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Abstract 
 
Endurance Basin is an elongate broadly WNW-ESE trending basin located on the northern 

margin of the Scotia Sea, adjacent to the southern margin of the South Georgia micro-

continent. Bathymetric and TOPAS sub-bottom profile data acquired in 2010 by the British 

research ship RRS James Clark Ross map this basin and its sedimentology for the first 

time. Endurance Basin contains a number of sub-basins and a substantial glaciogenic fan. 

The northern margin of Endurance Basin is formed by a series of steep slopes and 

intervening troughs. These are interpreted as a left-stepping en echelon array of oblique, 

strike-slip faults whilst the sub-basins are separated by compressional dip-slip faults. It 

appears that South Georgia is moving NW with respect to the basin. We interpret five 

seismic facies from TOPAS data, which are associated with distinct sedimentologies. The 

most striking units in the basin fill are: substantial contourite drifts located in the NW of the 

basin and on its southern margin; and two distinct mass transport deposits that pond in the 

centre of the basin. Combined with the known regional oceanographic setting, the 

contourites provide evidence of broadly eastward flowing bottom currents, entering the 

basin from at least two locations. Although landslide scars are present on the steep 

northern basin margin, the imaged mass transport deposits are interpreted to have been 

sourced from the glaciogenic fan, located in the SE of the basin, and from a contourite unit 

located on the basin’s southern margin. Sediments from these events are transported at 

least 40 km. The contourite drift sequence is at least 100 m thick in the west of the basin 

and may contain a palaeoenvironmental archive of Antarctic Cirumpolar Current (ACC) 

flow and the climate of South Georgia extending to the Pliocene. Such an archive would 

allow reconstruction of ACC flow through the Pleistocene glaciations and provide a means 

of linking ocean circulation and climate records in the sub-Antarctic Polar Front region. 

Keywords: 
 
Transpression, mass transport deposit, Scotia Sea, contourites, glaciation 
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1. Introduction 

The continental slopes of the Antarctic continent and sub-Antarctic micro-continents 

preserve records of sediment transport and deposition related to ocean currents and slope 

instabilities during glacial-interglacial cycles (Dowdeswell et al., 2006; Noormets et al., 

2009; Gales et al., 2012; Casas et al., 2013; Gales et al., 2013). South Georgia is the 

largest of the micro-continental blocks in the Scotia Sea (Figure 1.A). Because of its 

position in the northern Scotia Sea, and history of glaciations, deposits in the basin and on 

the continental slopes provide a unique opportunity to investigate the interactions between 

glaciosedimentary and oceanographic processes associated with the Antarctic 

Circumpolar Current (ACC) during glacial-interglacial cycles.  

Situated between the Polar Front (PF) and the Southern Antarctic Circumpolar Current 

Front (SACCF) (Meredith et al., 2003), the proximal basins south of South Georgia 

represent an ideal and under-utilised location to investigate the palaeoflow of the ACC 

(Figure 1.B). This current transports >100 Sv eastwards and the deep water components 

exported from the Southern Ocean ventilate the majority of the world's oceans; it is, 

therefore, a key component of the global thermohaline system (Orsi et al., 1995; Orsi et 

al., 1999; Gebbie and Huybers, 2011). Improved knowledge of its variation will help 

understanding of the relative contribution of ocean circulation and greenhouse gases as 

climate influences (Barker and Thomas, 2004). 

Although there is some debate surrounding the timing of the onset of the ACC, it is agreed 

that this is directly related to the deepening of the Drake Passage and the creation of a 

continuous circumpolar seaway. This has been widely proposed to have occurred around 

the time of the Oligocene-Eocene boundary at circa 30 Ma (Barker and Burrell, 1977; 

Barker and Thomas, 2004; Lodolo et al., 2006; Livermore et al., 2007). An alternative view 

is that a deep ocean gateway did not open until after the mid-Miocene climate optimum 

(Dalziel et al., 2013b). In both cases, rapid climatic cooling followed opening of the ocean 

gateway, associated with expansion and stabilization of Antarctic ice-sheets (Zachos et al., 

2001). Variation has been noted in the intensity of ACC circulation during the Pleistocene, 

with stronger flow observed during glacials and weaker flow during interglacials (Pudsey 

and Howe, 2002). 

Though it is primarily wind-driven, there are shallow and deep components to the ACC, 

which extend to the ocean floor (Pudsey and Howe, 1998; Orsi et al., 1999; Pudsey and 

Howe, 2002). This deep circulation, which entrains North Atlantic Deep Water (NADW) 

(Whitworth III and Nowlin Jr, 1987), is distinct from Antarctic Bottom Water (AABW) and its 
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components, which form on the Antarctic shelf-edge, are cooler and more dense (Orsi et 

al., 1999). 

The climate of South Georgia, which is controlled by the position of the polar front and the 

intensity of westerly winds, has been subject to several investigations in recent years 

(Rosqvist and Schuber, 2003; Bentley et al., 2007; Van der Putten et al., 2009). However, 

these studies are mainly terrestrial in scope and confined to the Holocene and last 

deglaciation due to the erosive effects of ice-sheets on older palaeoenvironmental records. 

The presence of cross-shelf troughs and shelf-edge moraines supports a model of 

extensive ice-cover during past glacial history (the maximum ice extent during the last 

glacial maximum (LGM) is uncertain; Graham et al., 2008), which would have deposited 

sediments past the shelf-edge. Investigations of other glaciated, or formerly glaciated, 

margins have documented a number of features including fans of glaciogenic sediment, 

gullies, canyons and mass transport deposits (Dowdeswell et al., 1998; Dowdeswell et al., 

2006; Noormets et al., 2009; Gales et al., 2012; Gales et al., 2013). Interaction between 

glaciogenic and contouritic sedimentation has also been documented on some continental 

slopes, providing a valuable archive and influencing slope stability (Knutz et al., 2002; 

Laberg et al., 2002; Bryn et al., 2005b; Solheim et al., 2005). If present around South 

Georgia, such interactions potentially provide records of the relationship between 

terrestrial glaciations of South Georgia and the regional ocean currents; in particular the 

ACC. 

As such, the adjacent deep basins should contain a longer record of South Georgia’s 

climate and oceanographic setting, as well as evidence of mass movement events 

triggered on the surrounding slopes. This paper documents and describes such a basin, 

using results of a geophysical survey to the south of the South Georgia micro-continent by 

the British research ship RRS James Clark Ross during January 2010. The proposed 

name for this feature, which may prove to be a valuable archive of palaeoenvironmental 

data for the sub-Antarctic, is Endurance Basin. 

2. Regional Setting 

2.1. Regional tectonic setting 

South Georgia comprises continental lithosphere that rifted from southern South America 

during the opening of the Drake Passage between South America and Antarctica (Dalziel 

et al., 1975; Dalziel et al., 2013a). It is a micro-continental block that is situated within the 

North Scotia Ridge (Figure 1.A), a plate boundary that extends some 2000 km from South 
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Georgia to Tierra del Fuego (Cunningham et al., 1998). The North Scotia Ridge marks the 

position of a slow-moving sinistral transcurrent plate boundary along which the relative 

motion between the Scotia plate to the south and the South America plate to the north is 

about 7.1 mm yr-1 (Thomas et al., 2003). South Georgia is thought to be part of the Scotia 

plate and is situated in a restraining bend on the plate boundary (Thomas et al., 2003; 

Smalley et al., 2007). A cluster of earthquakes in 2002 (Figure 1.C) centred along the 

southern margin of the South Georgia continental block indicate that compression 

generated at the restraining bend is causing South Georgia to be thrusted to the SW over 

the adjacent part of the Scotia plate (Thomas et al., 2003; Smalley et al., 2007; USGS, 

2014). An earlier earthquake (1965) occurred beneath the upper continental slope 

adjacent to the Endurance Basin (Figures 1.C and 2). The focal mechanism of this 

earthquake also indicates thrusting of South Georgia to the SW over the crust of the 

Endurance Basin (Pelayo and Wiens, 1989; Thomas et al., 2003). In this scenario, the 

Endurance Basin in its present form, is a foreland basin formed by loading of the Scotia 

plate by uplift of South Georgia along the thrust system. 

The nature of the lithosphere forming the basement to the Endurance Basin is uncertain. 

There are several models for the origin of the Central Scotia Sea, of which the Endurance 

Basin forms the northernmost part. Hill and Barker (1980) identified east-west-trending 

magnetic anomalies in the central part of the Scotia plate, which are clearly distinct from 

the north-south magnetic anomalies formed by well-understood ocean spreading in the 

West and East Scotia Seas (Barker, 1995; Larter et al., 2003; Eagles, 2005), and 

suggested that they were Miocene in age. Eagles (2010), by contrast, reinterpreted the 

Central Scotia Sea as a fragment of Mesozoic ocean lithosphere generated during 

separation of Antarctica from South America. Dalziel et al. (2013b) found evidence for an 

Oligocene-Miocene volcanic arc in the Central Scotia Sea and suggested that this overlies 

the Mesozoic ocean plate suggested by Eagles (2010). 

2.2. Regional climatic and oceanographic setting 

Being situated in the sub-Antarctic at approximately 55° S (Figure 1.B), South Georgia is 

at present approximately 5° northward of the average winter sea ice limit (Rosqvist and 

Schuber, 2003). However, based on studies of sediment core diatom assemblages, it 

appears that the winter sea ice limit extended north of South Georgia during the LGM 

(Gersonde et al., 2005; Allen et al., 2011; Collins et al., 2012). Bathymetric data reveal the 

presence of a number of across-shelf troughs and shelf-edge moraines, indicating repeat 

ice-sheet advance over the micro-continent’s shelf (Graham et al., 2008). Today, half of 
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the island remains ice-covered by valley glaciers (Rosqvist and Schuber, 2003; Gordon et 

al., 2008). 

South Georgia is situated between the polar front, to the north, and the ACC front to the 

south. The North Scotia Ridge acts to constrain the ACC flow, providing a barrier to the 

deep water components (Orsi et al., 1995; Smith et al., 2009). Shag Rocks Passage (SRP) 

is an exception to this, allowing a proportion of the water mass to flow north of South 

Georgia, therefore, moving the polar front further north (see Figure 1; Thorpe et al., 2002; 

Smith et al., 2009). Supporting this, Howe et al. (1997) document contourite units, 

indicative of strong current flow at 3000 m water depth in the west Falklands Trough. In 

addition to this, Weddell Sea Deep Water (WSDW) has been interpreted to flow north into 

the Central Scotia Sea (Pudsey and Howe, 1998; Maldonado et al., 2003; Meredith et al., 

2008; Lobo et al., 2011) at which point it may merge with the deep components of the 

ACC. This merging is likely to occur not far south of South Georgia, further enhancing the 

palaeoceanographic significance of the region’s basin sediment records. 

Holocene sediments in the North Scotia Sea are dominated by foraminifera bearing 

(carbonate preservation is poor) diatomaceous oozes, with rare ice-rafted debris (IRD) 

from the eastern margin of the Antarctic Peninsula (Pudsey and Howe, 1998). During the 

LGM the situation changes, with diatomaceous mud and a greater proportion of IRD from 

more numerous sources, including: both east and west margins of the Antarctic Peninsula, 

southern South America and some of the sub-Antarctic islands including the South 

Orkneys and the South Shetlands (Sugden and Clapperton, 1977; Pudsey and Howe, 

1998). 

3. Material and methods 

Data were acquired between the 21st and 29th of January 2010 on cruise JR206 (NERC 

Cruise leg JR20100118) of British research ship RRS James Clark Ross. Bathymetric data 

were acquired using a hull-mounted Simrad EM 120 multibeam echo sounder. The system 

had a 12 kHz operating frequency and a 191 beam array with real-time beam steering and 

active pitch and roll compensation (Tate and Leat, 2007; Leat et al., 2010). Data were 

acquired using Simrad's Merlin software and were cleaned manually using MB System 

v5.0.9 software. Cleaned data were gridded at 100 m horizontal resolution. Vertical 

measurement accuracy is in the order of 50 cm or 0.2% of depth RMS (de Moustier, 

2001)(whichever is greater). At 3500 m water depth, this corresponds to an accuracy of 7 

m. This new data was combined with that from previous transits in the area (see list of 

data sources in Table 1). 
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Sub-bottom data were collected using a hull-mounted Simrad TOPAS PS 018 profiler. All 

runs were made using chirp mode on 90% power with a pulse length of 15 ms and start 

and stop frequencies of 1.5 and 5.0 kHz respectively. A total of 647 km of sub-bottom lines 

were acquired (Table 2 and Figure 2), vessel speed varied between 6 and 10 knots, and 

ping interval was generally 2 s, except when run concurrently with the EM 120 when the 

interval was increased to 7 s to reduce interference. A matched filter operating between 

1.0 and 5.5 kHz was applied to the data offline in TOPAS replay. Processed data were 

exported as SEGY before being converted to COD and interpreted in Survey Engine™ 

Seismic+™ from CodaOctopus. 

Deposit thickness estimates and isopach maps were derived from the TOPAS lines via a 

spline of interpreted sub-bottom points. However, they have been forced to zero values at 

the base of the steep northern and southern margins, between TOPAS lines, where 

seismic data indicate that the units pinch out. No forcing of values has been performed on 

the western limit of the data, where bathymetry and sub-surface geology is poorly 

constrained. 

All maps are plotted in the WGS 1984 UTM 24 South projection, though some are rotated 

to provide the most appropriate view. 

4. Results and TOPAS interpretation 

4.1. Bathymetric mapping 

Figures 2 and 3 show detailed bathymetry located south of South Georgia. The new 

multibeam sonar data, combined with swaths of multibeam data from previous passages, 

produced a near-complete bathymetric map of the elongate, broadly WNW-ESE trending 

Endurance Basin. The basin is around 160 km long and 20 - 50 km wide, between 

approximately 54.3° S, 39.7° W and 55.3° S, 38.0° W. Its long axis is approximately 

parallel to the continental margin, with a well defined NE margin but a less well defined 

SW margin. 

4.1.1. Basin morphology 

Basin parameters are summarised in Table 3. The northern margin of the Endurance 

Basin is formed by a series of steep slopes and intervening troughs rising some 3000 m to 

the shelf edge (Figure 2). Individual slope segments trend slightly oblique to the basin and 

are linked by SE-facing ramps and slopes. Where they intersect the basin floor, some of 

the main scarps curve into subtle N-S trending scarps and ridges that divide the basin into 

at least three sub-basins with nearly flat floors and slightly different bathymetric depths. 
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The southern margin of the basin consists of a series of en echelon scarps up to a few 

hundreds of metres high that are also left-stepping and linked by E-W trending scarps. The 

WNW end of the mapped basin steps south-westward into further, slightly shallower water 

depth basins. The eastern end of the basin is bounded by a scarp and fan (with an area of 

at least 620 km2) system at the mouth of a canyon cutting the micro-continent margin. The 

canyon coincides with the only shelf trough, interpreted as the pathway of an ice stream, 

to be identified on the south side of the micro-continent by Graham et al. (2008). The 

northwestern side of the fan is cut by a channel and canyon system inferred to be the 

currently or most recently active sediment pathway from the shelf to the basin, whereas 

the crest of the fan is occupied by a topographically subdued channel system that is 

inferred to have been abandoned. 

4.1.2. Mass transport scars 

The northern margin of Endurance Basin is marked by three scars that are interpreted to 

have formed as a consequence of slope failure events (Figures 2 and 3). The largest of 

these is 50 km2 in area and displays gradients of up to 37°. The smaller scars have 

steeper gradients, reaching 49°. Some possible associated debris deposits or slide blocks 

may be present downslope from the scar located at 54.79° S, 38.87° W (see Figure 3.C), 

though this irregular bathymetry may be associated with the nearby scarp slopes and 

TOPAS data is inconclusive. Otherwise no debris or blocks were identified on the basin 

floor from the bathymetric data, suggesting that the scars are relatively old with deposits 

that are buried beneath basin-floor sediments, or that the mass flows consisted of 

disaggregated debris that are not easily distinguishable in the TOPAS profiles. 

In addition to these clear, relatively small, scars there is also a less well defined, broad and 

more gently angled embayment on the basin’s southern margin (location indicated on 

Figure 2). This has an area of circa 120 km2 and contains a prominent pinnacle feature 

with a relief of >300 m and gradients of up to 30°. A noticeable annular depression, open 

to the northeast, surrounds this feature. Slopes within the embayment dip to the northeast 

and are generally <2°, though they are greater on the margins where they reach 7°. 

4.2. TOPAS data 

4.2.1. Description and characteristics of seismic facies 

Figures 4 to 8 show a NW to SE transect along the axis of Endurance Basin (see Figure 2 

for location of profiles). Key features within this transect are shown in greater detail in 

Figures 5 and 7. Sub-surface penetration varied between 130 ms Two-Way-Travel-Time 
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(TWTT) in the northwest of the basin and practically no penetration on parts of the 

glaciogenic fan in the southeast. 

TOPAS line 17 (Figure 4) shows a 55 km long profile located at the western end of 

Endurance Basin. The start of the line, in the far west, reveals a relatively rugged seabed 

with steep slopes and no seismic penetration. Between fix markers 2 and 4 the seabed 

becomes smoother and the line crosses a number of seabed undulations, which display 

increased penetration, showing closely spaced parallel reflectors. Figure 5.A shows a 

trough between these crests in more detail. From this detailed imagery it can be seen that 

parallel near surface reflectors are underlain by more chaotic and deformed units. A 

number of possible faults are observed, though this apparent displacement could also 

indicate irregular surfaces formed via mass transport deposits (MTDs). 

Beyond the area of undulations, the sub-surface penetration increases dramatically from 

~20 ms TWTT to ~130 ms TWTT, showing a thick laminated sub-parallel sequence of 

reflectors that extend 15 km across the basin floor. These reflectors become more closely 

spaced in the east, where they eventually pinch-out and onlap the basin’s northern margin. 

In the east, deeper sections of this sequence lose structure and may be folded. Figure 5.B 

shows this section in greater detail. 

The eastern end of TOPAS line 17 traverses the lower section of the basin’s northern 

margin where there is little or no seismic penetration. However, a number of features are 

apparent, notably a succession of tilted blocks, which may indicate faulting. 

TOPAS line 7 (Figure 6) crosses the centre of Endurance Basin with a 62 km long profile 

and intersects TOPAS lines 11 and 12 (shown in Figures 9 and 8 respectively). Moving 

west to east, a marked change in seismic facies is observed, with limited penetration in the 

west revealing plane-stratified reflectors; and a ponded sequence of units visible towards 

the east of the line in the centre of the basin. 

These two regions are separated by an elevated structure (termed block A), interpreted as 

a block uplifted along a cross-basin fault pair (see section 5.1 and Figure 13.A). An 

additional fault is interpreted approximately 2.5 km downslope from block A (shown in 

detail in Figure 7.A). Immediately upslope, to the west of block A, sediments appear to 

accumulate in a convex up geometry, which we infer to indicate a mounded deposit when 

considered in 3D. Further east a possible anticline is visible near fix marker 11, just before 

a 2.8 km data gap. 
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The ponded sequence of units extends over a distance of some 40 km to the southeastern 

end of TOPAS line 7. The uppermost unit is largely transparent and reaches a thickness of 

15 ms TWTT in the centre of the basin. However, the unit’s maximum thickness of 21 ms 

TWTT is observed at the eastern end of TOPAS line 7 where a steep sided, elevated 

geometry is displayed over a distance of 9 km. There is no visible reflector separating this 

feature from the rest of the unit. 

Below this transparent unit is a higher amplitude, chaotic, ponded unit, which appears to 

erode the stratified unit beneath it again (see Figure 7.B). Within TOPAS line 7, this unit 

reaches a maximum thickness of 20 ms TWTT. 

These two ponded units rest above a sequence of alternating stratified and transparent 

units, which thicken towards the centre of the basin. 

A 30 km section from TOPAS line 12, running between the centre of the basin and the 

lower section of the glaciogenic fan, is displayed in Figure 8. The two ponded units 

identified in Figure 6 are again apparent and the units within TOPAS lines 12 and 7 

correlate at their intersection. Overlying these units, an additional thin, lens-like unit is 

visible towards the west of the line. Seismic penetration is dramatically reduced on the 

glaciogenic fan’s lower slopes at the eastern end of the line. 

The transparent upper ponded unit thins to eastward, reaching a minimum thickness of 9 

ms TWTT, before thickening to 16 ms TWTT adjacent to the toe of the fan. The unit then 

onlaps the fan surface. 

The basal reflector of the lower chaotic, ponded unit (below the upper transparent unit) 

can be traced for some 6.5 km east from the start of TOPAS line 12. Within this section the 

unit is observed to thicken significantly. Moving eastward the unit’s upper boundary forms 

an asymmetric, irregular, elevated deposit (of 20 km length) and severely limits seismic 

penetration; making identification of unit thickness impossible. An area of more transparent 

chaotic facies is observed between this elevated unit and the toe of the fan to the east. 

There is practically no seismic penetration from TOPAS data on the fan. However, the 

TOPAS data provides a useful additional source of information on the area’s seabed 

morphology. The fan’s lower slope is convex up before gradients increase and the fan 

continues upslope to a canyon system linking it to the micro-continental shelf (Figure 8). 

Whereas Figures 4 - 8 presented a west to east transect through the basin, TOPAS line 11 

(Figure 9) shows a 16 km south to north profile between the southern and northern 

margins. The southern section of the line presents similar data to Figures 6 and 8, with the 
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same units apparent. The thin, lens-like surface unit visible in Figure 8 is observed slightly 

north of the line’s intersection with TOPAS line 12. The upper transparent unit is less 

obviously ponded than in TOPAS lines 7 and 12, though it does thin slightly to the north. 

The lower chaotic unit thickens notably in the centre of the basin. 

As shown by the bathymetry, and reinforced by the TOPAS data, the northern margin is 

extremely steep and appears irregular, with numerous hyperbolae. It is unclear whether 

mound-like facies situated immediately south of the slope break are real (in which case 

they probably represent debris sourced from the slope) or artefacts caused by side-swipe 

from prominent bathymetry. 

North from the slope break TOPAS line 11 crosses a smaller basin, which contains 

stratified sediments, situated between interpreted fault scarps. The northernmost section 

of TOPAS line 11 is not shown as the steep slopes contain little data of use, save a 

verification of the absence of thick sediments. 

Traversing the basin’s southern margin, a section of TOPAS line 9 is shown in Figure 10. 

The eastern section of the line reveals parallel laminated reflectors, which pinch out in a 

channel located adjacent to the prominent pinnacle observed in bathymetric data (Figure 

2). Seismic penetration is then minimal and the line appears to cross a steep scarp. 

On the basis of the reflectivity and geometry of the surface and sub-surface sediments we 

interpret five distinct seismic units, which are summarised in Figure 11 and indicated on 

Figures 4 to 10. Expanding the morphological facies concept originally developed for 

debris avalanche deposits by Glicken (1996), units III and IV are divided into 

morphological facies a and b. This division is based on Glicken’s observation that deposits 

from the same mass transport event show lateral variation and may display different 

morphologies. Faults are identified via vertical displacement of reflectors and occasional 

loss of sedimentary structure. Origin and mechanistic interpretation of these units are 

discussed in section 5.2. 

4.2.2. Thickness of units 

Figure 12 presents an isopach of units III and IV. These are expressed in metres, 

assuming a seismic velocity of 1600 m s-1, which is appropriate for shallow sediments in 

high latitudes (Schlesinger et al., 2012). It is possible that the deeper unit III may in reality 

have a  greater velocity, but in the absence of information a single depth conversion is 

used. 
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Figure 12.A shows the interpreted thickness of seismic unit IV. From a thickness of 12 m in 

the centre of the basin, the unit thins gradually to the west. The thickest occurrences 

(maximum thickness is calculated as 17 m) are associated with the elevated deposits of 

the IVa morphological facies shown at the eastern end of Figure 6. Thickness increases in 

depressions in the eastern part of the basin, before the unit thins rapidly as it onlaps the 

glaciogenic fan. This unit’s estimated volume is 4.2 km3. 

Thickness of seismic unit III is shown in Figure 12.B. This unit reaches a maximum 

interpreted thickness of 24 m where the IIIa morphological facies ponds near the basin’s 

northern margin. The unit thins gradually to the west, where it onlaps the underlying 

stratified units (shown in Figure 6). It was not possible to calculate thickness towards the 

east of the basin due to insufficient seismic penetration, however the unit is believed to be 

present west of the glaciogenic fan. The unit’s calculated volume (which represents an 

incomplete volume) is 3.3 km3. 

Isopachs were not created for seismic units I, II and V due to insufficient data. However, by 

way of illustration, if a seismic velocity of 1600 m s-1 is assumed, then seismic unit I has a 

maximum observed thickness of 25 m, unit II has a thickness of at least 100 m (though the 

unit extends beyond  the limit of seismic penetration) and unit V a thickness of up to 2.5 m. 

5. Discussion 

5.1. Tectonic origin of the basin 

Fault patterns observed in the multibeam and TOPAS data (Figures 2, 4, 5, 6 and 7) 

indicate that the margins of the basin are strongly fault-defined. The regional plate tectonic 

setting (Figures 1.A, 13.A; Thomas et al., 2003; Smalley et al., 2007) implies that these 

faults developed in a transpressive left-lateral tectonic regime. 

Supporting evidence for crustal down-warping associated with overthrusting of South 

Georgia onto the Scotia Sea plate can be seen in satellite-derived gravity free-air 

anomalies which show a pronounced low of -80 mGal over the basin (Livermore et al., 

1994; Eagles, 2010). Earthquake focal mechanism data (Pelayo and Wiens, 1989; USGS, 

2014) demonstrates that the southern margin of the South Georgia lithosphere is being 

thrust SW over the Central Scotia Sea part of the Scotia plate. This suggests that the 

Endurance Basin is a foreland basin that developed along down-flexed lithosphere in the 

footwall adjacent to the overthrust continental margin. 

New data presented here display substantial evidence of faulting. The slope segments, in 

the basin’s northern margin, trending obliquely to the basin are interpreted as a left-
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stepping en echelon array of oblique, strike-slip fault scarps with intervening elongate 

highs and small basins (Figure 2 and 13.A). North to south trending across-basin scarps 

appear to develop, and curve away, from the main faults within the northern margin. These 

N-S features, which divide Endurance Basin into the three sub-basins (Table 3 and Figure 

13.A), are interpreted as reverse faults and compressional fault arrays. TOPAS line 7 

crosses one of these structures, which is labelled Block A (Figure 6 and 13.A). Further 

supporting evidence of this interpretation is shown in TOPAS line 17 (Figure 4), where a 

number of tilted blocks are observed on the flank of the basin’s northern margin. Possible 

deformation of deeper sediments imaged in TOPAS line 17 (Figures 4 and 5) adds further 

support to this compressional tectonic interpretation. The fault imaged in Figure 7.A, east 

of Block A, shows a clear vertical offset, but due to the TOPAS data resolution its dip is 

uncertain. 

However, the geometry requires that N-S faults (Figure 6 and 7) crossing the basin and 

linking to the northern margin faults are compressional structures and likely high angle 

reverse faults. This geometry is also consistent with a component of left-lateral geometry 

of strike-slip faulting along the margin, as South Georgia and the shelf trough are moving 

NW with respect to the basin and the fan. En echelon scarps observed on the basin’s 

southern margin (Figure 2 and 13.A) are interpreted as normal faults, being orthogonal to 

the basin-crossing compressional ridges. 

Relatively recent development of Endurance Basin as a mainly compressive feature may 

be superimposed on an earlier dextral strike-slip fault system, along which South Georgia 

was translated to the east relative to the South American plate to the north as it was rifted 

from Tierra del Fuego (Dalziel et al., 1975). Therefore, it may have undergone one or more 

periods of inversion between the initial opening of Drake Passage and the present, with 

South Georgia initially moving east relative to South America with the Scotia plate but 

subsequently being partly transferred to South America and so moving west relative to the 

Scotia Sea on the SW-directed thrust faults. 

Similar continental margin-parallel marginal basins associated with local transpression and 

negative free-air gravity anomalies are observed along the northern margin of the sinistral 

South Scotia Ridge west of the South Orkney micro-continent (Galindo-Zaldívar et al., 

1996; Bohoyo et al., 2007; Lodolo et al., 2010). However, in general features identified on 

the South Scotia Ridge have a greater association with transtension (Galindo-Zaldívar et 

al., 1996; Bohoyo et al., 2007; Lodolo et al., 2010; Civile et al., 2012) than the left-lateral 

transpression documented on the northern margin of Endurance Basin in this paper. 
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Looking further afield, analogies for the development of Endurance Basin may be found on 

the broadly strike-slip northern and southern boundaries of the Caribbean Plate, especially 

in the basins on the southwest side of Hispaniola. Hispaniola has in the past extended as 

it moved east with the Caribbean plate but is now experiencing transpression as it is being 

transferred progressively to the North American Plate and so moves west relative to the 

Caribbean, shortening and deepening the basins on its southwest side as they are 

overthrust by crustal blocks forming central Hispaniola (Mann et al., 1991; Pubellier et al., 

2000). 

5.2. Inferred origin of interpreted seismic facies 

Depositional and transport processes of sedimentary units may be interpreted on the basis 

of their reflective characteristics and geometry (Piper et al., 1999). As such, we now 

consider the characteristics of interpreted seismic facies (Figure 11) and whether they are 

indicative of a particular sedimentology. 

Seismic unit I consists of stratified, parallel reflectors and allows limited seismic 

penetration. The unit seems to drape underlying strata. Data coverage of this unit is 

relatively sparse and the interpreted origin is uncertain. However, on the basis of the 

reflective characteristics and location of the interpreted facies within Endurance Basin, it is 

considered that this unit is most likely to consist of hemipelagic material, with possible 

down-slope input from the basin margins. The unit may be influenced by bottom currents, 

with reduced seismic penetration potentially due to the presence of coarser sediment. 

5.2.1. Contourites 

The geometry of seismic unit II is typical of a type of contourite drift (Faugères et al., 1999; 

Maldonado et al., 2003; Maldonado et al., 2005; Faugères and Stow, 2008). Contourite 

deposits, which form under the influence of contour parallel currents, display a variety of 

forms that reflect variation in current velocity, sediment supply and seabed morphology. 

Typical seismic characteristics of contourites inlcude: wavy, continuous, parallel to sub-

parallel reflectors that converge towards the margins of the depositional bodies (Faugères 

et al., 1999; Maldonado et al., 2005). Contourite deposits may also display distinctive 

morphologies that are visible in bathymetry, for example elevated, elongate mounds and 

eroded moats and furrows (Maldonado et al., 2005; Howe et al., 2006; Lobo et al., 2011). 

In particular, the sigmoidal geometry displayed in TOPAS line 17 (Figure 4) is similar to the 

slope plastered drifts interpreted by Pudsey and Howe (2002) and Maldonado et al. (2003) 

in the Central Scotia Sea. Though, the bathymetric setting and observed mounded 

morphology is comparable to mounded drifts described by Maldonado et al. (2005). The 
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eastward convergence of reflectors (Figure 5.B) may reflect a concurrent increase in 

bottom current velocity, reducing the sedimentation rate. Indications of current scour 

further southeast in Endurance Basin (for example the annular trough around the 

prominent pinnacle to the south of the basin, shown in Figure 10) provide further evidence 

of sediment deposition and erosion under the influence of accelerating bottom currents in 

a manner similar to that observed in other channel-like environments (Dorn and Werner, 

1993; Marani et al., 1993; Howe et al., 1997; Llave et al., 2006). 

Summarised in Figure 13.B, bathymetry and TOPAS data provide strong evidence of 

contourite deposits within Endurance Basin. In turn, these deposits indicate the presence 

of bottom currents flowing through Endurance Basin and its adjacent slopes implying the 

presence of ACC and/or WSDW flowing west to east to the south of South Georgia. 

The thickest accumulation of the well-stratified unit II documented in this study is located in 

the northwest of Endurance Basin and shown in Figure 4. Here the unit is at least 130 ms 

TWTT (104 m assuming a seismic velocity of 1600 m s-1) thick, though the base extends 

beyond the limit of seismic penetration. This unit thins towards the basin’s northeastern 

margin where bathymetric depths increase. As contourites tend to accumulate thicker 

deposits in areas of reduced current velocity (Faugères and Stow, 2008) this geometry, 

consistent with the known oceanography of the Northern Scotia Sea (Orsi et al., 1995; 

Thorpe et al., 2002; Meredith et al., 2008; Smith et al., 2009), supports the presence of a 

bottom current flowing southeastwards along the base of the South Georgia micro-

continental slope. 

Additional occurrences of seismic unit II are observed on Endurance Basin’s southern 

margin west of 38.7° W and are shown in Figure 10. As imaged in TOPAS lines 8 and 9, 

the unit pinches out at a horseshoe-shaped feature surrounding the base of the prominent 

pinnacle (Figure 10), providing possible evidence of an additional bottom current pathway 

into the basin. 

5.2.2. Mass transport deposits 

Seismic unit III displays two distinct morphological facies. Shown in Figure 8, Unit IIIa 

displays a chaotic, irregular and elevated geometry and is coupled with a possible slump 

at the toe of the glaciogenic fan (further north, TOPAS line 19 also indicates a similar 

convex up deposit at the toe of the fan). The chaotic upper unit IIIa pinches out in the west 

and masks deeper strata. 

The chaotic, ponded morphology of unit IIIb is very similar to units that have been 

interpreted as debris flow deposits by other authors (Piper et al., 1999; Canals et al., 2004; 
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Tripsanas et al., 2008; Dondurur et al., 2013). Diagnostic seismic characteristics of these 

deposits include chaotic, transparent to semi-transparent seismic facies with a lack on 

internal structure (Canals et al., 2004). Ponding of deposits results from gravity acting on 

the mobile sediment, forcing particles into depressions. This effect may be magnified for 

fine grained cohesive sediments (clays) where electro-chemical bonds between particles 

may result in back-draining into basinal lows (Talling et al., 2012). 

We, therefore, suggest that the observed morphology of unit IIIb results from the 

disintegration and gravity driven accumulation of sediments within depressions. The 

chaotic nature of the facies supports a disintegrative, rather than coherent, transport 

mechanism, such as has been documented on lower slopes at Trænadjupet, offshore 

Norway, by Laberg and Vorren (2000). The apparent erosion of underlying strata shown in 

Figure 7.B provides further support for emplacement via mass transport. 

On the basis of these observations it seems likely that a slump and/or debris flow 

originated on the fan and transporting sediments westward, evolving as it did so, to 

produce the two distinct morphological facies in the sense defined by Glicken (1996). Unit 

IIIa deposits shown in Figure 8 representing the proximal, cohesive, high basal friction 

component and unit IIIb (Figures 7 and 9) representing the more distal deposits. 

Originating on the glaciogenic fan, we speculate that this deposit may be related to 

overburden as a consequence of rapid sedimentation as the South Georgia micro-

continent’s ice-sheet retreated from the shelf (Graham et al., 2008). 

The morphology of unit IV is different to unit III: being more transparent and less obviously 

ponded. As such, consideration was given to whether the apparent thinning and onlap of 

unit IV is caused by sedimentation rate changes and/or later erosion due to bottom 

currents. Interpreted contourite deposits (section 5.2.1) provide evidence of significant 

bottom current activity in Endurance Basin and the lack of seismic penetration on the 

glaciogenic fan and west of Block A (Figures 8 and 13.A) could indicate winnowing of fine 

material, as observed in other locations with vigorous bottom currents (McCave et al., 

1995; Øvrebø et al., 2006; Preu et al., 2013). In this alternative interpretation, the 

transparent seismic unit IV could then represent a muddy contourite deposit, accumulating 

due to reduced current velocity and thinning on highs that experience increased flow rates 

(Stow and Faugères, 2008). 

However, this alternative interpretation does not explain the elevated deposits within the 

unit and there are no obvious indications of current flow (i.e. moats, drift deposits or unit 
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asymmetry) in locations adjacent to the deposition of unit IV. Therefore we suggest that a 

debris or density flow origin is more likely. 

We also divide the largely transparent seismic unit IV into two morphological facies 

(Glicken, 1996): unit IVa, the irregular, elevated facies and unit IVb, the smooth, ponded 

deposit that onlaps the underlying units (demonstrated in Figures 6 and 8). There is no 

obvious reflector separating the elevated feature from the ponded unit and it seems that 

they are two distinct morphologies of the same unit. 

The elevated and irregular morphology of unit IVa, visible at the eastern end of Figure 6 

and which extends for 9 km, provides a relative elevation of 5 m, is striking and bares 

marked similarity to debris flow deposits (Amy et al., 2005; Iverson et al., 2010). This 

positive morphology, which may indicate a cohesive debris flow (Tripsanas et al., 2007), 

contrasts the apparent lack of internal structure and smooth surface of unit IVb. This 

deposit is not visible in the bathymetric data, probably because the 5 m elevation is at the 

limit of the data’s vertical accuracy at this depth (see Section 3). 

Unit IVa is not visible on TOPAS lines 12 or 18, which are situated further north in the 

basin. However, it is visible in the northern section of TOPAS line 8, which extends 

southwards from TOPAS line 7 (Figure 2). A drift sequence is interpreted upslope from this 

location (Figures 10 and 13.B), which appears eroded in a section of TOPAS line 9, which 

traverses east to west across the basin’s southern margin. 

This erosion, characterised by converging reflectors, unit pinch out and possible 

stratigraphic truncation, at the western end of the drift, appears to be due to the action of 

bottom currents (as observed in the Falklands Trough by Howe et al. (1997)) and not as a 

result of sediment failure. However, the steep slope (20° - 30°) encountered 3.5 km to the 

west of the drift (Figure 10) trends north to south: apparently perpendicular to the direction 

of current flow inferred from the drift termination. As features eroded by bottom currents 

tend to form parallel to the direction of flow (Marani et al., 1993; Howe et al., 2006; Elliott 

et al., 2010; Preu et al., 2013), we suggest that the N-S trending steep slope is not a 

product of current erosion. 

Although TOPAS line 9 (Figure 10) does not pass directly over the pinnacle, a relatively 

wide fresnel zone (~200 m in 3800 m water depth) means that this slope is probably 

associated with the pinnacle’s northern buttress. However, bathymetric data (Figure 10.A) 

also shows a significant scarp slope trending north from the pinnacle for at least 2 km, with 

gradients reaching 20°. This slope may mark a headwall scar associated with the unit IVa 

deposit interpreted in TOPAS line 7 (Figure 6). 
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It appears that unit IVa, which is only observed adjacent to Endurance Basin’s southern 

margin is sourced from the embayment located on the southwestern margin (indicated on 

Figure 2). Although, in this location slope angles are generally <2°, on its margins they are 

appreciably steeper and submarine mass failures have been documented on slopes as 

low as 0.01° (Coleman et al., 1998; Walsh et al., 2006). Additionally, numerous large 

slides and slumps have been documented on submarine slopes with gradients in the order 

of 2° (see Owen et al., 2007 and references cited therein). 

The 120 km2 area of the embayment is consistent with the estimated 4.2 km3 volume of 

unit IV and would require displacement of sediments 35 m thick to form the deposit. Not 

sourced from the glaciogenic fan, it seems likely that the event represents the failure of a 

contourite sequence in a manner previously observed in other high latitude locations (Bryn 

et al., 2005a; Elliott et al., 2010). 

The prominent pinnacle visible in Figures 2 and 10 is intriguing and may exert influence on 

bottom current flow and sediment deposition. Bottom current flow is strongly influenced by 

interactions with bathymetric features that may cause changes in bottom current velocity 

and lead to turbulence and eddies (Alendal et al., 2005; Øvrebø et al., 2006). Such effects 

are noted elsewhere, for example at Rosemary Bank in the North Atlantic (Howe et al., 

2006) and in the Plata del Mar Canyon on the Argentine margin (Voigt et al., 2013): in 

these locations changes in bottom current flow strongly influence sedimentation. 

It is therefore plausible that this pinnacle, with a vertical relief of >300 m and surrounded 

by a horseshoe shaped depression (Figure 10.A), acts to focus bottom current flow: 

increasing adjacent current velocity, reducing sedimentation rates and causing the erosion 

visible in TOPAS line 9 (Figure 10.C). Once beyond the bathymetric constriction flow rates 

would decrease and allow greater rates of sedimentation: as observed in the Plata del Mar 

Canyon and on the Porcupine slope (Øvrebø et al., 2006; Voigt et al., 2013). We propose 

that this process may pre-condition the down-current slope to failure via increased 

sedimentation of fine material and possible undercutting of the deposited material by the 

adjacent current stream, in a manner similar to that suggested for the Rockall Bank Mass 

Flow by Elliot et al. (2010). 

We emphasise that the different morphological facies of units III and IV represent different 

evolutionary stages of single mass movement events. We infer that the elevated deposits 

(IIIa and IVa) formed earlier in the mass movement process and are less disintegrated 

than the distal, onlapping deposits (IIIb and IVb) that may have become more fluidised or 

that may indicate deposition via a density flow (Hampton et al., 1996; Mulder and 
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Alexander, 2001; Mulder et al., 2003; Talling et al., 2012). The less pronounced ponding 

observed in unit IVb compared to unit IIIb may reflect particle size (and/or mineralogy) 

composition influencing sediment cohesion (Talling et al., 2012), or it may simply reflect 

the reduced seabed relief following deposition of unit III. We interpret unit IV as a debris 

flow or density flow deposit. The less pronounced ponding of the unit may indicate a less 

cohesive event than unit III. Sediment samples and more sub-bottom data are required to 

fully understand the unit. 

Overlying the transparent unit IV, the lens-like seismic unit V appears to display a similar 

morphology, with margin pinch-out, to the surface debris flows documented by Iverson et 

al. (2010) and debrite deposits by Amy et al. (2005). The unit is thickest in TOPAS line 12 

(Figure 7) and appears less pronounced in TOPAS line 11 (Figure 8), it is not apparent to 

the north of the basin in TOPAS line 18. As such, it seems most likely that the unit 

represents a small debris flow sourced from the basin’s southern margin. It is not imaged 

in TOPAS line 7 as its apparent location would appear to correspond to the 2.8 km data 

gap (Figure 6). 

5.3. A potential palaeoenvironmental archive? 

As shown in Figure 4, unit II in the western part of the basin is clearly stratified throughout 

the imaged thickness. The sub-parallel reflectors appear to demonstrate the presence of a 

cyclic laminated sediment sequence at least 100 m thick (though the sequence extends 

beyond the limit of TOPAS data). Reflectivity in TOPAS line 17, shown in Figures 4 and 

5.B, alternates between high and low amplitude, potentially indicating a concurrent 

alternation between coarse and fine material resulting in a succession of seismic 

impedance contrast changes. A further increase in reflectivity is observed in the deepest 

third of the imaged sequence, possibly indicating a significant change in the sedimentation 

regime, or diagenetic front, at this point (Figure 5.B). Changes seismic reflectivity (and 

particle size) may be caused by a number of factors, including: bottom current velocity 

variation (McCave et al., 1995; Øvrebø et al., 2006); changes sediment provenance 

(Rothwell et al., 1998; Hemming, 2004); porosity and density variation (Goff et al., 2004); 

and diagenetic modification of opal-A to opal-CT (Volpi et al., 2003). The clear stratification 

visible in TOPAS line 17, combined with the sedimentological and geochemical control of 

seismic reflectivity, suggests that unit II may contain important palaeoenvironmental 

records. 

Sedimentation rates vary by orders of magnitude throughout the oceans and estimating 

rates accurately without sediment samples is impossible. However, it is possible to present 
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some tentative sedimentation rate ranges based on studies from the region and other 

similar deposits. Pudsey and Howe (1998) document sedimentation rates between 3.2 and 

17 cm ka-1 in the Scotia Sea since the LGM. Maldonado et al. (2003) estimate a rate of 2.7 

cm ka-1 for their seismic unit I, which represents late Pliocene to Holocene deposition in 

the Central Scotia Sea. Contourite drifts may yield appreciably higher sedimentation rates 

than these Scotia Sea studies show, with significant variation between glacial and 

interglacial periods also noted. For example, using radiocarbon dating, Knutz et al. (2007) 

constrain rates between 70 and 20 cm ka-1 within sediment core DAPC2 in a contourite 

drift located in the Rockall Trough. It is, therefore, not safe to assume constant 

sedimentation rates. 

Using the Scotia Sea sedimentation rate ranges calculated by Pudsey and Howe (1998), 

and an assumed seismic velocity of 1600 m s-1 (this may be an underestimate, as seismic 

velocity is anticipated to increase with depth related compression), it seems probable that 

the drift sequence in the west of Endurance Basin should contain a record of 

sedimentation for at least the past 500 ka and potentially >3 Ma. However, it is impossible 

to verify the age of this sequence without drill sampling. As such this sequence is expected 

to contain a valuable archive of oceanographic, climatological and productivity data 

covering, at a minimum, the late Pleistocene glacial cycles and potentially extending into 

the Pliocene. 

5.4. Overview of basin sedimentation 

Broadly speaking, and indicated in Figure 13.B, Endurance Basin may be divided into four 

distinct sedimentation regimes: contourite drifts; plane stratified hemipelagic sequences; 

ponded debris or mass flow deposits; and the glaciogenic fan. This arrangement results 

from interaction between sediment sources and pathways and the regional tectonics; with 

a number of sub-basins formed between the N-S trending cross basin faults (Figure 13.A). 

The contourite drifts in the west of the basin and on the southern margin (Figure 13.B) 

provide evidence of the eastward flowing bottom current, which may comprise both ACC 

and WSDW components (Pudsey and Howe, 1998; Thorpe et al., 2002; Maldonado et al., 

2003; Meredith et al., 2008; Smith et al., 2009). Indeed the abyssal water mass of the 

western Endurance Basin may be distinct from that in the east. 

The central area of Endurance Basin is characterised by a sequence of ponded units, 

which seem to be interdigitated with the stratified deposits (Figure 6). We have interpreted 

three seismic facies in this area, which on the basis of the TOPAS data, appear to have 

different source locations. Divided into two morphological facies, it seems that Unit III was 
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sourced from the glaciogenic fan and transported material westward into the centre of 

Endurance Basin. Overlying this unit, Unit IV appears to have been sourced from the 

contourite deposits on the southern margin. Unit V also seems to have been transported 

from the southern margin, though its origin is less obvious. At present no sediment 

samples have been acquired from Endurance Basin. Such data would be of great benefit 

in fully understanding the basin’s sedimentology. 

Currently there is insufficient evidence to consider slope failure susceptibility or trigger 

mechanisms. However, it seems plausible that unit III may be related to (de)glacial 

sedimentation and that located in an active tectonic region a seismic trigger is at least 

possible (Figure 1.C; Pelayo and Wiens, 1989; Thomas et al., 2003; Graham et al., 2008; 

USGS, 2014). If so, the implication is that the South Georgian continental slope landslide 

scars (Figure 3) pre-date the last glacial. How the prominent pinnacle, located in the 

interpreted source area of unit IV, influences local sedimentation and whether it affects 

slope stability is a question for future research. 

The fan in the far southeast of Endurance Basin is inactive at present, and would appear 

to be active only during periods of ice-advance onto the micro-continent’s shelf (Graham et 

al., 2008). The far southeastern margin of Endurance Basin is not mapped (Figures 2 and 

13) and, as such, the sedimentology of this location is not known. 

6. Conclusions 

Preliminary investigation of the Endurance Basin using multibeam bathymetry and sub-

bottom profiling reveals that the basin developed in a transpressional tectonic environment 

and sedimentation occurred by interaction of continental-slope derived instability and mass 

flow sedimentation with basin floor contourite sedimentation. The most recent stage of 

Endurance Basin development, was as a foreland basin related to thrusting of the South 

Georgia continental margin to the SW over lithosphere of the Central Scotia Sea. Faulting 

at the margins of and within the basin is consistent with left-lateral transpression. 

Several sedimentary units are identified as being widely developed within the basin. 

Significant contourite deposits are interpreted in the northwest of the basin, as well as on 

the southern margin. These provide evidence of significant bottom current flow and may 

yield a palaeoenvironmental archive extending from present conditions to the Pliocene. 

Ponded units located in the central basin are interpreted as debris or density flow deposits, 

sourced from two different locations (the fan in the southeast of the basin and the 
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contourite sequence on the southern margin) and potentially governed by different causal 

mechanisms. 

Our survey of the basin indicates its potential for obtaining high resolution 

palaeoenvironmental records from the northern Scotia Sea. Collection of sediment 

samples and additional geophysical data (notably multichannel seismics) would greatly 

enhance the interpretation and understanding of features and processes within the basin; 

which in turn may aid in understanding variation in ACC flow and climate of the South 

Georgia micro-continent. 
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Figure Captions 

Figure 1: Regional map of Scotia Sea. A. Tectonic setting, thick black lines indicate key 

tectonic plate boundaries, solid inset box shows location of Figure 2. B. Present-day 

oceanographic setting, current circulation from Maldonado et al. (2003) and frontal 

locations from Meredith et al. (2003). SAF - Subantarctic Front; PF - Polar front; SACCF - 

Southern Antarctic Current Front; SB - Southern boundary of Antarctic Circumpolar 

Current; SRP - Shag Rocks Passage. C. South Georgia microcontinent and seismicity 

from USGS (2014). 

Figure 2: Detailed bathymetric map of Endurance Basin also showing location of TOPAS 

lines and subsequent figures in this paper. Figure location is shown in Figure 1. Some 

interpreted features are also shown: scarps are interpreted as faults (see Figure 13 and 

section 5 for discussion). Scars A - C are shown in Figure 3. 

Figure 3: Bathymetry and interpretative figures of mass transport scars from the northeast 

margin of Endurance Basin, locations of scars shown on Figure 2. Scarps are interpreted 

as faults (see Figure 13 and section 5 for discussion). 
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Figure 4: JR206 TOPAS line 17, northwest to southeast transect part 1. A. Location of 

profile. B. TOPAS data shown with 30 x vertical exaggeration. C. Interpreted section, 

dashed boxes indicate location of Figures 5.A and 5.B. 

Figure 5: High resolution image of sub-surface features shown in TOPAS line 17. A. 

TOPAS line 17 inset box 1. B. TOPAS line 17 inset box 2. 

Figure 6: JR206 TOPAS line 7, northwest to southeast transect part 2. A. Location of 

profile. B. TOPAS data shown with 25 x vertical exaggeration. C. Interpreted section, 

dashed boxes indicate location of Figures 7.A and 7.B. 

Figure 7: High resolution image of sub-surface features shown in TOPAS line 7. A. TOPAS 

line 7 inset box 1. B. TOPAS line 7 inset box 2. 

Figure 8: JR206 TOPAS line 12, northwest to southeast transect part 3. A. Location of 

profile. B. TOPAS data shown with 25 x vertical exaggeration. C. Interpreted section. 

Figure 9: JR206 TOPAS line 11, south to north transect. A. Location of profile. B. TOPAS 

data shown with 25 x vertical exaggeration. C. Interpreted section. 

Figure 10: JR206 TOPAS line 9, example of interpreted contourite deposit from Endurance 

Basin’s southern margin. A. Location of profile. B. TOPAS data shown with 25 x vertical 

exaggeration. C. Interpreted section. 

Figure 11: Overview of interpreted seismic units. 

Figure 12: Isopach of seismic units III and IV. A. Isopach of Unit IV. B. Isopach of Unit III. 

Thin black lines show location of TOPAS profiles interpreted, thicknesses calculated using 

an assumed seismic velocity of 1600 m s-1. Data plotted with bathymetric shaded relief; 

location indicated on Figure 2. 

Figure 13: Interpreted processes and features within Endurance Basin. A. Structural. B. 

Sedimentation and ocean circulation pathways. 

Table captions 

Table 1: Data used in this study. 

Table 2: Overview of TOPAS lines. 

Table 3: Morphological characteristics of Endurance Basin. 
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Table 1 

Data type Summary 

JR206 Bathymetry Acquired from RRS James Clark Ross with Simrad EM120 multibeam echosounder. 

JR206 TOPAS 667 km of data acquired from RRS James Clark Ross with Simrad TOPAS PS 018 

(Details shown in Table 2). 

Additional bathymetry Data previously acquired by RRS James Clark Ross (17 cruises). Primarily acquired on 

passage, with the exception of an area in the southeast where a block of data was 

acquired during cruise JR103. 

Bathymetric grid, the underlying source data and the TOPAS data are available from the Polar Data Centre, hosted 

by the British Antarctic Survey. 
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Table 2 

Line Name Latitude - Start 

(D.D) 

Longitude - 

Start (D.D) 

Latitude - End 

(D.D) 

Longitude - 

End (D.D) 

Vessel speed 

(kts) 

Ping inteval (ms) Line length (km) 

JR206_TOPAS_01 -54.3645 -39.8489 -54.7213 -39.1316 10 External 64.2 

JR206_TOPAS_02 -54.6863 -39.0753 -54.5059 -39.4890 10 External 33.4 

JR206_TOPAS_03 -54.5053 -39.4833 -54.5441 -39.5439 6 1250-2000 16.5 

JR206_TOPAS_03a -54.6165 -39.6323 -54.6801 -39.5006 6 2000 11.1 

JR206_TOPAS_04 -54.6772 -39.5113 -54.5374 -39.2935 6 2000 21.1 

JR206_TOPAS_06 -54.7816 -39.2341 -54.6457 -39.0278 6 2000 20.2 

JR206_TOPAS_07 -54.7928 -39.1918 -55.1310 -38.4037 10 2000-7000 61.6 

JR206_TOPAS_08 -55.1267 -38.4122 -55.2273 -38.5679 10 7000 15.0 

JR206_TOPAS_09 -55.2316 -38.5219 -55.0899 -38.8408 10 7000 25.7 

JR206_TOPAS_10 -55.0993 -38.8371 -54.8269 -38.5230 10 – 6 7000-2000 36.4 

JR206_TOPAS_11 -54.8686 -38.4032 -55.0501 -38.6308 6 – 10 2000 24.9 

JR206_TOPAS_12 -55.0377 -38.6288 -55.1112 -37.9394 10 2000 44.8 

JR206_TOPAS_13 -55.1079 -37.9496 -55.0450 -37.8698 6 2000 8.7 

JR206_TOPAS_14 -55.0469 -37.8729 -55.0012 -38.0592 6 2000 13.0 

JR206_TOPAS_14a -54.9972 -38.0468 -54.9454 -37.8782 10 2000 12.2 

JR206_TOPAS_15 -54.9455 -37.8793 -55.2005 -38.1723 6 – 10 2000 34.0 

JR206_TOPAS_16 -54.5745 -39.9506 -54.6656 -39.8253 10 2000 13.0 

JR206_TOPAS_17 -54.6659 -39.8243 -54.8057 -39.0075 10 2000 54.9 

JR206_TOPAS_18 -54.9062 -39.0062 -55.0155 -38.5114 10 2000 33.9 

JR206_TOPAS_19 -55.0155 -38.5114 -55.0667 -37.8488 10 2000 42.7 

JR206_TOPAS_20 -55.0667 -37.8488 -55.2111 -37.5091 10 2000 27.0 

JR206_TOPAS_21 -55.2114 -37.5080 -55.3529 -36.7085 12 External 53.2 

Total 667.4 
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Table 3 

Region Feature characteristics 

Endurance 

Basin - overview 

Length: 140 km Width: 15 - 30 km Area: 2630 km
2 

Maximum 

water depth: 

3930 m Mean water  

depth: 

3709 m Gradient along basin 

axis - west to east: 

0.5° 

Northern margin Relief: 3300 m Typical 

Gradient: 

13° Maximum gradient: 49° 

Southern 

margin 

Relief: 500 - 

1100 m 

Typical 

Gradient: 

13° on steep slopes, 2° 

on more gently angled 

embayments 

Maximum gradient: 35° 

Western sub-

basin 

Length: 74 km Width: 15 - 26 km Area: 1355 km
2 

Maximum 

water depth: 

3830 m Mean water 

depth: 

3603 m Gradient along basin 

axis - west to east: 

0.5° 

Eastern sub-

basin 

Length: 50 km Width: 23 - 12 km Area: 695 km
2 

Maximum 

water depth: 

3930 m Mean water 

depth: 

3875 m Gradient along basin 

axis - west to east: 

0.2° 

Glaciogenic fan Length: 39 km Width: 32 km  Area: 629 km
2 

Water depth 

at summit: 

2550 m Water depth 

at toe: 

3850 m Typical Gradient: 2.5° 
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Highlights 

 

 Endurance Basin is adjacent to South Georgia’s southern continental margin 

 It is around 160 km long and 20 - 50 km wide and consists of at least three sub-
basins 

 Bathymetry provides evidence of transpression with oblique strike-slip faults 

 TOPAS data reveals debris flows accumulating in the central basin 

 Contourite units may contain a palaeoenvironmental archive extending to the 
Pliocene 


