and Middle Ordovician 62 

(Dewey & Shackleton 1984; van Staal et al. 2007; Chew et al. 2010).  Western Ireland, 63 

although not representative of the Grampian orogen as a whole, was a focus for establishing 64 

many of the fundamental processes of arc-continent collision due to its abundant exposure, 65 

low metamorphic grade and limited deformation (e.g. Dewey & Shackleton 1984; Dewey & 66 

Ryan 1990; Draut et al. 2004; Dewey 2005; Ryan & Dewey 2011).  Collision between the 67 

Lough Nafooey arc of western Ireland and the passive Laurentian margin was associated with 68 

polyphase deformation and metamorphism of thick Neoproterozoic cover sequences such as 69 

the Dalradian Supergroup between c. 475-465 Ma.  The South Mayo Trough, a thick and 70 

relatively undeformed accumulation of lavas and volcaniclastic sedimentary rocks, represents 71 

the pre-collisional fore-arc and syn- to post-collisional successor basin to the Lough Nafooey 72 

arc (Draut et al. 2004) (Fig. 1).  Within its sedimentary record, the South Mayo Trough 73 

preserves the progressive evolution of the Lough Nafooey arc system, its collision with the 74 

Laurentian margin, and the unroofing of the orogen (reviewed in Ryan & Dewey 2011).  A 75 

younger c. 464 Ma continental arc founded upon the Laurentian margin was associated with 76 

subduction polarity reversal following arc-continent collision (Dewey 2005). 77 



 78 

Arc-ophiolite formation is now recognized to span c. 514-464 Ma within the peri-Laurentian 79 

British and Irish Caledonides (e.g. Chew et al. 2008, 2010; Cooper et al. 2011; Hollis et al. 80 

2012).  Early obduction of some ophiolites onto outboard microcontinental blocks (c. 510-81 

490 Ma) may explain discrepancies in the timing between the termination of Laurentian 82 

passive margin sedimentation and ophiolite emplacement (Chew et al. 2010).  Remnant slices 83 

of the accreted volcanic arcs are exposed across the Midland Valley terrane, and include the 84 

Bohaun Volcanic Formation, Lough Nafooey Group, Tourmakeady Group and Charlestown 85 

Group of Ireland, the Tyrone Volcanic Group of Northern Ireland (Fig. 1), and probably the 86 

Games Loup and Mains Hill successions of the Ballantrae Ophiolite Complex, Scotland.  87 

Abundant arc-related and ophiolitic detritus in sediments of the Southern Uplands terrane and 88 

Middle Ordovician sediments of Girvan also indicate the presence of an extensive arc-89 

ophiolite complex(s) buried within the Midland Valley Terrane (Midland Valley arc) (see 90 

Oliver et al. 2002).   91 

 92 

The Tyrone Volcanic Group of Northern Ireland occupies an important position in the 93 

Caledonides between the well documented sectors of western Ireland and Scotland (Fig. 1).  94 

It records the formation of a peri-Laurentian island arc/backarc during the Middle Ordovician 95 

and its accretion to an outboard microcontinental block at c. 470 Ma (see Cooper et al. 2011; 96 

Hollis et al. 2012).  However, despite its importance, geochronology from the Tyrone arc is 97 

limited to three high resolution U-Pb zircon dates from one formation (Cooper et al. 2008; 98 

Hollis et al. 2012).  Furthermore, the volcanic succession exposed at Slieve Gallion (herein 99 

termed the Slieve Gallion Inlier) provides the only biostratigraphic age constraint for the 100 

entire Tyrone Volcanic Group (Cooper et al. 2008).  Although the Slieve Gallion Inlier was 101 

initially suggested to be within the upper Tyrone Volcanic Group (Cooper et al. 2008), this 102 

appears to be unfounded as similar lithologies are now known to occur in the Loughmacrory 103 

Formation towards the base of the Tyrone Volcanic Group (Hollis et al. 2012).   104 

 105 

Here we present the results of new field mapping, complemented by high-resolution airborne 106 

geophysics, the first detailed geochemical study of the volcanic succession, and two new U-107 

Pb zircon dates that shed further light on this enigmatic arc-system and the orogen as a 108 

whole.  Herein we demonstrate that the Tyrone and Lough Nafooey arcs differ significantly 109 

in the timing of their geochemical evolution and accretion.  Either arc evolution and accretion 110 

was diachronous in the Irish Caledonides, or perhaps more likely the Tyrone and Lough 111 



Nafooey arcs represent distinct arc systems accreted to the Laurentian margin during the 112 

Grampian orogeny (after Hollis et al. 2012).   113 

 114 

PREVIOUS WORK 115 

The Slieve Gallion Inlier of Northern Ireland is exposed over ~15km2
 directly NE of the c. 116 

484-479 Ma ophiolitic Tyrone Plutonic Group (Cooper et al. 2011; Hollis et al. companion 117 

publication), which separates this package of rocks from the main occurrence of the c. 475-118 

469 Ma Tyrone Volcanic Group to the SW (Fig. 2).  The Slieve Gallion Inlier is bounded to 119 

the north and east by post-Silurian cover and along its southern margin has been intruded by a 120 

large body of biotite/hornblende-bearing granite (Slieve Gallion granite: 466.5 ± 3.3 Ma; 121 

Cooper et al. 2011) (Fig. 2).  The first comprehensive study of the inlier was presented within 122 

Hartley’s (1933) seminal work on the “Tyrone Igneous Series” (now Tyrone Igneous 123 

Complex).  Although no stratigraphy was attempted, Hartley’s map for the complex divided 124 

the volcanic succession at Slieve Gallion into (i) andesites, (ii) tuffs, and (iii) phyllites and 125 

chloritic schists.  The volcanic rocks have since been resurveyed for the 2nd edition 126 

Cookstown and Draperstown sheets (Geological Survey of Northern Ireland: GSNI 1983 & 127 

1995; also see Cameron & Old 1997), which provided the most up to date map of the inlier.  128 

No division within the volcanic succession was presented at 1:50,000, although GSNI field-129 

slips record a variety of lithologies in detail.   130 

  131 

Fragmentary graptolites from one locality at Sruhanleanantawey Burn [IGR 27905-38790] 132 

have been variably interpreted since their initial discovery by Hartley (1936).  A late 133 

Llandeilo to early Caradoc age was originally favoured on the presence of specimens 134 

identified as Dicranograptus and Climacograptus (Hartley 1936).  Re-collection by Hutton 135 

and Holland (1992) further identified the presence of Tetragraptus serra (Brongniart) and 136 

Sigmagraptus sensu lato, demonstrating an earlier Arenig to Llanvirn age.  Most recently 137 

Cooper et al. (2008) collected more than 20 graptolites and a lingulate brachiopod, and 138 

reexamined the specimens of Hutton and Holland (1992).  They concluded through the 139 

presence of Isograptus victoriae lunatus, the index fossil of the Isograptus victoriae lunatus 140 

Zone of the Australasian graptolite succession, the fauna can be assigned to the lowest Ca1 141 

subdivision of the Castlemainian Stage.  This is approximately equivalent to the top of the 142 

Whitlandian Stage of the Arenig (c. 475-474 Ma after Sadler et al. 2009).   143 

 144 



In addition to their evaluation of the Sruhanleanantawey Burn fauna, Cooper et al. (2008) 145 

determined a U-Pb zircon date for a flow-banded rhyolite from Formil Hill from the main 146 

outcrop of the Tyrone Volcanic Group to the SW (473 ± 0.8 Ma).  Rhyolites are common 147 

across the upper Tyrone Volcanic Group, exposed from Racolpa through Cashel Rock to 148 

Formil (Fig. 2) within the Greencastle Formation (c.473-469 Ma), and structurally and 149 

stratigraphically below the graphitic pelite and chert bearing localities around Mountfield and 150 

Broughderg (e.g. Crosh; c. 469 Ma Broughderg Formation; Hollis et al. 2012).  Cooper et al. 151 

(2008) suggested that the chert, thinly-bedded tuffaceous siltstone and pyritic mudstones, 152 

with greenish-grey tuffs and lavas at Slieve Gallion formed synchronously with the 153 

succession at Broughderg.   At this time, U-Pb geochronology from the Tyrone Volcanic 154 

Group sensu stricto was restricted to their one high-resolution age from Formil Hill and no 155 

detailed stratigraphic or petrochemical account of the Tyrone Volcanic Group existed.  Two 156 

similar, albeit slightly younger, U-Pb zircon TIMS dates have subsequently been obtained 157 

from the Greencastle Formation (469.42 ± 0.79 Ma from rhyolite, 470.37 ± 0.76 Ma from 158 

tuff: Hollis et al. 2012).  159 

 160 

STRATIGRAPHY 161 

The Slieve Gallion Inlier has been re-mapped through the integration of previous geological 162 

survey data and new fieldwork, geochemistry (see following) and the Tellus airborne 163 

geophysical survey of Northern Ireland. A new map is presented in Figure 3.  Magnetic, 164 

radiometric and electromagnetic (EM) data were acquired as part of the Tellus Project in 165 

2005-2006 (see GSNI 2007).  Details on survey specification and geophysical data 166 

processing are summarised within Beamish et al. (2007).  The volcanic succession at Slieve 167 

Gallion is hereby divided into three formations: Tinagh, Tawey, and Whitewater (Figs. 3-4).  168 

Each is described below.  Major ESE-WNW orientated faults divide the volcanic succession 169 

into three stratigraphic packages.  South of the Tirgan Fault, the Tinagh and Tawey 170 

formations are exposed; the latter is restricted to the W of Slieve Gallion.  North of the Tirgan 171 

Fault the structurally overlying Whitewater Formation is exposed. An older set of NW-SE 172 

striking faults cut the formations and are offset by the Tirgan Fault.  Several of these NW-SE 173 

striking faults, which are clear from regional magnetics (Fig. 3) are directly mapable (e.g. NE 174 

of Tinagh; GSNI 1983, 1995).  Ordovician intrusive rocks of quartz-porphyry, hornblende- 175 

and biotite-granodiorite, aplite and diorite cut the volcanic succession.  Units have been 176 

metamorphosed to subgreenschist facies assemblages and consequently the prefix meta- is 177 

omitted from all lithologies.   178 



 179 

Tinagh Formation: The Tinagh Formation crops out extensively across the southern side of 180 

the Slieve Gallion Inlier and includes the following informal stratigraphic units: Derryganard 181 

Lavas, Windy Castle Lavas, Letteran Volcanics, Torys Hole Ironstone, and the Mobuy Wood 182 

Basalts, each named after their type localities.  The Tinagh Formation is dominated by calc-183 

alkaline hornblende porphyritic tuffs and lavas, and non-arc type Fe-Ti enriched basalt of e-184 

MORB affinity (see following sections).  Lesser amounts of calc-alkaline, feldspar 185 

porphyritic andesite, mafic crystal tuff, ferruginous jasperoid (ironstone), mafic agglomerate 186 

(interpreted as interpillow breccias), tholeiitic pillow lavas, and rhyodacite are also present.  187 

The formation has a maximum exposed thickness of 1.2 km, although the rift-related Mobuy 188 

Wood Basalts appear have been erupted locally at different times (Fig. 4) and packages of the 189 

Windy Castle Lavas vary considerably in thickness along strike. 190 

 191 

Pillow lavas exposed at Derryganard (=Derryganard Lavas) are believed to represent the 192 

oldest stage of volcanism within the Slieve Gallion Inlier and are restricted to this area.  The 193 

succession is at least 130 m thick with pillow structures younging north towards the Windy 194 

Castle Lavas. The succession is bounded to the south and east by younger intrusions of c. 195 

465-464 Ma quartz-porphyry and a large body of biotite granite, and is succeeded in the 196 

northwest by the Windy Castle Lavas which dip NW to NE (Fig. 3).  Pillows are generally 197 

aphanitic, highly vesicular and range between 8 and 35 cm in diameter (Fig. 5a,f).  Flows 198 

become more massive up section, and rare augite phenocrysts occur in some near the base of 199 

the sequence.  No interpillow chert or sediment was observed. The Derryganard Lavas are 200 

non-magnetic and are geochemically distinct from all other units present in the Slieve Gallion 201 

Inlier, displaying tholeiitic and LREE-depleted geochemical characteristics (see 202 

petrochemistry).   203 

 204 

Immediately overlying the Derryganard Lavas, the Tinagh Formation is dominated by calc-205 

alkaline tuffs and andesites (Fig. 5b, 5i), with flows becoming increasingly pillowed and 206 

associated with agglomerate up section.  This sequence, has been divided into the Windy 207 

Castle Lavas and Letteran Volcanics on the basis of the dominant phenocryst type in flows, 208 

intensity of magnetic response, and type of associated tuff (i.e. mafic or hornblende-phyric).  209 

The contact with the underlying Derryganard Lavas was placed at the first occurrence of 210 

hornblende-phyric basaltic andesite/andesite or tuff.  The Windy Castle Lavas are 211 

characterized by vesicular hornblende-phyric andesites with lesser mafic crystal tuff; type 212 



localities occur at Windy Castle and W of Letteran.  Locally the Windy Castle Lavas reaches 213 

a thickness of 275 m.  The Letteran Volcanics are characterized by non-magnetic, calc-214 

alkaline, and feldspar-phyric, massive and pillowed andesites (which lack abundant 215 

hornblende phenocrysts; Fig. 5i) and sheared hornblende-bearing crystal tuffs (Fig. 4).  The 216 

Letteran Volcanics locally vary in thickness between ~275 to 340 m.  Packages of the Windy 217 

Castle Lavas alternate with the Letteran Volcanics both up sequence and along strike (Fig. 3).  218 

This suggests different areas experienced pyroclastic and effusive activity at different times, 219 

most likely associated with rifting (see following).  This is further supported by the 220 

geochemistry of the closely associated Mobuy Wood Basalts (see petrochemistry) and the 221 

occurrence of ironstone at Torys Hole, where a 1 m thick bed is exposed towards the base of 222 

the Tinagh Formation.  This unit is characterized by a mosaic of quartz and haematite 223 

(Cameron & Old 1997).  224 

 225 

Non-arc type basalts of eMORB affinity are restricted to the SW of the Slieve Gallion Inlier, 226 

exposed between Sruhanleanantawey Burn and Letteran (Fig. 3), and around Mobuy Wood.  227 

These lavas are geochemically distinct to all others analysed from the Slieve Gallion Inlier, 228 

having rift-related characteristics (see petrochemistry).  They are herein termed the Mobuy 229 

Wood Basalts.  Flows are often highly vesicular (Fig. 5c), and either massive or display well 230 

developed pillow structures with radial fractures.  Basaltic agglomerates, interpreted as 231 

interpillow breccias (Fig. 5d), are commonly associated with the latter. Although the Mobuy 232 

Wood Basalts are largely aphanitic, some flows contain rare augite phenocrysts which can 233 

display evidence for rounding (Fig. 5g).  This suggests these may be xenocrysts derived from 234 

the underlying Derryganard Lavas.  The Mobuy Wood Basalts can be distinguished based on 235 

their geochemistry and high total magnetic intensity, and from underlying flows of the Windy 236 

Castle Lavas and Letteran Volcanics by a lack of hornblende phenocrysts. It is not known if 237 

the Mobuy Wood Basalts are present on the E side of Slieve Gallion as these lavas were not 238 

sampled for geochemistry, although augite bearing andesites have been reported on GSNI 239 

fieldsheets north of Tirgan.  A single unit of rhyodacite also occurs at Mobuy Wood near the 240 

base of the overlying Tawey Formation.  This rhyodacite is extensively sheared and is 241 

associated with rare hornblende-phyric lava, tuff and small intrusions of quartz diorite.    242 

  243 

Tawey Formation: The overlying Tawey Formation is defined in the section exposed in 244 

Sruhanleanantawey Burn (Fig. 3). The formation is at least 1.45 km thick (discounting 245 

intrusive units) and is dominated by crystal and lithic tuffs, hornblende-phyric lavas with 246 



lesser fine-grained sedimentary rocks (banded chert, pyritic mudstone, banded siltstone and 247 

phyllite) (Fig. 4).  Poorly exposed, the Tawey Formation is restricted to the western side of 248 

Slieve Gallion.  It has been broadly divided into sequences dominated by lava (associated 249 

with high total magnetic intensity due to the presence of Fe-oxides; Fig. 3) and those 250 

dominated by tuff and sedimentary rocks.  The base of the Tinagh Formation was placed at 251 

the first occurrence of sedimentary rocks or layered chert, as crystal tuffs and hornblende-252 

phyric lavas occur in both formations.  No evidence for faulting between these formations is 253 

apparent from field relationships or geophysics.  No pillowed or vesicular flows have been 254 

recognized in the Tawey Formation, unlike the underlying Tinagh Formation. Way up criteria 255 

in the formation is scarce due to patchy outcrop.  Bedding towards the base of the 256 

Sruhanleanantawey Burn dips steeply NW, whereas towards the top bedding dips moderately 257 

SE (Fig. 3). It is believed this variation in the SE is due to localized doming associated with 258 

intrusive activity.  Intrusions are abundant in the stream section and include quartz-porphyry, 259 

a >35 m thick unit of hornblende-rich diorite, and alkali-basalt (see MRC335 discussion).  A 260 

large NW-SE orientated fault also cuts the upper part of the stream, perpendicular to bedding 261 

below the SE dipping graptolite-bearing succession.  Due to poor exposure combined with 262 

structural complications the succession is described as a transverse up Sruhanleanantawey 263 

Burn (as in Cameron and Old 1997).    264 

 265 

Near the base of the Sruhanleanantawey Burn section the formation is characterized by 266 

greenish-grey hornblende and feldspar phyric tuff and lava, which have been intruded by sills 267 

of reddish and pink weathered quartz porphyritic dacite common throughout the Tyrone 268 

Igneous Complex (Figs. 2-3).  Euhedral quartz, plagioclase feldspar and occasional greenish 269 

mica phenocrysts occur in a fine-grained pink dacitic matrix (Cameron & Old 1997).  Quartz-270 

porphyritic dacite that intrudes the lower Tyrone Volcanic Group has been dated at 465 ± 1.7 271 

Ma (Cooper et al. 2011).  Contacts of alternating exposures between quartz-porphyritic dacite 272 

and greenish-grey tuff and lava, which contain hornblende and feldspar phenocrysts, are not 273 

well exposed, although at Torys Hole and Tinagh quartz-porphyry is chilled against tuffs and 274 

dark greenish-grey dacite respectively.  Bedding is clear in coarse tuffs and banded phyllites, 275 

although extensive shearing often makes it difficult to distinguish between hornblende-276 

bearing crystal tuffs and lavas.   277 

 278 

The upper reaches of Sruhanleanantawey Burn have been mapped and logged in detail by the 279 

GSNI (Cameron & Old 1997), which is summarized here.  Pale grey, chert-like phyllites 280 



display faintly visible bedding and are composed of very fine-grained quartz, schistose 281 

sericite with weathered-out pyrite porphyoblasts surrounded by limonite haloes (Cameron & 282 

Old 1997).  Further upstream, phyllites are interbedded with coarse tuffs and dark grey 283 

coarse-grained crystal tuff.  A horizon of pale grey tuffaceous chert also occurs with bands of 284 

crystal-rich material and light grey thinly-bedded tuffaceous siltstone.  Towards the top of the 285 

Sruhanleanantawey Burn section, dark blue-grey pyritiferous mudstones and thin coarse tuff 286 

bands are overlain by strongly banded blue-grey siltstones (Fig. 5e).  Cooper et al. (2008) 287 

obtained a Ca1 Whitlandian age from a sparse graptolite fauna from this part of the sequence.  288 

Coarse crystal tuff further up Sruhanleanantawey Burn is associated with blocks of chert.  A 289 

thick (>30 m) feldspar-phyric silicified basaltic rock (Fig. 5h) is also present in 290 

Sruhanleanantawey Burn downstream from the graptolite bearing horizon.  This unit is non 291 

vesicular, massive and appears to contain small angular xenoliths of aphanitic basalt or fine-292 

grained silicified sediment. Its contacts with adjacent units are not exposed, although due to 293 

U-Pb zircon geochronology and its unique geochemical characteristics (see following) it is 294 

interpreted as intrusive. 295 

 296 

Whitewater Formation: Whitewater River and its tributaries provide the most complete 297 

section through the Whitewater Formation.  The lower part of this formation (>650 m thick) 298 

is characterized by thick accumulations of interbedded hornblende-phyric andesite and tuff, 299 

and is in faulted contact with the Tinagh and Tawey formations (Fig. 3). Tuffs are often 300 

schistose on the northern side of Slieve Gallion and are often chloritic and/or silicified.  301 

Lithic and crystal varieties occur with broken crystals of hornblende, augite, epidote, 302 

orthoclase and plagioclase set in a feldspathic groundmass with quartz, chlorite and epidote 303 

(Hartley 1933).  Augite and plagioclase would suggest a mafic source and glass fragments 304 

can display a devitrified perlitic structure (Hartley 1933).  Rare agglomerate containing chert 305 

fragments crop out SE of Windy Castle, whilst at Tirgan a 30 cm thick bed of layered chert 306 

occurs which contains intercalated tuff bands (Cameron & Old 1997; Fig. 3).  Some of the 307 

andesites NE of Slieve Gallion and N of Tirgan display pillow structures with a consistent 308 

orientation suggesting younging towards the north.  A rare horizon of ironstone (quartz-309 

hematite) is exposed at Drummuck (=Drummuck Ironstone: Fig. 3), with float occurring 310 

along strike to the north of Slieve Gallion.  The upper part of the Whitewater Formation is 311 

best exposed around Straw Mountain and is composed of a >750 m thick sequence of 312 

chloritic and silicified lithic and crystal tuff with rare andesite.  Locally tuffs in Whitewater 313 

River (S of Straw Mountain) can be intensely sericitised and pyritic.  Ironstone (quartz-314 



hematite) float is also common around Straw Mountain, suggesting a second stratigraphically 315 

higher unit may be present in the Whitewater Formation above the Drummuck Ironstone (Fig. 316 

3). 317 

 318 

PETROCHEMISTRY: 319 

Volcanic rocks from all major stratigraphic horizons within the Slieve Gallion Inlier were 320 

sampled for whole-rock geochemical analysis.  All signs of weathering, alteration and 321 

veining were removed prior to powdering in a Cr-steel TEMA.  Major-elements and trace-322 

elements were determined for whole-rock samples on fused glass beads and powder-pellets, 323 

respectively, by X-ray fluorescence (Philips® MagiX-Pro 4kW Rh x-ray tube) at the 324 

University of Southampton.  Rare earth-elements (REE; plus Nb, Hf, Ta, Th, U) were 325 

determined by inductively coupled plasma mass spectrometry (Thermo Scientific Xseries 2) 326 

on the same powders following an HF/HNO3 digest.  Accuracy (%RD) and Precision 327 

(%RSD) was typically <3 % for ICP-MS analyses and <5 % for XRF analyses based on 328 

replicate analyses of a range of international standards (XRF: JR-1, JR-2, JG-3, JB-1a, JA-a; 329 

ICP-MS: BHVO-2, JB-1a, JB-3, JGB-1, JR-1) (detailed in Hollis 2013).  Elements with 330 

accuracy and precision >10% (ICP-MS: Ta, Hf; XRF: Cu, Co) are considered poor (Jenner, 331 

1996) and were not used.  Neodymium was isolated for Nd isotope analysis from ICP-MS 332 

mother solutions using 6.5ml Dowex AG50W-X8 (200-400 mesh) cation columns and Ln-333 

spec reverse phase columns.  Nd isotope ratios were measured using a VGMicromass Sector 334 

54 thermal ionization mass spectrometer at the University of Southampton. 143Nd/144Nd was 335 

measured in multidynamic mode, exponentially corrected for instrumental fractionation 336 

relative to 146Nd/144Nd = 0.7219.  The JNdi standard gave a value of 0.512091 ± 14 (2sd, 337 

n=20).  Further detail on methods is reported in Hollis et al. (2012).  All results are presented 338 

as Supplementary Information.  Geochemical analyses of Cooper et al. (2011; MRC prefixes) 339 

are also included where appropriate.  Due to the extensive hydrothermal alteration and 340 

metamorphism across the Tyrone Volcanic Group, only elements demonstrated to be 341 

immobile are used to elucidate petrogenesis, tectonic affinities and chemostratigraphy (after 342 

Cooper et al. 2011; Hollis et al. 2012).  These include: TiO2, Th, V, Sc, high field strength 343 

elements (HFSE: e.g. Nb, Zr, Y), and the rare-earth elements (REE).   344 

 345 

Tinagh Formation: A single sample was analysed from the Derryganard Lavas.  This 346 

sample (SPH525) is unusual within the Slieve Gallion Inlier displaying low Th (ThCN 8.21) 347 

and LREE depletion relative to the HREE (La/YbCN 0.7).  Low Zr/Y (2.24), Zr/TiO2 and 348 



Nb/Y (0.03) ratios suggest these lavas are primitive subalkaline basalts of tholeiitic affinity 349 

(Figs. 6, 7a).  Pronounced negative Nb and Ti anomalies are consistent with formation in an 350 

island-arc setting.  Sample SPH525 is characterized by high MgO (9.71 wt.%), Cr (650 ppm), 351 

Ni (247 ppm) and low SiO2 (47.1 wt.%).  352 

 353 

Non-pillowed hornblende-phyric lavas of the Windy Castle Lavas were sampled between 354 

Derryganard and Slieve Gallion (=SPH506, SPH511, SPH528 and SPH534).  These units are 355 

strongly calc-alkaline (Zr/Y 6.45-12.1), LILE enriched (ThCN 201.8-458.6) and display high 356 

LREE enrichment relative to the HREE (La/YbCN 9.52-14.00) (Figs. 6,7b).  TiO2 (0.48-0.61 357 

wt.%) and Cr (59-173) contents are low, and Nb/Y values range between 0.35 and 0.65.  358 

Sample SPH532, collected from pillow lavas NE of Letteran, is calc-alkaline (Zr/Y 7.93) and 359 

displays extreme LILE enrichment (ThCN 600) and low MgO (1.06 wt.%), TiO2 (0.24 wt.%), 360 

Cr (99 ppm) and V (34 ppm).  All units from the Windy Castle Lavas display island-arc 361 

geochemical characteristics including pronounced negative Nb anomalies (Figs. 6,7b).  A 362 

single sample of feldspathic andesite (SPH530) from the Letteran Volcanics is also strongly 363 

calc-alkaline (Zr/Y 10.37) and LILE and LREE enriched (ThCN 237.4, La/YbCN 12.69) (Figs. 364 

6,7b).  This sample yielded a strongly negative εNdt value of -9.02 (Fig. 6c) and displayed 365 

strong island-arc geochemical characteristics (e.g. negative Nb anomalies). 366 

 367 

The Mobuy Wood Basalts are geochemically distinct to all other mafic rocks in the Slieve 368 

Gallion Inlier and resemble rift-related lavas of the Tyrone Volcanic Group (Hollis et al. 369 

2012).  Low Zr/TiO2 and high Nb/Y (0.36-0.64) classify these lavas as sub-alkaline basalts, 370 

whilst Zr/Y ratios (3.82-6.46) locate them within the calc-alkaline field of Ross and Bédard 371 

(2009) (Figs. 6a,d,f).  All of the samples analysed are characterized by high Fe2O3T (11.56-372 

13.07 wt.%) and TiO2 (1.83-2.33 wt.%).  εNdt values are the most primitive of all samples 373 

analysed from the Slieve Gallion Inlier (+0.6 to +2.5: Fig. 6c).  Th/Yb-Nb/Yb systematics 374 

and various discrimination diagrams (e.g.  Pearce & Cann 1973; Pearce & Norry 1979; Wood 375 

1980; Meschede 1986) suggest these lavas are of eMORB affinity and slightly enriched in 376 

subduction zone components (Fig. 7c-d).  On multi-element variation diagrams all three 377 

samples analysed from the Mobury Wood Basalts show high LILE (ThCN 38.8-155.3) and 378 

REE enrichment, and LREE enrichment relative to the HREE (La/YbCN 3.44-4.82) (Fig. 7c-379 

d).  Sample SPH533 (vesicular pillowed basalt) displays a small positive Nb anomaly and 380 

minor negative Ti anomaly (Fig. 7c), whereas samples SPH508 and SPH517 (unpillowed 381 

basalt) show negative Nb and Ti anomalies (Fig. 7d).  Sample SPH533 is characterized by 382 



slightly lower TiO2, Th, REE, HFSE, higher Zr/Y, Cr and MgO, and a more primitive εNdt 383 

value than SPH508 and SPH517 (Fig. 7c).  384 

 385 

Tawey Formation:  Four samples have been analysed from the Tawey Formation: lithic tuff 386 

(SPH493), tuff associated with chert (SPH494), chert (SPH52) and siltstone (SPH496). The 387 

volcanic samples are subalkaline, transitional to calc-alkaline (Zr/Y 3.94-8.57) and display 388 

high ThCN (172.4-275.8) (Fig. 6).  Chert is characterized by high ThCN (343.5), K2O+Na2O 389 

and Al2O3 (11.16 wt.%) consistent with both continentally- and arc-derived components.   390 

 391 

Whitewater Formation: All samples analysed from the Whitewater Formation (SPH467 to 392 

SPH488, and SPH502) are basaltic andesitic or andesitic in composition.  These rocks are 393 

subalkaline (0.45-0.7), strongly calc-alkaline (Zr/Y 5.69-10.57), LILE (ThCN 227.72-310.41) 394 

and LREE enriched relative to the HREE (La/YbCN 7.88-10.91), and are characterized by 395 

strongly negative εNdt values (-12.68 to -13.86) (Fig. 6,7f). Cr contents are high (282-405 396 

ppm). All samples show pronounced negative Nb and HFSE anomalies, and positive Zr 397 

anomalies, on multi-element variation diagrams (Fig. 7f). 398 

 399 

Sruhanleanantawey Burn alkali basaltic rock: An extensively altered feldspar-phyric 400 

basaltic rock from the upper portions of Sruhanleanantawey Burn (MRC335 and SPH25) was 401 

sampled for geochemistry and U-Pb geochronology downstream of the c. 475-474 Ma 402 

graptolite bearing rocks analysed by Cooper et al. (2008) and previous workers.  This unit is 403 

characterized by high TiO2 (3.53-3.84 wt.%), Fe2O3T (17.82-18.28 wt.%), P2O5 (0.56-0.62 404 

wt.%), LOI (4.51-4.85 %), V (403-463 ppm), Zr (249-283 ppm), and low Cr (4-19 ppm), and 405 

Th (2-4 ppm).  Sample MRC335 is alkalic (Nb/Y 0.89), of eMORB to OIB affinity (Nb/Yb 406 

8.96) and displays positive Ti and Zr anomalies and weakly negative Nb and Y anomalies 407 

(Fig. 7e).  408 

 409 

U-Pb GEOCHRONOLOGY 410 

Two samples were dated by U–Pb thermal ionization mass spectrometry (TIMS) 411 

geochronology at the NERC Isotope Geoscience Laboratory (NIGL): (i) MRC335, a silicified 412 

Fe-Ti enriched alkali basaltic rock collected from Sruhanleanantawey Burn [IGR 27895-413 

38795], and (ii) MRC351, diorite from Crooked Bridge [IGR 27755-38630].  Zircons were 414 

isolated using conventional mineral separation techniques. Prior to isotope dilution thermal 415 

ionization mass spectrometry (ID-TIMS) analysis, zircons were subject to a modified version 416 



of the chemical abrasion technique (Mattinson 2005).  Methods are identical to those reported 417 

in Hollis et al. (2012; also companion publication).  Errors for U-Pb dates are reported in the 418 

following format: ±X(Y)[Z], where X is the internal or analytical uncertainty in the absence 419 

of systematic errors (tracer calibration and decay constants), Y includes the quadratic 420 

addition of tracer calibration error (using a conservative estimate of the standard deviation of 421 

0.1% for the Pb/U ratio in the tracer), and Z includes the quadratic addition of both the tracer 422 

calibration error and additional 238U decay constant errors of Jaffey et al. (1971).  All 423 

analytical uncertainties are calculated at the 95% confidence interval.  Data is presented in 424 

Table 1. 425 

 426 

Sample MRC351 was collected from the Crooked Bridge diorite, a 1km long by 400 m wide 427 

body exposed within the Slieve Gallion granite (Fig. 2).  At its northern margin, 428 

approximately 400 m N of Crooked Bridge [2750 3859], the transition from granite to diorite 429 

is observed over less than 5 m.  In places, the granite includes irregular patches of 430 

hornblende-rich diorite that are sometimes diffuse, suggestive of magma mingling and 431 

mixing.  In thin section, diorite from this marginal location contains mainly early euhedral 432 

hornblende and plagioclase crystals with late interstitial quartz that encloses smaller sub-433 

anhedral plagioclase.  The texture is that of a granite-diorite hybrid and indicates syn-434 

magmatic crystallisation. Seven zircon fractions (single grains and fragments) were analyzed 435 

from MRC351.  All seven analyses are concordant when the systematic λ238U and λ235U 436 

decay constant errors are considered.  Six form a coherent single population yielding a 437 

weighted mean 206Pb/238U date of 469.58 ± 0.32 (0.57)[0.77] Ma (MSWD = 1.4) which we 438 

interpret as being the age of sample (Fig. 8a).  One older analysis (z7: Fig. 8a) is considered 439 

to reflect incorporation of older material (c. 473 Ma) derived from the Tyrone Volcanic 440 

Group into the magmatic system.   441 

 442 

Sample MRC335 represents a silicified and feldspar porphyritic, Fe-Ti enriched alkali 443 

basaltic rock which crops out towards the top of Sruhanleanantawey Burn. As detailed above, 444 

this unit is non vesicular, massive and appears to contain angular xenoliths of aphanitic basalt 445 

or silicified sediment. Its contacts with adjacent units are not exposed.  Five zircon fractions 446 

(single grains) were analyzed from MRC335.  One grain yielded a Proterozoic age (c.1033 447 

Ma) indicating incorporation of older basement material.  Within the remaining population 448 

each of the analyses are concordant however there is dispersion with 206Pb/238U dates ranging 449 

from 467.43 ± 0.48 to 470.38 ± 0.40 Ma (Fig. 8).  The youngest 206Pb/238U date (z1: Fig. 8a) 450 



we interpret to reflect minor Pb-loss.  The age of the sample is approximated by the 451 

population of three equivalent 206Pb/238U dates (z6, z11 and z14) to 469.36 ± 0.34 452 

(0.58)[0.78] Ma (MSWD 0.42).  Visual inspection, and limited CL imaging, of the zircons 453 

(including ones dated) indicates they are typical of magmatic zircons (including other 454 

samples dated in this study) based upon their external morphology and internal concentric 455 

zonation (Fig. 8b).  456 

 457 

DISCUSSION 458 

Petrochemical evolution 459 

Earliest magmatism within the Slieve Gallion Inlier (Tinagh Formation) is characterized by 460 

the eruption of tholeiitic pillow basalt of island-arc affinity (=Derryganard Basalts).  These 461 

lavas are the most primitive of all samples analysed (low SiO2 and Zr/Y, high MgO).  Low 462 

La/YbCN and ThCN suggest magmatism at this stage was not contaminated by continental 463 

material.  Overlying deposits within the Tinagh Formation (= Letteran Volcanics & Windy 464 

Castle Lavas) are dominated by LILE and LREE-enriched hornblende-phyric and feldspathic 465 

calc-alkaline basaltic andesites and andesitic tuffs.  Strongly-negative εNdt values, high ThCN 466 

and La/YbCN suggest a sudden and significant input of continental crust and/or detritus 467 

occurred at this time into the arc system; or the Derryganard Basalts represent an episode of 468 

volcanism associated with extensive back-arc rifting, such as the Beaghmore Formation of 469 

the lower Tyrone Volcanic Group (see Hollis et al. 2012).  Mafic tuffs and lavas become 470 

increasingly replaced by those of andesitic composition up sequence.  The proportion of 471 

agglomerates (inter-pillow breccias) and pyroclastic deposits also increases towards the top 472 

of the Tinagh Formation.   473 

 474 

Primitive, non-arc type Fe-Ti-P enriched basalt of e-MORB affinity recognized around 475 

Mobuy Wood (=Mobuy Wood Basalts) are typical of rift-related lavas present within the 476 

Tyrone Volcanic Group (references within Hollis et al. 2012).  Although εNdt values of Fe-Ti 477 

eMORB are the most primitive of all samples analysed within the Slieve Gallion Inlier (+0.6 478 

to +2.5), they are less so than those described in Hollis et al. (2012) from main exposures of 479 

the lower Tyrone Volcanic Group to the SW (+2.4 to +5.9).  Hollis (2013) noted a systematic 480 

geochemical variation in Fe-Ti enriched basalts of the Tyrone Volcanic Group, with 481 

increasing Fe and Ti associated with: increasing Zr, Th, V, La and Nb; decreasing MgO, 482 

CaO, Al2O3, Ni and Cr; and more negative εNdt values.  These lavas may have formed 483 

through the interaction between an island arc and a propagating rift (Hollis et al. 2012).   484 



 485 

The occurrence of 1-5 m thick beds of ironstone (or ironstone float) within all formations of 486 

the Slieve Gallion Inlier also suggests rifting was episodic. Ironstones are common within 487 

Tyrone Volcanic Group, where they occur as laterally continuous beds in the Loughmacrory, 488 

Beaghmore and Broughderg formations (Fig. 2a; Hollis et al. 2012; Hollis 2013).  Clasts of 489 

ironstone are also found in some basaltic agglomerates of the Creggan Formation and in tuffs 490 

of the aforementioned formations (Hollis et al. 2012).  Ironstones in the Tyrone Volcanic 491 

Group are temporally and spatially associated with rift-related lavas (e.g. Fe-Ti enriched 492 

eMORB, OIB, island-arc tholeiite), synvolcanogenic faults, hydrothermal alteration and in 493 

some instances base-metal mineralization (Hollis 2013).  Whole rock geochemical ratios and 494 

positive Eu anomalies at Torys Hole (and Tanderagee of the Loughmacrory Formation) are 495 

comparable to volcanic-hosted massive sulphide proximal ironstones which form during rift-496 

related hydrothermal activity (Hollis 2013). 497 

 498 

The overlying Tawey and Whitewater formations are dominated by calc-alkaline lavas and 499 

volcaniclastics with minor sedimentary rocks. This reflects a switch of the arc system from 500 

effusive dominated activity (in the Tinagh Formation), through intermittent extrusive and 501 

pyroclastic activity (Tawey Formation and lower Whitewater Formation), to pyroclastic 502 

dominated activity (upper Whitewater Formation).  εNdt values become progressively more 503 

negative up sequence, discounting the Mobuy Wood rift-related lavas (-9.0 Letteran 504 

Volcanics; -12.9 lower Whitewater Formation; -12.7 to -13.9 top of Whitewater Formation).  505 

This may either represent an increased contribution of continentally derived material during 506 

petrogenesis associated with arc-accretion, or may be an artifact of limited sampling.  The 507 

presence of thick packages of sedimentary rocks in the Tawey Formation and the repeated 508 

occurrence of ironstone suggests volcanic activity was interrupted by periods of quiescence at 509 

several times. 510 

 511 

Correlations with the Tyrone Volcanic Group 512 

Using recently published U-Pb zircon geochronology and geochemistry (Cooper et al. 2008, 513 

2011; Draut et al. 2010; Hollis et al. 2012) and the work presented herein, we can refine 514 

possible correlations across the Tyrone Volcanic Group.  Stratigraphic divisions established 515 

within the main occurrence of the Tyrone Volcanic Group, exposed to the SW of the Slieve 516 

Gallion Inlier, are presented in Hollis et al. (2012) and summarized in Figure 9.  Although the 517 

volcanic succession at Slieve Gallion was initially suggested to correlate with the Broughderg 518 



Formation of the upper Tyrone Volcanic Group (Cooper et al. 2008), recent geological 519 

mapping (Hollis et al. 2012) has identified the presence of similar lithologies (e.g. 520 

hornblende-phyric lavas, thinly-bedded argillaceous sedimentary rocks, sheared-rhyolitic tuff, 521 

layered chert and greenish-grey tuffs) within the Loughmacrory Formation (Fig. 2) of the 522 

lower Tyrone Volcanic Group (Fig. 9).  In addition, the occurrence of ferruginous jasper 523 

(ironstone) at Slieve Gallion would argue against a correlation with the Broughderg 524 

Formation (c. 469 Ma), where ironstones are characterized by magnetite-silica-pyrite and 525 

graphitic pelite is abundant (Hollis et al. 2012).  Only at Crosh in the Broughderg Formation 526 

has quartz-hematite ironstone been recognized (Fig. 2), where it replaces a tuffaceous horizon 527 

in a thick sequence of graphitic-pelite (Hollis 2013).  Pillow lavas of calc-alkaline affinity are 528 

also absent within the upper Tyrone Volcanic Group, but are present in the Creggan, 529 

Loughmacrory and Beaghmore formations of the lower Tyrone Volcanic Group (Hollis et al. 530 

2012).    531 

 532 

The Loughmacrory Formation is amongst the most diverse succession in the Tyrone Volcanic 533 

Group and was divided by Hollis et al. (2012) into three members (Figs. 4 & 9).  The oldest, 534 

the  Tanderagee Member, is characterized by a thick succession of crystal and lithic tuff, 535 

pillowed calc-alkaline basalt/ basaltic-andesite, hornblende and feldspar phyric andesites, and 536 

agglomerate, associated with lesser ironstone, Fe-Ti eMORB, layered chert and sedimentary 537 

rocks (including siltstone and rare mudstone).  The overlying Merchantstown Glebe Member 538 

is characterized by pillowed, massive and sheet-flow Fe-Ti enriched basalt/basaltic andesite 539 

of eMORB affinity associated with lesser crystal tuff and agglomerate.  The youngest, the 540 

Streefe Glebe Member, is characterized by a thick sequence of calc-alkaline LILE and LREE 541 

enriched crystal tuff with rare occurrences of lava (of unknown affinity).  The Loughmacrory 542 

Formation bears a striking resemblance to the volcanic succession exposed in the Slieve 543 

Gallion Inlier, with the Tinagh and Tawey formations equivalent to the Tanderagee Member, 544 

and the Whitewater Formation broadly equivalent to the Streefe Glebe Member (Fig. 9).  Fe-545 

Ti eMORB lavas of the Mobuy Wood Basalts are present both in the Tanderagee and 546 

Merchantstown Glebe members, and the underlying Creggan Formation (Figs. 4& 9).   547 

Although a number of these lithologies can also be found in the Beaghmore Formation of the 548 

lower Tyrone Volcanic Group, which is restricted to the E of the Dungate Fault (Fig. 2), this 549 

backarc assemblage is dominated by bimodal tholeiitic volcanism and Fe-Ti eMORB, with 550 

few lavas of calc-alkaline affinity (Hollis et al. 2012). 551 

 552 



Geochemical data from both the Slieve Gallion Inlier and all formations of the Tyrone 553 

Volcanic Group are plotted together in Figures 6-7.  Multi-element variation profiles allow 554 

little distinction between calc-alkaline tuffs of the Tyrone Volcanic Group (Fig. 7b,f).  555 

Although samples analysed herein overlap with lavas and tuffs from both the lower and upper 556 

Tyrone Volcanic Group, the most evolved samples from the latter are characterized by much 557 

higher Zr/Y contents, and Nb/Y ratios toward strongly alkalic compositions (Fig. 6f).  For 558 

example, c. 469 Ma rhyolites of the Broughderg Formation display A-type affinities and are 559 

characterized by high Nb and Zr (Hollis 2013) which have not been recognized at Slieve 560 

Gallion.   561 

 562 

Mafic lavas of the Tyrone Volcanic Group perhaps provide better discrimination between 563 

formations, as many units are geochemically distinct.  In the lower Tyrone Volcanic Group 564 

mafic flows are characterized by calc-alkaline basalt, Fe-Ti enriched eMORB and island-arc 565 

tholeiite.  In the upper Tyrone Volcanic Group mafic units are restricted to the Broughderg 566 

Formation where they are borderline to strongly alkalic and display OIB-like characteristics 567 

(Hollis et al. 2012).  Pillowed lava sampled from the Mobuy Wood Basalts (SPH533) has an 568 

identical multi-element variation profile to Fe-Ti pillowed lavas from the lower Creggan, 569 

Loughmacrory (Tanderagee Member) and Beaghmore formations of the lower Tyrone 570 

Volcanic Group, with positive Nb anomalies, and similar LILE and REE concentrations (Fig 571 

7c).  Similarly, massive and vesicular, non-pillowed flows of the Mobuy Wood Basalts 572 

(SPH508, SPH517) display slight negative Nb anomalies, and Ti anomalies.  These flows are 573 

geochemically identical to Fe-Ti lavas from the upper Creggan Formation and 574 

Merchantstown Glebe members of the lower Tyrone Volcanic Group (Fig. 7d; see Hollis et 575 

al. 2012).    576 

 577 

Island arc tholeiite, exposed at Derryganard, is only present in the lower Tyrone Volcanic 578 

Group in the Beaghmore Formation (Hollis et al. 2012).  Although these lavas display similar 579 

multi-element profiles to sample SPH525 (Derryganard Lavas: Fig. 7a), they contain higher 580 

Nb/Yb, Zr/Y and Nb/Y (Fig. 4a-b, d-e) consistent with backarc volcanism in the Beaghmore 581 

Formation following intra-arc rifting (Hollis et al. 2012).  Tholeiitic tuffs and rhyolitic 582 

agglomerates of the Beaghmore Formation which display flat REE profiles and low Zr/Y and 583 

Nb/Yb  also appear to be unrepresented in the Slieve Gallion Inlier, although rhyodacite from 584 

Mobuy Wood was not analysed.   585 

 586 



Nd-isotope constraints of samples from Slieve Gallion are shown together with samples from 587 

the Tyrone Volcanic Group in Figure 6c. Tuffs and lavas of the Loughmacrory Formation are 588 

slightly more primitive (εNdt -4.1 to -7.0) than the Tinagh Formation (Letteran Volcanics: 589 

εNdt -9.0), although chert from the underlying Creggan Formation has produced a similar 590 

value (εNdt -8.0) (Hollis et al. 2012).  No Nd-isotope constraints have been carried out on 591 

tuffs of the Streefe Glebe Member, which would equate to the Whitewater Formation (εNdt -592 

12.7 to -13.9).  It is possible the upper part of the Whitewater Formation records the onset of 593 

arc-accretion (= lower Greencastle Formation), as similar εNdt values have also been 594 

produced from the syncollisional upper Tyrone Volcanic Group (e.g.  rhyolite from 595 

Greencastle -8.9, tuff associated with graphitic pelite at Broughderg -11.6).  An alternate 596 

explanation is the Slieve Gallion volcanics may have been founded upon a thicker portion of 597 

continental crust and experienced a greater degree of crustal contamination.  This latter 598 

scenario is consistent with the geochemistry of the Mobuy Wood Basalts, which display less 599 

primitive εNdt and higher Th/Yb values (Fig 6d-e) than similar units of the Loughmacrory 600 

Formation.   601 

 602 

In summary, new stratigraphic and petrochemical data from Slieve Gallion suggests the 603 

succession at Slieve Gallion is more analogous to the lowermost parts of the Tyrone Volcanic 604 

Group, specifically the Loughmacrory Formation (Figs. 6-7).  This is also consistent with U-605 

Pb zircon dating of the upper Tyrone Volcanic Group at c.473-469 Ma (Cooper et al. 2008; 606 

Hollis et al. 2012), and a an age of c. 475-474 Ma from the graptolite bearing succession of 607 

Sruhanleanantawey Burn (Cooper et al. 2008).   608 

 609 

Intrusive rocks 610 

The Fe-Ti enriched alkali basaltic rock of eMORB to OIB-like affinity from 611 

Sruhanleanantawey Burn dated herein to c. 469 Ma is geochemically similar to the Fe-Ti 612 

enriched basalts exposed at Mountfield Quarry (Fig. 5c) and Broughderg, both of which sit 613 

stratigraphically above c. 473-469 Ma rhyolites of the Greencastle Formation.  The 614 

Sruhanleanantawey Burn and Broughderg Formation basalts plot in similar positions along 615 

the mantle array, at higher Nb/Yb than eMORB (Fig. 6d-e).  Zr/Y ratios are slightly lower in 616 

the Mountfield Basalts, although the Sruhanleanantawey Burn samples follow the same trend 617 

of increasing alkalinity with Zr/Y (Fig 4f).  Sample MRC335 also shows a similar slight 618 

negative Nb anomaly, and positive Zr and Ti anomalies (Fig. 7e).  We interpret the 619 

Sruhanleanantawey Burn alkali basaltic rock as a late intrusive and representative of a suite 620 



which fed the rift related lavas of the uppermost Tyrone arc. The inherited zircon fraction 621 

dated at c. 1033 Ma is consistent with the assimilation of continental material into the 622 

magmatic arc at this time.  Accretion of the Tyrone arc onto the peri-Laurentian, Dalradian-623 

affinity, Tyrone Central Inlier (Chew et al. 2008) is placed at c. 470 Ma coeval with 624 

widespread tonalite emplacement (Cooper et al. 2011; also Hollis et al. 2012).  Undated Fe-625 

Ti enriched dykes similar to MRC335 also intrude S-type muscovite granite at Tremoge Glen 626 

(SPH129 in Hollis et al. companion publication). 627 

 628 

The Crooked Bridge diorite, dated herein to 469.58 ± 0.32 (0.57)[0.77] Ma, displays a clear 629 

magma mixing-mingling relationship with hornblende-granite.  Biotite-granite dated by 630 

Cooper et al. (2011) from the eastern side of Slieve Gallion yielded a U-Pb zircon age of 631 

466.5 ± 3.3 Ma, within error of that presented herein for the Crooked Bridge diorite.  632 

Although the biotite- and hornblende-bearing granites of Slieve Gallion may represent 633 

distinct magmas, the latter may have been simply contaminated from the underlying Tyrone 634 

Plutonic Group as, highly magnetic material of the Tyrone Plutonic Group to be restricted to 635 

the southwestern side of Slieve Gallion where hornblende-bearing granite crops out.  Both the 636 

Slieve Gallion granite and Crooked Bridge diorite belong to the c. 470-464 Ma arc-related 637 

intrusive suite of Cooper et al. (2011), which stitches the Tyrone Volcanic Group in its 638 

present structural position following arc-accretion.  639 

 640 

A correlation for the Irish Caledonide arcs  641 

Through the study of fossil and modern orogens, and the use of geodynamic models (e.g. 642 

Afonso & Zlotnik 2011; Boutelier & Chemenda 2011; Gerya 2011), it is evident that there is 643 

no paradigm that uniquely defines arc-continent collision (reviewed in Brown et al. 2011).  644 

Natural complexities in key first order parameters such as the nature of the continental 645 

margin (e.g. shape, thickness, presence of re-entrants, hydration, composition) and arc-trench 646 

complex (e.g. shape of trench, arc thickness, nature of the basement), result in considerable 647 

variation between and within orogens (see Brown et al. 2011), along with their interactions 648 

with spreading centres, oceanic plateaus and microcontinental blocks.  Arc and ophiolite 649 

complexes may be obducted (e.g. Lushs Bight, Bay of Islands: van Staal et al. 2007) or 650 

underplated to continental margins (e.g. Annieopsquotch Accretionary Tract: Zagorevski et 651 

al. 2009) depending on their relative age at the time of accretion and tectonic position.  Fore-652 

arcs may be preserved or completely lost due to the location of failures in the overriding 653 

plate, which are determined by sites of lithospheric weakness (Boutelier & Chemenda 2011).  654 



Accretion may also be diachronous across the margin, with implications for the timing of 655 

subduction reversal (Brown et al. 2011).  656 

 657 

Using recently presented stratigraphic, geochemical and U-Pb zircon constraints from the 658 

Tyrone Volcanic Group (Cooper et al. 2011; Hollis et al. 2012; and those herein) we can 659 

refine possible correlations between the Irish Caledonian arcs which were accreted to the 660 

Laurentian margin during the Grampian orogeny.  Petrochemical correlations are presented in 661 

Figure 9 (modified after Ryan & Dewey 2011) according to the timescale of Sadler et al. 662 

(2009). Whilst previous work has suggested arc-continent collision during the Grampian 663 

orogeny was short-lived and not markedly diachronous (Soper et al. 1999; Dewey 2005), the 664 

data presented herein along with recently published geochronology from the Tyrone Igneous 665 

Complex (Cooper et al. 2011; Hollis et al. 2012) clearly demonstrate that either: (i) the 666 

evolution of arc volcanism and to some extent arc-accretion was diachronous in the peri-667 

Laurentian Irish Caledonides (Cooper et al. 2011); or (ii) multiple arc-systems of different 668 

age are preserved (e.g. Hollis et al. 2012). 669 

 670 

In western Ireland, the generation of suprasubduction zone affinity oceanic crust began prior 671 

to c. 514 Ma, the age of high-grade metamorphism and deformation of the Deer Park 672 

ophiolitic mélange (514 ± 3 Ma 40Ar-39 hornblende: Chew et al. 2010).  Early obduction may 673 

have occurred to an outboard block of peri-Laurentian affinity microcontinental crust (Chew 674 

et al. 2010), as in the Newfoundland Appalachians (=Taconic phase 1 of van Staal et al. 675 

2007).  Blocks of muscovite-bearing schist within the Deer Park mélange contain detrital 676 

zircon spectra similar to the Dalradian Supergroup and have produced a 40Ar-39 age of 482 ± 677 

1 Ma (Chew et al. 2010).  An age of c. 482 Ma for ophiolite exhumation is consistent with 678 

heavy mineral studies from western Ireland which record significant quantities of ophiolite-679 

derived sediment entering the fore-arc (South Mayo Trough) of the Lough Nafooey arc from 680 

c. 478-476 Ma (Dewey & Mange 1999; Letterbrock Formation: Fig. 9).  Together, the South 681 

Mayo Trough, Lough Nafooey Group and Tourmakeady Group record the development of 682 

the colliding Lough Nafooey arc prior to and during its collision with Laurentia (Ryan et al. 683 

1980; Clift & Ryan, 1994; Dewey & Mange, 1999; Draut et al. 2004; Fig. 9).  LREE-684 

depletion and the strongly positive εNdt values of tholeiitic basalts in the lower Lough 685 

Nafooey Group suggest an origin far from Laurentia.  A switch from the eruption of island-686 

arc tholeiites (and boninitic lavas of the Bohaun Volcanic Formation) to calc-alkaline lavas 687 

occurs prior to c. 490 Ma (Fig. 9).  Increasing SiO2, LILE and LREE enrichment and more 688 



negative εNdt values with stratigraphic height in the Lough Nafooey arc, reflect an increasing 689 

contribution of subducted material into the arc system as it approached the Laurentian margin 690 

(Draut et al. 2004; Chew et al. 2007).  The overlying syn-collisional Tourmakeady Group (c. 691 

476-470 Ma) formed synchronously with peak metamorphism and regional deformation 692 

within the Dalradian Supergroup. The timing of ‘hard’ collision in western Ireland (= base of 693 

the Tourmakeady Group: Draut et al. 2004) occurred between c. 484 Ma (=graptolite 694 

contraint on Lough Nafooey Group) and c. 476 Ma (=age of the Mt. Partry Formation) (Fig. 695 

9).  This phase of arc-accretion is equivalent to Taconic phase 2 of the Newfoundland 696 

Appalachians (van Staal et al. 2007; see discussion in Hollis et al. companion publication). 697 

 698 

While the Lough Nafooey arc clearly shows an increasing contribution of subducted material 699 

into the arc system as it approached the Laurentian margin (Draut et al. 2004), no such 700 

systematic trend is evident in the Tyrone Volcanic Group (Hollis et al. 2012).  Both the syn-701 

collisional upper Tyrone Volcanic Group and the pre-collisional basal formations of the 702 

lower Tyrone Volcanic Group display strongly negative εNdt values and evidence for strong 703 

LILE- and LREE-enrichment (Fig. 6c,f, Fig. 7b,f; Draut et al. 2009; Cooper et al. 2011; 704 

Hollis et al. 2012).  Two possible scenarios may explain these geochemical characteristics.  705 

In the first scenario, the Tyrone Igneous Complex may have developed above a SE-dipping 706 

subduction zone and is part of the Lough Nafooey arc system (after Draut et al. 2009).  In this 707 

instance, extensive crustal contamination would result from subducted sediment derived from 708 

the Laurentian margin. Increased contamination may have occurred if the Tyrone arc was 709 

founded upon a segment of peri-Laurentian outriding continental crust.  Arc-continent 710 

collision would have been diachronous from c. 480 Ma in western Ireland to c. 470 Ma in 711 

County Tyrone.  Similarly, the geochemical evolution of the arc must have also been strongly 712 

diachronous (Fig. 9), with a switch from tholeiitic volcanism from <490 Ma in western 713 

Ireland (Draut et al. 2004) to c. 475 Ma in County Tyrone (Cooper et al. 2011).  In the second 714 

scenario, the Tyrone Igneous Complex may have developed above a north-dipping 715 

subduction zone in a manner similar to the Annieopsquotch Accretionary Tract of 716 

Newfoundland (Zagorevski et al. 2009), and records the evolution of a younger, separate arc 717 

system which collided with the composite Laurentian margin at c. 470 Ma (Hollis et al. 2012, 718 

companion publication).  In this model, the Tyrone Igneous Complex formed immediately 719 

outboard of the Tyrone Central Inlier, a peri-Laurentian microcontinental block (Chew et al. 720 

2008).  At c. 484-479 Ma, spreading outboard of this microcontinental block led to the 721 

formation of the ophiolitic Tyrone Plutonic Group (Hollis et al. companion publication).  722 



This c. 480 Ma rifting may be related to the onset of ‘hard’ collision in Ireland (i.e. Taconic 723 

phase 2).  If this model is correct, continental contamination of the Tyrone arc would be a 724 

direct result of the arc being constructed upon the rifted-off fragment of microcontinental 725 

crust.  726 

 727 

The Charlestown Group, exposed across approximately 45 km2 of Co. Mayo, is an important 728 

link between western Ireland and the Tyrone Volcanic Group of Northern Ireland.  Although 729 

it is typically attributed to the syn-collisional stage of the Lough Nafooey arc system and is 730 

believed to broadly correlate with the Tourmakedy Group (e.g. Chew 2009), it remains one of 731 

the most understudied components of the orogen.  Charlesworth (1960) provided the first 732 

detailed structure and stratigraphy of the Charlestown Group.  New exposure allowed 733 

O’Connor (1987) to reassess the stratigraphy and re-divide the succession into three 734 

formations, renamed by Long et al. (2005) as; (i) Horan Formation, around 630 m thick, 735 

characterized by minor sediments, extrusive basalts, spillites and mixed tuffs; (ii) Carracastle 736 

Formation, around 290 m thick, dominated by andesitic tuffs and flows, with coarse volcanic 737 

breccias; and (iii) Tawnyinah Formation, around 300 m thick, dominated by more silicic 738 

lithologies.  A gradual change was noted from tholeiitic island-arc spillites at the base with 739 

associated tuffs, into calc-alkaline tuffs and resedimented tuffs of the Carracastle Formation, 740 

passing into more felsic tuffs with accompanying intrusions of rhyolite and dacite near the 741 

top (O’Connor & Poutsie 1986; also O’Connor 1987).   742 

 743 

This lithological and petrochemical change is similar to that observed from both the Tyrone 744 

Volcanic Group (e.g. IAT into CAB of the Tinagh Formation to syndepositional rhyolites of 745 

the upper Tyrone arc) and the Lough Nafooey arc (e.g. Draut et al. 2004), although the timing 746 

differs significantly from the latter (Fig. 9).  In the Charlestown Group, Cummins (1954) 747 

obtained an Arenig age from a graptolite bearing sequence near the top of the Horan 748 

Formation.  This was later verified by Dewey et al. (1970) specifically to British 749 

Didymograptus hirundo biozone and Isograptus caduceus biozone of North America.  750 

Cooper and Lindholm (1990) equated the Didymograptus hirundo biozone with the Da1 zone 751 

of the Darriwilian Australasian stage; which was subsequently renamed to the Aulograptus 752 

cucullus biozone and suggested to correlate with both the Undulograptus austrodentatus 753 

biozone (=Da1) and lower part of the Undulograptus intersitus biozone (=lower Da2) (see 754 

Zalasiewicz et al. 2009). The Da1 stage has been calculated by Sadler et al. (2009) to 470.54-755 

469.57 Ma, and the upper boundary of Da2 to 467.94 Ma.  Although further work is needed 756 



on the Charlestown Group, particularly high-resolution U-Pb zircon geochronology, trace 757 

geochemistry and Nd-isotope constraints, preliminary work suggests the Charlestown Group 758 

displays many temporal, lithological and geochemical similarities with the Tyrone Volcanic 759 

Group (Fig. 9) despite being separated by some distance.  We suggest both may belong to the 760 

same arc-system (possibly different eruptive centres) which was subsequently juxtaposed 761 

with the Lough Nafooey arc during during dextral (Harris 1993) or later sinistral strike-slip 762 

activity (Dewey & Strachan 2003).   Pb isotope work on galenas from Charlestown and 763 

mineral deposits directly NW of (and structurally overlying) the Tyrone Volcanic Group has 764 

also suggested a correlation between the two arc terranes (Parnell et al. 2000).  765 

 766 

In summary, if the Lough Nafooey, Tourmakeady, Charlestown and Tyrone Volcanic groups 767 

formed within the same arc system, the geochemical evolution of this arc must have been 768 

strongly diachronous within the Irish Caledonides (Fig. 9) from c. <490 to 475 Ma, with 769 

diachronous arc-accretion to Laurentia from c. 480-478 Ma to c. 470 Ma.  If correct, this 770 

model suggests a continuation of arc-diachroneity into the Scottish Caledonides can be 771 

expected.  However, as Tremadocian to Early Arenig (c. 490-480 Ma) arc rocks have also 772 

been recognized from the Scottish Caledonides this seems unlikely.  Chew et al. (2010) 773 

obtained a U-Pb zircon age of 490 ± 4 Ma from a mica-schist (interpreted as a volcaniclastic 774 

rock) intercalated within the c. 499 ± 8 Ma (U-Pb zircon) Highland Border Ophiolite, an 775 

along-strike equivalent of the Deer Park Complex.  Similar ages have also been obtained 776 

from arc sequences at Ballantrae (Sm-Nd 501 ± 12 Ma, 476 ± 14 Ma: Thirlwall & Bluck 777 

1984; K-Ar 487 ± 8 Ma: Harris et al. 1965) suggesting a volcanic arc may have been 778 

associated with the Ballantrae Ophiolite Complex (483 ± 4 Ma U-Pb zircon; Bluck et al. 779 

1980) at this time.  We suggest, the absence of a primitive volcanic arc in Tyrone prior to c. 780 

475 Ma, combined with strong temporal, petrochemical, and stratigraphic correlations to 781 

ophiolites and arc-successions in the Newfoundland Appalachians along strike (Cooper et al. 782 

2011; Hollis et al. 2012; companion publication); and the development of the Tyrone Igneous 783 

Complex outboard of the Tyrone Central Inlier; together suggest the complex formed within 784 

a separate arc-system to the Lough Nafooey Group.   785 

 786 

CONCLUSIONS 787 

The Slieve Gallion Inlier of Northern Ireland, an isolated fragment of the Tyrone Volcanic 788 

Group, records the development of a peri-Laurentian island-arc/backarc and its obduction to 789 

an outboard microcontinental block (=Tyrone Central Inlier) at c. 470 Ma.  Earliest 790 



magmatism is characterized by LREE-depleted island-arc tholeiite.  Overlying deposits are 791 

dominated by LILE and LREE-enriched, hornblende-phyric and feldspathic calc-alkaline 792 

basaltic andesites and andesitic tuffs with strongly-negative εNdt values implying substantial 793 

contamination by continental crust and/or detritus.  Fe-Ti enriched rift related basalts of 794 

eMORB affinity may be associated with propagation of a rift into the island-arc. 795 

Biostratigraphic age constraints and petrochemical correlations suggest the Slieve Gallion 796 

Inlier formed c. 475-474 Ma and is equivalent to the lower Tyrone Volcanic Group.  Late c. 797 

469 Ma intrusive rocks of Fe-Ti enriched alkali basalt appear to have fed the post-collisional 798 

rift-related lavas of the uppermost Tyrone arc (=Broughderg Formation).  Preliminary 799 

temporal, geochemical and stratigraphic correlations between the Slieve Gallion Inlier 800 

(Tyrone Volcanic Group) and Charlestown Group of Ireland suggest they may be part of the 801 

same island arc.  A switch from tholeiitic volcanism to calc-alkaline dominated activity 802 

within the Lough Nafooey arc occurred prior to c. 490 Ma approximately ~15 to 20 Myr 803 

earlier than at Charlestown (c. 470 Ma) and Tyrone (c. 475 Ma). 804 
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Figures 1012 

 1013 

Fig. 1.  (a) Geological map of NW Ireland showing the setting of the Tyrone Igneous 1014 

Complex and other comparable ophiolite and volcanic arc associations, major structural 1015 

features and Precambrian and Lower Paleozoic inliers in the Irish Caledonides.  (b) Rocks 1016 

affected by the Grampian, Acadian and Scandian orogenies.  Figure after Chew (2009). 1017 

 1018 

Fig. 2.  Geological map of the Tyrone Igneous Complex (after Hollis et al. 2012).  1019 

 1020 

Fig. 3. Geological map of the Slieve Gallion Inlier.  1021 

 1022 

Fig. 4.  Simplified stratigraphy of the Slieve Gallion Inlier and Tyrone Volcanic Group 1023 

including the petrochemical affinities of mafic to felsic units within each formation (after 1024 



Hollis et al. 2012 and unpublished data). DL, Derryganard Lavas; LV, Letteran Volcanics; 1025 

MWB, Mobuy Wood Basalts; WCL, Windy Castle Lavas. 1026 

 1027 

Fig. 5.  Field and petrographic photographs from across the Slieve Gallion Inlier.  (a)  1028 

Tholeiitic basaltic pillow basalt from Derryganard (Tinagh Formation). (b) Sheared, pillowed 1029 

and brecciated lava near Tinagh. (c)  Vesicular eMORB dipping under pillowed calc-alkaline 1030 

basalt at the top of Slieve Gallion. (d) Pillow breccias at top of Slieve Gallion. (e) Graptolite 1031 

bearing succession at Sruhanleanantawey Burn. (f) Extensively altered tholeiitic basalt from 1032 

Derryganard (SPH525). (g)  Pyroxene and feldspar phyric, vesicular pillowed Fe-Ti eMORB 1033 

from Slieve Gallion (SPH533). (h) Feldspathic alkali basaltic intrusive from 1034 

Sruhanleanantawey Burn (MRC335). (i) Calc-alkaline hornblende- and feldspar-phyric 1035 

andesite (SPH534) from Letteran.  Field of view is approximately 3mm across for f-i. 1036 

 1037 

Fig. 6.  Geochemistry of the Slieve Gallion Inlier and Tyrone Volcanic Group (stratigraphy 1038 

after Hollis et al. 2012 and herein). (a-b) Zr-Ti against Nb-Y (after Winchester & Floyd 1039 

1977; modified after Pearce 1996); (c) εNdt against TiO2; (d-e) Th-Yb against Nb/Yb 1040 

diagram (after Pearce 1983); (f) Nb/Y against Zr/Y diagram (Zr/Y ratio cut off values from 1041 

Ross & Bédard 2009). Grey shading in a-e represents the field of Fe-Ti enriched lavas from 1042 

the Tyrone Igneous Complex (eMORB, alkali and OIB-like). Grey shading in f represents 1043 

samples of calc-alkaline affinity from the lower and upper Tyrone Volcanic Group (labeled).  1044 

Data for the Tyrone Volcanic Group (TVG) from Draut et al. (2009), Cooper et al. (2011) 1045 

and Hollis et al. (2012). EMORB, enriched mid-ocean-ridge basalt; MORB, mid-ocean-ridge 1046 

basalt; OIB, ocean-island basalt.  Formation abbreviations of Tyrone Volcanic Group (TVG): 1047 

C, Creggan; L, Loughmacrory; Bm, Beaghmore;  G, Greencastle; Bd, Broughderg. 1048 

 1049 

Fig. 7.  Multi-element variation diagrams for samples analysed from Slieve Gallion.  Multi-1050 

element profiles of samples from Slieve Gallion are shown by bold lines. Samples from 1051 

equivalent units in the Tyrone Volcanic Group (after Draut et al. 2009; Cooper et al. 2011; 1052 

Hollis et al. 2012) are shown by faint dashed lines.  Chondrite normalization values after 1053 

McDonough & Sun (1995). Grey shading in 7b and 7f represents field of calc-alkaline lavas 1054 

from the upper Tyrone Volcanic Group. 1055 

 1056 



Fig. 8. (a) U-Pb zircon concordia for samples analysed from the Slieve Gallion Inlier and arc-1057 

related intrusive suite. The 206Pb/238U axis has been duplicated. (b)  Representative CL 1058 

images of zircons from MRC335. 1059 

 1060 

Fig. 9. Stratigraphy, petrochemistry and absolute ages for the Ordovician succession of South 1061 

Mayo, Charlestown and the Tyrone Igneous Complex.  Diagram after Ryan and Dewey 1062 

(2011). The standard British Ordovician stages, those of the IUGS and the Australian 1063 

Ordovician graptolite zones are assigned to absolute ages after Sadler et al. (2009).  Absolute 1064 

ages for events are represented by red stars with error bars.  References: 1=Formil rhyolite 1065 

(Cooper et al. 2008); 2=Tullybrick tuff and Cashel Rock rhyolite of Greencastle Formation, 1066 

and Cashel Rock tonalite (Hollis et al. 2012); 3= clasts in Silurian conglomerate derived from 1067 

Finny Formation (Chew et al. 2007); 4=Ignimbrite of Mweelrea Formation (Dewey & Mange 1068 

1999); 5=Arc related intrusive rocks of Cooper et al. (2011).  Stratigraphy of the Tyrone 1069 

Volcanic Group from (Hollis et al. 2012; Hollis 2013). North and south limbs refer to the 1070 

Mweelrea syncline (South Mayo Trough). 1071 

 1072 

Table 1. U-Pb zircon geochronology from Slieve Gallion. 1073 

 1074 

Supplementary Information. Table A. Sampling and geochemical results (major-elements, 1075 

LOI, trace-elements, REE, Nd-isotopes). 1076 
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Table 1. U-Th-Pb isotopic data. 

  Compositional Parameters Radiogenic Isotope Ratios Isotopic Ages 

  Th 206Pb* mol % Pb* Pbc 206Pb 208Pb 207Pb  207Pb  206Pb  corr. 207Pb   207Pb   206Pb   

Sample 
U x10-13 mol 

206Pb* Pbc 
(pg) 204Pb 206Pb 206Pb % err 235U % err 238U % err coef. 206Pb ±  235U ±  238U ±  

* † § § § § # ** ** †† ** †† ** ††   §§ †† §§ †† §§ †† 
                                          

MRC 335                                         

z1 0.745 2.4430 98.43% 20 3.21 1171 0.234 0.05647 0.24 0.5855 0.30 0.075192 0.092 0.813 470.70 5.22 467.99 1.14 467.43 0.42 

z4 0.510 3.9679 99.65% 88 1.14 5293 0.157 0.07477 0.11 1.7917 0.23 0.173809 0.160 0.905 1062.04 2.19 1042.46 1.50 1033.14 1.53 

z6 1.006 4.4897 99.62% 91 1.39 4917 0.315 0.05645 0.12 0.5891 0.19 0.075685 0.087 0.928 469.67 2.55 470.26 0.72 470.38 0.40 

z11 0.738 0.3981 99.19% 39 0.27 2272 0.231 0.05646 0.21 0.5880 0.28 0.075530 0.102 0.761 470.14 4.74 469.58 1.06 469.46 0.46 

z14 1.011 0.4433 97.90% 16 0.78 881 0.317 0.05638 0.45 0.5868 0.52 0.075494 0.114 0.689 466.92 10.00 468.84 1.96 469.24 0.52 

                                         

                     

MRC 351                                         

z1 1.365 5.9864 99.83% 219 0.84 10805 0.428 0.05651 0.15 0.5886 0.21 0.075536 0.093 0.771 472.29 3.30 469.96 0.78 469.48 0.42 

z2 1.216 4.0148 98.97% 33 3.60 1622 0.381 0.05653 0.14 0.5893 0.23 0.075612 0.127 0.880 472.94 3.03 470.45 0.88 469.94 0.57 

z3 1.139 8.6618 99.86% 243 1.04 12538 0.357 0.05648 0.08 0.5886 0.18 0.075588 0.102 0.962 470.95 1.86 469.99 0.67 469.80 0.46 

z6 1.108 1.8259 99.79% 162 0.33 8480 0.347 0.05649 0.10 0.5885 0.19 0.075553 0.112 0.927 471.42 2.15 469.90 0.72 469.59 0.51 

z7 0.992 0.6754 97.96% 16 1.17 878 0.310 0.05641 0.43 0.5917 0.53 0.076073 0.161 0.681 468.27 9.57 471.95 1.99 472.71 0.74 

z8 0.936 1.0390 99.11% 37 0.78 2041 0.294 0.05650 0.19 0.5886 0.30 0.075552 0.158 0.817 471.91 4.28 469.98 1.13 469.59 0.72 

z9 0.910 1.5808 99.19% 41 1.07 2243 0.286 0.05652 0.22 0.5879 0.30 0.075440 0.144 0.738 472.39 4.83 469.51 1.13 468.92 0.65 

                                          

 
* z1, z2 etc. are labels for fractions composed of single zircon grains or fragments; all fractions annealed and chemically abraded after Mattinson (2005). 
† Model Th/U ratio calculated from radiogenic 208Pb/206Pb ratio and 207Pb/235U age. 
§ Pb* and Pbc represent radiogenic and common Pb, respectively; mol % 206Pb* with respect to radiogenic, blank and initial common Pb. 
# Measured ratio corrected for spike and fractionation only.   
** Corrected for fractionation, spike, and common Pb; up to 2 pg of common Pb was assumed to be procedural blank: 206Pb/204Pb = 18.60 ± 0.80%; 
207Pb/204Pb = 15.69 ± 0.32%;  208Pb/204Pb = 38.51 ± 0.74% (all uncertainties 1-sigma).  Excess over blank was assigned to initial common Pb. 
†† Errors are 2-sigma, propagated using the algorithms of Schmitz and Schoene (2007). 
§§ Calculations are based on the decay constants of Jaffey et al. (1971). 206Pb/238U and 207Pb/206Pb ages corrected for initial disequilibrium in 230Th/238U using 
Th/U [magma] = 3 using the algorithms of Schärer (1984). 
Dates in bold are those included in weighted mean calculations.  See text for discussion. 



Table A.  Lithological units, sample numbers, major- (wt. %), trace- (ppm) and rare earth-element (ppm) geochemistry.  Nd isotopic 
data also included. Grid References according to Irish Grid.  εNdt values calculated for age of 475 Ma. Trace and rare-earth element 
data to 2 decimals places from ICP-MS, otherwise from XRF (indicated by*). Sample MRC 335 is from Cooper et al. (2011).  
 

Sample Lithology [& Stratigraphic unit] 
Grid 

Reference 
SiO2 Al2O3 Fe2O3 MgO CaO Na2O K2O TiO2 Mn3O4 P2O5 143Nd/144Nd 

2SE 
± 

εNdt 

SPH 525 Pillow lava [Derryganard Lavas] 2795066-386631 47.10 15.47 10.88 9.71 13.45 2.10 0.49 0.50 0.25 0.05 0.512519 7 +0.62 
SPH 506 Hornblende-andesite [Windy Castle Lavas] 280365-388203 63.44 15.78 6.73 2.68 3.90 3.99 2.57 0.60 0.13 0.18    
SPH 511 Hornblende-andesite [Windy Castle Lavas] 279299-387267 59.95 14.63 10.26 5.00 4.91 2.50 1.88 0.60 0.13 0.14    
SPH 532 Pillow lava [Windy Castle Lavas] 10m N of SPH533 74.79 13.83 2.08 1.06 1.35 3.57 2.96 0.24 0.05 0.07    
SPH 534 Hornblende andesite [Windy Castle Lavas] 279992-387305 54.85 17.92 10.80 5.48 5.28 4.43 0.25 0.62 0.23 0.15    
SPH 528 Hornblende andesite [Windy Castle Lavas] 279556-386779 67.22 15.42 4.49 2.05 3.99 2.90 3.22 0.48 0.12 0.11    
SPH 530 Feldspathic andesite [Letteran Volcanics] 279636-386982 60.77 13.88 8.57 4.98 7.75 1.93 1.02 0.83 0.14 0.14 0.511896 8 -9.02 
SPH 508 Aphanitic basalt [Mobuy Wood Basalts] 279400-387725 53.91 13.61 13.07 5.58 6.03 4.28 0.70 2.33 0.19 0.29 0.512528 5 +0.85 
SPH 517 Basalt [Mobuy Wood Basalts] 278214-387525 52.48 14.47 12.91 4.91 8.08 4.17 0.45 2.14 0.08 0.30    
SPH 533 Vesicular lava [Mobuy Wood Basalts] 279822-387828 51.43 14.84 11.56 6.21 9.15 4.30 0.29 1.84 0.17 0.21 0.512623 6 +2.52 
SPH 052 Chert [Tawey Fm] 278900-388100 80.99 11.16 1.38 0.98 0.05 2.93 2.29 0.18 0.02 0.03    
SPH 493 Lithic tuff [Tawey Fm] 278893-388169 66.56 15.51 5.06 2.76 2.00 4.72 2.60 0.59 0.07 0.13    
SPH 494 Tuff [Tawey Fm] 278949-387914 69.46 15.88 4.72 2.29 1.07 2.56 3.30 0.52 0.08 0.12    
SPH 496 Siltstone [Tawey Fm] 279033-387857 84.99 7.88 2.40 1.69 0.05 0.08 2.62 0.24 0.03 0.04    
SPH 502 Microdiorite [Lower Whitewater Fm] 279787-389513 63.89 15.17 5.73 4.26 3.55 4.08 2.58 0.57 0.07 0.11    
SPH 467 Andesitic lava [Whitewater Fm] 278004-389914 65.53 14.73 5.63 4.49 4.05 1.96 2.81 0.56 0.12 0.11 0.511716 6 -12.68 
SPH 469 Crystal tuff [Whitewater Fm] 278169-389841 64.38 14.73 5.96 4.63 4.61 1.34 3.53 0.59 0.12 0.11    
SPH 470 Tuff [Whitewater Fm] 278445-389813 66.42 14.33 5.31 4.69 3.45 2.74 2.32 0.54 0.10 0.10 0.51166 18 -13.86 
SPH 471 Mineralized tuff [Whitewater Fm] 278445-389813 74.37 14.59 4.91 1.10 0.27 0.09 4.01 0.54 0.02 0.10    

SPH 472 Basaltic andesite/andesite [Lower 
Whitewater Fm] 278861-389838 62.53 15.38 6.31 4.96 4.55 2.44 2.98 0.63 0.11 0.11 0.511737 6 -12.86 

SPH 485 Tuff [Whitewater Fm] 278861-389838 65.12 14.99 5.95 4.47 3.61 3.58 1.49 0.57 0.11 0.11    
SPH 486 Tuff [Whitewater Fm] 278917-389748 67.61 13.92 4.77 4.39 5.42 1.84 1.38 0.50 0.07 0.10    
SPH 488 Andesitic lava [Whitewater Fm] 278466-389725 65.83 14.87 5.84 5.06 2.34 2.25 3.01 0.56 0.14 0.11    
SPH 025 Feldspathic Basaltic rock [Intrusive?] 278950-387950 51.88 14.50 18.28 5.81 1.05 3.66 0.20 3.84 0.15 0.62    
MRC 335 Feldspathic Basaltic rock [Intrusive?] 278950-387950 51.95 14.05 17.82 5.66 1.99 3.90 0.16 3.53 0.38 0.56    
SPH 513 Slieve Gallion granite [Intrusive] 279010-386335 73.88 13.51 3.12 1.20 1.76 4.22 1.78 0.39 0.07 0.08    



Table 1.  continued 
 
Sample V* Cr* Ba* Zr* Rb* Sr* Ni* Y* Nb Hf Ta Th La Ce Pr Nd Sm Eu Dy Ho Er Tm Yb Lu Sc 

SPH 525 250 650 85 30 9 265 247 14 0.36 0.53 0.01 0.24 1.47 4.02 0.66 3.48 1.28 0.53 2.23 0.49 1.46 0.22 1.43 0.21 38.67 
SPH 506 153 89 872 171 36 358 24 23 10.55 5.14 0.31 13.30 48.77 99.32 11.46 42.39 7.53 1.61 4.31 0.86 2.41 0.36 2.46 0.38 21.35 
SPH 511 185 173 1205 149 32 279 53 17 8.133 4.33 0.23 9.06 34.68 66.82 7.25 25.86 4.50 1.06 2.99 0.62 1.86 0.29 2.00 0.32 31.42 
SPH 532 34 99 1010 167 66 127 7 20 9.867 3.14 0.32 17.40 62.08 102.90 12.12 40.46 6.10 1.20 3.18 0.65 1.90 0.30 2.14 0.35 9.17 
SPH 534 255 93 236 95 5 319 31 18 5.181 2.43 0.15 5.85 23.91 50.39 6.01 22.89 4.45 1.09 3.07 0.62 1.76 0.26 1.71 0.25 19.98 
SPH 528 104 59 589 203 79 109 19 17 10.88 4.69 0.29 9.33 36.65 68.67 7.50 26.15 4.27 1.10 2.82 0.58 1.72 0.26 1.78 0.28 13.16 
SPH 530 203 186 617 200 30 432 60 22 9.277 4.99 0.21 6.89 37.03 76.43 8.67 32.33 5.71 1.40 3.69 0.74 2.06 0.30 1.98 0.29 22.39 
SPH 508 340 109 227 192 9 228 35 36 18.68 5.17 0.56 4.51 25.53 54.28 7.81 33.72 8.23 2.62 7.91 1.55 4.15 0.58 3.60 0.52 92.60 
SPH 517 373 84 231 197 9 293 34 42 16.07 5.07 0.47 3.26 21.18 51.11 7.00 30.38 7.45 2.34 7.81 1.60 4.46 0.65 4.19 0.62 42.17 
SPH 533 297 251 132 133 6 274 61 27 13.1 2.91 0.39 1.13 13.06 31.12 4.36 19.57 4.87 1.60 4.63 0.90 2.35 0.32 1.91 0.26 18.99 
SPH 052 19 4 664 146 49 67 13 25 8.580 3.60 0.61 9.96 32.43 66.04 7.33 26.33 4.60 0.94 3.60 0.78 2.37 0.37 2.50 0.38 6.71 
SPH 493 127 173 658 197 58 166 41 23 10*   7* 32* 33*            
SPH 494 95 58 700 134 62 69 13 34 11*   8* 33* 34*            
SPH 496 238 97 552 77 65 16 23 19 10*   8* 30* 51*            
SPH 502 120 323 559 173 42 161 70 19 5*   6* 15* 23*            
SPH 467 123 331 784 162 74 128 75 16 10.73 2.79 0.33 7.29 26.91 56.13 6.42 22.95 4.14 0.92 2.89 0.57 1.62 0.25 1.68 0.26 15.18 
SPH 469 136 300 857 170 96 78 70 18 9*   7* 24* 37*            
SPH 470 131 353 617 162 55 89 72 17 10.81 3.56 0.33 9.00 29.00 57.31 6.60 23.69 4.33 1.02 3.10 0.62 1.77 0.27 1.81 0.28 34.16 
SPH 471 117 329 343 165 100 74 51 29 9*   7* 17* 43*            
SPH 472 153 405 617 179 85 202 83 24 10.31 5.03 0.33 6.60 25.38 53.54 6.50 24.63 4.84 1.11 3.90 0.79 2.27 0.34 2.19 0.33 22.03 
SPH 485 128 366 374 186 37 221 78 19 10.97 3.60 0.34 8.94 28.76 58.37 6.70 23.99 4.47 1.09 3.38 0.68 1.95 0.29 1.96 0.30 23.96 
SPH 486 104 370 549 145 36 366 71 17 10*   8* 25* 50*            
SPH 488 122 282 694 167 80 40 72 21 7*   6* 18* 41*            
SPH 025 463 19 132 283 4 149 37 33 26*   4* 23* 72*           52* 
MRC 335 403 4 168 249 3 140 21 26 23.17 6.4  2.83 26.7 58.8 7.34 31.8 6.2 2.2 5.0 1.05 2.92 0.39 2.59 0.35 35* 
SPH 513 66 137 912 140 46 204 12 20 7*   9* 25* 30*            

 


