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Patches of enhanced chlorophyll a (Chl) concentrations within the thermocline were observed over the
slopes of several banks in the Celtic Sea. The turbulent mixing of nutrients from the bottom water into
the thermocline was found to be greatly enhanced over the slope of a bank (up to 52 mmol nitrate m�2

day�1), compared to over nearby flat seafloor (�2 mmol nitrate m�2 day�1). This increased nutrient sup-
ply, forced by locally generated lee waves and internal mixing, is greater than nitrate supplies to the pro-
ductive tidal mixing fronts or to the shelf edge. We hypothesize this nutrient flux promotes an increase in
phytoplankton growth in the thermocline over and downstream of shelf sea banks, contributing to the
horizontal patchiness in the thermocline Chl signal. The persistence of the strong biological response
to mixing at the bank, combined with the ubiquity of shelf sea banks, suggests these bathymetric features
have wide importance for ‘‘new’’ primary production in shelf seas.

� 2013 The Authors. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Annual rates of primary production within the shelf seas are
typically 2–5 times greater than rates in the open ocean, with
the shelf seas generating 15–30% of total oceanic primary produc-
tion despite accounting for <10% of the ocean’s area (Wollast,
1998). This carbon fixation makes an important contribution to
the ocean sink for atmospheric CO2 (Frankignoulle and Borges,
2001; Chen and Borges, 2009). Shelf sea primary production also
supports a food chain including pelagic herbivores, larval fish
(Napp et al., 1996), and commercial fisheries (Cushing, 1995) that
provides over 90% of the world’s fish catches (Pauly et al., 2002).

The distribution of fishing effort across the shelves is far from
uniform (e.g. Murawski et al., 2005; Sharples et al., this issue).
Patches of high fish concentrations are often associated with topo-
graphic features on the seabed (Genin, 2004). Large topographic
features can generate residual flows that retain or provide impor-
tant transport pathways for fish larvae (e.g. Dickey-Collas et al.,
1997; Lough and Manning, 2001; Genin, 2004). Our focus in this
project is on smaller features on the shelf seabed, typically
10–30 km long and not high enough to broach the seasonal ther-
mocline. These banks, often associated with high fishing vessel
activity (Moum and Nash, 2000; Sharples et al., this issue) are
too small to generate significant residual flow. Instead they have
been found to produce locally high mixing as stratified water
moves over the bank leading to lee waves at the thermocline
(e.g. Moum and Nash, 2000). In this component of the work we
investigate the biogeochemical consequences of high mixing at
Jones Bank in the Celtic Sea. One hypothesis of our project identi-
fies the possibility of enhanced nutrient fluxes over a seabed bank
leading to enhanced primary production and/or a shift in the phy-
toplankton community, potentially providing a ‘‘bottom-up’’
explanation for the increased fishing vessel activity observed at
the bank. In this paper we quantify the effect of a bank on the ver-
tical fluxes of nutrients across the base of the sub-surface chloro-
phyll maximum, demonstrating that these relatively small
features can have a significant impact on the supply of nutrients
to the primary producers within the summer thermocline of sea-
sonally-stratifying shelf seas.

The background oceanography to the Jones Bank region of the
Celtic Sea has been described in Sharples et al. (this issue). Briefly,
in temperate shelf seas, such as the Celtic Sea, the water column is
fully mixed during winter months. Spring stratification by solar
heating generates a surface mixed layer with initially high nutrient
concentrations and sufficient light to support rapid phytoplankton
growth, resulting in a spring diatom bloom (Pingree et al., 1976;
Fasham et al., 1983; Fehling et al., 2006). Following rapid depletion
of surface layer nutrients by the bloom, surface layer phytoplank-
ton growth through the rest of the spring and summer occurs
mainly using regenerated nitrogen and carbon. New production
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over the summer occurs at the tidal mixing fronts (Holligan et al.,
1984; Horne et al., 1996), the shelf edge (Joint et al., 2001), and
within the seasonal thermocline in a sub-surface chlorophyll max-
imum (SCM) (Richardson et al., 2000; Sharples et al., 2001). An
important aspect of phytoplankton production in the SCM is that
new production is strongly controlled by the supply of nitrate from
the bottom water (King and Devol, 1979; Sharples et al., 2001), so
that a measurement of the vertical nitrate flux provides a measure
of the potential for new primary production. This nitrate-fuelled
new production within the SCM is likely to contribute significantly
to the export of carbon attributable to shelf seas (e.g. Tsunogai
et al., 1999), with the organic carbon sinking below the thermo-
cline to be remineralised away from immediate access to the atmo-
sphere (e.g. Thomas et al., 2004). It is also thought to provide a vital
food source to pelagic heterotrophs following the spring bloom
(Richardson et al., 2000).

Regions of steep seabed topography can have a significant influ-
ence on the strength of vertical turbulent mixing in the interior of
the water column, which will affect the rate of supply of nutrients
into the SCM at the thermocline. Over flat regions of shelf sea sea-
bed in summer, shear generated turbulence arising from barotropic
tidal current interaction with the sea floor mixes nitrate into the
thermocline. Typical vertical nitrate fluxes measured over such re-
gions of the NW European shelf are about 2 mmol m�2 day�1

(Sharples et al., 2001; Tweddle, 2007; Rippeth et al., 2009). Mixing
within the region of the thermocline has also been observed due to
periodic wind-driven inertial oscillations (Palmer et al., 2008;
Rippeth et al., 2009), with potential short-term (0.5–1 h duration)
spikes of nitrate flux 3 or 4 times greater than the daily mean.

In contrast to regions of flat shelf seabed, the steep topography
of the shelf edge has been shown to lead to the formation of inter-
Fig. 1. Location maps for Jones Bank in the Celtic Sea, southwest of the United Kingdom. T
July 2008, courtesy of the NERC Earth Observation Data Acquisition and Analysis Service U
the cruise.
nal tidal lee waves and turbulence, driving deep nutrients towards
the sea surface (Pingree and Mardell, 1981). Vertical nitrate fluxes
at the Celtic Sea shelf edge have been observed up to 9 mmol m�2 -
day�1 with significant contrasts between spring and neap tides
(Sharples et al., 2007). Internal lee waves and mixing have also
been associated with topographic features on the shelf, e.g. at small
banks (Nash and Moum, 2001; Dewey et al., 2005) and fjord-like
sills (Farmer and Armi, 1999; Inall et al., 2005). Internal hydraulic
jumps and lee waves form downstream of the crest in the topogra-
phy, generating shear and intensifying turbulence within the
pycnocline over the slopes of the topographic feature. However,
while the biological implications of baroclinic tides and vertical
nutrient fluxes have been investigated at the shelf edge (Sharples
et al., 2007, 2009; Schafstall et al., 2010), the impacts of physical
processes on nutrient fluxes, and hence phytoplankton production,
at smaller seabed banks have so far not been demonstrated. The
ubiquity of these bathymetric features across the shelf sea (e.g.
see bathymetry map in Sharples et al. (2013)) suggests that the lo-
cal perturbations they make to vertical biogeochemical fluxes
could be significant at the scale of the whole shelf.
2. Methods

Between 2nd July and 27th July 2008, the RRS James Cook took
part in an inter-disciplinary cruise to the Celtic Sea, in order to elu-
cidate shelf sea processes influencing primary production in the re-
gion, particularly those processes occurring over seabed banks
(Sharples et al., 2013). Satellite imagery over the Celtic Sea
(Fig. 1) illustrates the regional warm surface water indicative of
thermal stratification in summer. Five 25 h sampling regimes were
he satellite image of SST is a 7-day composite of AVHRR data between 21st and 27th
K. The Bank bathymetry is formed from all of the echosounder data collected during



Table 1
Name, position, date, and tidal state of the stations sampled in 2008 in the Celtic Sea.

Station Location Date Yearday Tide Winds

MS2a 49.897�N–7.876�E On Bank 06/07/08 188 Spring W’ly 25 knots
MS2b 49.897�N–7.876�E On Bank 14/07/08 196 Neap W’ly 5–10 knots
MS2c 49.897�N–7.876�E On Bank 21/07/08 203 Spring NW’ly 5–10 knots
MS4a 49.750�N–7.667�E Off Bank 12/07/08 194 Neap NW’ly 5–10 knots
MS4b 49.750�N–7.667�E Off Bank 22/07/08 204 Spring <5 knots
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carried out at two sampling sites on and adjacent to Jones Bank
(Fig. 1, Table 1), during various times in the spring–neap tidal cy-
cle. Site MS2, occupied three times, was situated over a slope of
Jones Bank, and site MS4, occupied twice, was situated over a flat
seafloor to the southeast. This bank was chosen because of its sim-
ple bathymetry and relative isolation from other banks in the area.

A Rockland Scientific VMP750 vertical microstructure profiler
was deployed almost continuously during site occupations. The
VMP750 is powered through a cable tether, and so profiles could
be taken approximately every 6 min without break, with 3 min
free-fall to the seafloor, and 3 min recovering the VMP750 to the
ship. The VMP750 profiles between �8 m below the sea surface
(removing ship generated turbulence) to within 15 cm of the sea-
floor, free-falling with a speed of �0.7 m s�1. During descent the
instrument records pressure, shear, temperature, and conductivity.
Turbulent dissipation, e (m2 s�3), was calculated with a vertical
resolution of 1 m through the water column from the shear data
within each of a series of 1 m bins (Dewey et al., 1987; Rippeth
et al., 2003). Profiles of vertical turbulent diffusion, Kz, were calcu-
lated by (Osborn 1980)

Kz ¼ C
e

N2 ðm2 s�1Þ ð1Þ

Here C, the mixing efficiency, is considered constant at 0.2. The
buoyancy frequency, N (s�1), was calculated by utilizing the den-
sity profile measured by the VMP:

N2 ¼ � g
q

@q
@z

� �
ðs�2Þ ð2Þ

where g = 9.81 m s�2, q is density, and z is depth (metres, positive
upward). For all Kz calculations the buoyancy frequency was calcu-
lated over the same depth intervals used for the dissipation mea-
surements. The errors associated with e and Kz vary, but are at a
maximum of 50% at low values (e � 10�9 m2 s�3, Dewey et al.,
1987). The VMP750 also recorded chlorophyll fluorescence using a
Wetlabs ECO fluorometer.

During each site occupation a Seabird 911 Conductivity-Tem-
perature-Depth sensor (CTD) and rosette package was deployed,
on average every 7 h, to obtain profiles of temperature, salinity,
and density. Profiles of chlorophyll fluorescence were measured
using a Chelsea Instruments Aquatracka MKIII fluorometer at-
tached to the CTD. The CTD was lowered at a rate of 0.5 m s�1, sam-
pling at 24 Hz. CTD temperature errors were of the order of
±0.002 �C, based on pre-cruise and post-cruise laboratory calibra-
tions. CTD salinity uncertainty was ±0.004 (PSS), based on salinity
samples analyzed against standard seawater on a Guildline
Autosal.

Water samples, taken at several depths through the water col-
umn during each CTD cast, were analysed for inorganic nutrient
concentrations, and chlorophyll a (Chl) concentrations. Nutrient
samples were analyzed onboard ship for nitrate (NO�3 ) plus nitrite
(NO�2 ), ammonium (NHþ4 ), silicate (SiO2), and phosphate (PO�4 ) on a
Lachat Autoanalyser using standard AA_II methods (Davidson
et al., 2007). The measurement error, based on replicate analysis,
was ±5%. Chl concentrations were analysed on a Turner Designs
Trilogy fluorometer, after sequential filtering of a 500 ml sample
water though 20 lm and 2 lm pore size polycarbonate membrane
filters. Chlorophyll fluorescence from the fluorometers on the CTD
and VMP were calibrated to concentrations of Chl using the
summed 20 lm and 2 lm results from each sample bottle, with
an uncertainty of ±0.03 mg m�3.

A vertical, turbulence driven, flux of a scalar property can be
calculated by (e.g. Sharples et al., 2001):

fluxscalar ¼ �Kz
Dscalar

Dz

� �
ð3Þ

Eq. (3) was used to calculate fluxnutrient for each of nitrate (plus
nitrite), silicate and phosphate between the bottom mixed layer
and the base of the SCM within the thermocline. CTD and
VMP750 sampling strategy was based on our previous experience
in the region, designed to minimise interruptions to the turbulence
time series (Sharples et al., 2001, 2007). We have found that nutri-
ents tend to have robust linear relationships with water density (or
temperature) through the base of the thermocline. These relation-
ships allow the nutrient gradients to be calculated using the
VMP750 temperature data, thus co-locating the gradient measure-
ment and the estimate of Kz. The nutrient-temperature relation-
ships do not change significantly over the time of a station
occupation, reducing the need for frequent CTD and nutrient pro-
files. The emphasis was instead placed on a few CTD profiles with
bottle sampling very well resolved through the thermocline. This
has the advantage of allowing more time to be spent profiling with
the VMP750, reducing the chances of missing short-lived turbu-
lence events that could be important in affecting the daily flux of
a scalar. Nutrient fluxes were taken to be the average of fluxnutrient,

�KzðDnutrient
Dz Þ, within a 0.5 �C temperature range about an isotherm

in the base of the thermocline. Calculating fluxes on an isotherm
allows for vertical displacements of the thermocline with respect
to depth due to internal waves. The temperature range of 0.5 �C
was chosen as a realistic vertical scale over which both Kz and
Dnutrient/Dz were physically resolvable and biologically relevant.
For each station all nutrient and temperature data were used to
determine the extent of the nutricline, with the temperature at
base of the nutricline identified and used as the lower limit to
the 0.5 �C range over which the nutrient flux was averaged.

Throughout this paper, significance in statistical tests was taken
at the 95% confidence level (i.e. p < 0.05).
3. Results

A section undertaken with the towed, undulating CTD package
Scanfish along Jones Bank illustrates the bottom and surface mixed
layers (BML and SML, respectively), separated by a thermocline
(Fig. 2). The section shows the layer of chlorophyll (the SCM) with-
in the lower half of the thermocline (Fig. 2a). Chlorophyll was gen-
erally high within the SCM along the entire section, not showing
the distinctive maxima over the bank slopes identified in earlier
surveys (Sharples et al., 2013). Both temperature and chlorophyll
within the BML over the bank were elevated compared to away
from the bank, indicating likely recent mixing of water from the
base of the thermocline into the BML (Fig. 2b).



Fig. 2. Transect of temperature and chlorophyll concentrations along the major axis
of Jones Bank. Line contours show temperature, colour contours show Chl
concentration (mg m�3). (a) and (b) show the same data, but the chlorophyll scale
is skewed in (b) to highlight low chlorophyll concentrations in the bottom layer.
The Scanfish path is marked in (a), with a dot every 3 data points.
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Site MS2 was located over the northeast slope of Jones Bank in
�120 m depth of water, and site MS4 was situated over a region of
flat seafloor 25 km southeast of the bank with depth of �132 m
(Fig. 1, Table 1). The sampling during the first occupation of site
MS2 (station MS2a) was influenced by gale force winds. This pro-
vided an opportunity to compare nutrient supply to the SCM over
the bank under conditions of a stormy spring tide (MS2a), a windy
neap tide (MS2b) and a spring tide with little wind (MS2c). Away
from the bank, site MS4 was occupied during a windy neap tide
(MS4a) and quiet spring tide (MS4b).

During all site occupations bottom and surface mixed layers
were observed, with SML temperature typically�4 �C warmer than
the BML. Density was primarily controlled by temperature during
Fig. 3. Example CTD cast data from (a) MS2a (04:00 h UTC 7 July 2008, Yearday 189.1667
July 2008, Yearday 203.5833), (d) MS4a (05:00 h UTC 13 July 2008, Yearday 195.2083), an
temperature (�C), broken line CTD Chl a concentrations (mg m�3), filled squares Chl a
silicate concentrations (mmol m�3), and stars phosphate concentrations (mmol m�3) fro
all stations (r2 > 0.999, p < 0.05). The width of the thermocline
averaged 20 m during all stations, with the exception of stormy
MS2a, where thermocline thickness averaged 30 m. Chl concentra-
tions peaked in a sub-surface chlorophyll maximum located to-
wards the base of the thermocline during all stations (Fig. 3). The
increased chlorophyll concentration within this layer was attrib-
uted mainly to Phaeocystis sp. (Davidson et al., 2013).

Inorganic nutrients had highest concentrations in the BML, with
nitrate concentrations of �10.6 mmol m�3, silicate concentrations
�3.0 mmol m�3, and phosphate concentrations of �0.6 mmol m�3.
Nutrient concentrations in the SML were low during all stations
(Fig. 3). This region of low nutrient concentration extended down
into the top half of the thermocline. Using data from CTD and bot-
tle samples within the base of the thermocline collected during all
station occupations, a linear regression provided a relationship be-
tween temperature and nitrate (r2 = 0.91, p < 0.05, error 16%), sili-
cate (r2 = 0.88, p < 0.05, error 20%) and phosphate (r2 = 0.85,
p < 0.05, error 16%, Fig. 4). These relationships were applied to
the VMP750 temperature data within the base of the thermocline.
The strength of the nutracline, Dnutrient/Dz, was calculated for
each of the nutrients, for each VMP750 profile, and a daily average
for each station calculated (Table 2). Gradients of all nutrients var-
ied over the 25 h sampling periods by up to an order of magnitude
(data not shown). Comparing the station means in Table 2, the low-
est nutrient gradients were seen at MS2 and MS4 during and
immediately after the strong winds.

The thermocline, and hence the SCM, underwent vertical dis-
placements during all station occupations (Fig. 5). During neap tide
a semi-diurnal (M2) internal tide dominated the internal wave sig-
nal over Jones Bank (MS2b, Fig. 5b). Higher frequency internal
waves, with displacements of up to 30 m, were also observed over
the bank, particularly during the calm spring tide (MS2c, Fig. 5c,
see also Palmer et al., 2013). Away from the bank, at MS4, much
weaker vertical movement of the thermocline was observed, with
vertical displacements of typically �5 m (Fig. 5d, e), though with
the exception of one 30 m displacement during spring tide (�year-
day 204.08, Fig. 5e).

Strongest rates of turbulent dissipation, e, were seen at the sur-
face and base of the water column during all stations (Figs. 5 and
6). Surface turbulence, caused by wind and wave action, pene-
trated the full depth of the SML but did not penetrate far into the
), (b) MS2b (04:00 h UTC 15 July 2008, Yearday 197.1667), (c) MS2c (14:00 h UTC 21
d (e) MS4b (04:00 h UTC 23 July 2008, Yearday 205.1667). Solid line represents CTD
concentrations (mg m�3), open circles nitrate concentrations (mmol m�3), crosses
m rosette bottle sampled water.



Fig. 4. CTD temperature (�C) and (a) nitrate (mmol m�3), (b) silicate (mmol m�3), and (c) phosphate (mmol m�3) concentrations, from rosette bottle sampled water, were
significantly inversely related. Water sample data (dots) plotted from all stations, solid line represents best-fit linear regression, r2 and p-values as stated on graph.

Table 2
Daily mean vertical nutrient fluxes between the bottom mixed layer and the thermocline (fluxnutrient, Eq. (3)), and associated daily mean nutrient gradient (Dnutrient/Dz), for
nitrate, silicate, phosphate and carbon, and turbulent dissipation (eTHERMO) and vertical diffusivity (Kz:THERMO) within the base of the thermocline, for Celtic Sea stations sampled
during 2008. Values are stated as a daily mean, and the 95% confidence interval of the daily mean in brackets.

Station Dnitrate/Dz
(mmol m�4)

Dsilicate/Dz
(mmol m�4)

Dphosphate/Dz
(mmol m�4)

eTHERMO (m2 s�3) Kz:THERMO (m2 s�1) Fluxnitrate

(mmol m�2 day)
Fluxsilicate

(mmol m�2 day)
Fluxphosphate

(mmol m�2 day)

MS2a �0.17 (�0.14
to �0.19)

�0.05 (�0.04 to
�0.05)

�0.008 (�0.007
to 0.01)

6.9 � 10�5 (3.7–
10.8 � 10�5)

2.9 � 10�3 (1.2–
5.1 � 10�3)

8.1 (1.0–16.9) 2.2 (0.2–4.6) 0.4 (0.06–0.9)

MS2b �0.27 (�0.22
to �0.31)

�0.07 (�0.06 to
�0.08)

�0.014 (�0.012
to 0.016)

2.3 � 10�6 (1.5–
3.4 � 10�6)

3.7 � 10�5 (0.7–
9.5 � 10�5)

0.8 (0.1–2.5) 0.2 (0.02–0.7) 0.04 (0.00–0.1)

MS2c �0.58 (�0.53
to �0.62)

�0.16 (�0.15 to
�0.17)

�0.029 (�0.027
to �0.032)

4.9 � 10�5 (2.5–
9.4 � 10�5)

1.4 � 10�3 (0.13–
4.5 � 10�3)

52 (4–176) 14.2 (1.1–47.8) 2.6 (0.2–9.0)

MS4a �0.2 (�0.19 to
�0.21)

�0.06 (�0.05 to
�0.06)

�0.010 (�0.010
to �0.011)

8.5 � 10�6 (3.9–
14.5 � 10�6)

2.0 � 10�4 (3.9–
4.6 � 10�5)

1.9 (0.3–4.3) 0.5 (0.1–1.2) 0.1 (0.02–0.2)

MS4b �0.4 (�0.34 to
�0.44)

�0.1 (�0.09 to
�0.12)

�0.020 (�0.018
to �0.022)

7.9 � 10�6 (5.3–
10.1 � 10�6)

7.9 � 10�5 (1.9–
16.0 � 10�5)

1.8 (0.4–4.0) 0.5 (0.1–1.2) 0.1 (0.02–0.2)
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thermocline. All site occupations exhibited a clear semi-diurnal
signal in tidal current velocity, seen in both vessel-mounted and
moored ADCPs. Both on and off the bank quarter-diurnal signals
in e were observed close to the bed, with increased values associ-
ated with maximum near bed current velocities (Fig. 5, Palmer
et al., 2013). Examination of individual VMP profiles revealed the
quarter-diurnal intensified turbulent dissipation signal reached
maximum heights off the bed of �60 m during spring tides,
�25 m during neap, with a lag between maximum near bed e
and e higher in the water column due to vertical change in the re-
gion of maximum shear (Simpson et al., 2000). During all site occu-
pations, increased e was observed within the thermocline, not
driven by surface or bed processes, but associated with periods
of change in thermocline depth (Fig. 5). Daily mean values of e at
the base of the thermocline (eTHERMO, Table 2) demonstrate the in-
creased rates of turbulent dissipation observed over the bank at
spring tides, with higher internal wave activity, compared to neap
tides and compared to away from the bank.

Vertical diffusivity, Kz, was calculated from e, using Eq. (2). All
five stations displayed minimum turbulent dissipation in the inte-
rior of the water column, and minimum vertical diffusivity, Kz,
within the thermocline (Figs. 6 and 7), although care must be taken
in interpreting Kz away from the thermocline, where stratification,
and hence N2 (Eq. (2)), was low. Kz within the base of the thermo-
cline, Kz:THERMO, was calculated within the temperature brackets
shown in Fig. 5. Kz:THERMO, relevant for driving nutrients into the
SCM (Eq. (3)), was highly variable both temporally at individual
stations and between stations.

Kz:THERMO observed during the storm (MS2a, Fig. 7a) was signif-
icantly higher than Kz:THERMO measured during either the neap tide
bank station (MS2b, Fig. 7b) or away from the bank (MS4a and
MS4b, Fig. 7d, e respectively), as shown in the daily mean values
(Table 2). There was no significant difference in Kz:THERMO over
the bank between the period of stormy weather and calmer winds
at spring tides (MS2a and MS2c, Fig. 7a, c respectively, Table 2).
Over the bank at spring tides, episodic increases in Kz:THERMO oc-
curred during semi-diurnal mixing events, associated with in-
creased e (Figs. 5 and 7) which peaked at �yearday 188.81 (Figs.
5a and 7a), and �yeardays 203.36, 203.88 and 204.36 (Figs. 5c
and 7c). These mixing events were concurrent with vertical move-
ments of the thermocline, and corresponded to times of peak tidal
velocities along the bank from southwest to northeast, i.e. over the
crest of the bank, towards station MS2.

Away from the bank there was no significant difference in
Kz:THERMO between neap and spring tides (MS4a and MS4b,
Fig. 7d, e respectively, Table 2). Kz:THERMO during neap tide stations,
on and off the bank (MS2b and MS4a, Fig. 7b, d), were also not of
significantly different magnitude (Table 2). Increased mixing
events apparently not associated with the barotropic tide were ob-
served during both neap tide stations, at �yearday 196.63 over the
bank (MS2b, Fig. 7b) and at �yearday 194.60 (MS4a, Fig. 7d) off the
bank.

Fluxes of nitrate, silicate and phosphate from the BML into the
SCM were calculated (Eq. (3)) for all VMP750 profiles, at all sta-
tions. Fluxes of the different nutrients all showed the same pattern,
differing only in magnitude (Fig. 8), due to the strong co-variance
of the nutrient gradients arising from the common correspondence
with temperature in the thermocline. Hence, results are presented
here focusing on the nitrate flux.

Temporal variability in nitrate flux was significantly related to
variability in Kz:THERMO during all stations, with higher vertical
fluxes occurring at times of increased vertical diffusivity (Figs. 7



Fig. 5. Contoured time series of turbulent dissipation (e, m2 s�3) over the bank at MS2, during windy spring (a, MS2a), neap (b, MS2b), and calm spring (c, MS2c) tides, and
away from the bank at MS4, during neap (d, MS4a) and calm spring (e, MS4b) tides. The black solid lines show the temperature bracket over which the fluxes were calculated.
Daily average values of e within this bracket are presented in Table 2.
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and 9). The strength of this relationship changed between tidal
states, and on and off the bank. Over the bank 34–99.7% of flux var-
iability (Fig. 9a, b, c) was attributable to variability in Kz (r2 = 0.34,
r2 = 0.996, and r2 = 0.997 for MS2a, MS2b and MS2c, respectively,
p < 0.05 for all). Off the bank 69–78% of flux variability in
(Fig. 9d, e) was explained by changes in Kz (r2 = 0.69 for MS4a,
r2 = 0.78 for MS4b, p < 0.05). There was no significant relationship
between variability of fluxnutrient and Dnutrient/Dz, for nitrate, sili-
cate, or phosphate during any station.

Nutrient fluxes were significantly increased over the bank dur-
ing the gale force winds (MS2a) compared to neap tide on the bank
(MS2b), and compared to off the bank (MS4) at any tidal state
(Fig. 9). The daily mean nutrient flux estimates are highest for
the calm spring station, MS2c (Table 2), however most of the time
series of the nutrient flux is not significantly different than any of
the other stations. The high daily mean was greatly influenced by a
few, very large pulses of nutrients into the SCM. Particularly strong
pulses occurred at �yeardays 203.36, 203.88 and 204.36 (Fig. 9c),
coincident with observed increases in Kz:THERMO (Fig. 7c). Off the
bank there were no significant differences between the time series
of nutrient fluxes observed at neap tide and spring tide (Fig. 9d and
e), which is reflected in the daily mean flux estimates (Table 2).



Fig. 6. Daily mean profiles of turbulent dissipation rates (e, W m�3, solid grey line) and vertical diffusivity (Kz, m2 s�1, solid black line) profiles over the bank during windy
spring (a, MS2a), neap (b, MS2b) and calm spring (c, MS2c) tides, and off the bank during neap (d, MS4a) and calm spring (e, MS4b) tides. Dashed lines represent 95%
confidence intervals, calculated using bootstrapping (Efron and Gong, 1983). Note differing x-axis scales.

Fig. 7. Time series of Kz:THERMO observed over the bank at MS2, during windy spring (a, MS2a), neap (b, MS2b), and calm spring (c, MS2c) tides, and away from the bank at
MS4, during neap (d, MS4a) and calm spring (e, MS4b) tides Daily average values of Kz:THERMO are presented in Table 2.
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Fig. 8. Time series of a) Kz:THERMO and nutrient fluxes (b, fluxnitrate, c, fluxsilicate and d, fluxphosphate) observed over Jones Bank at neap tide, during station MS2b. fluxnutrient all co-
vary together, and variability is significantly related to Kz:THERMO (r2 = 0.996, p < 0.05).

Fig. 9. Vertical nitrate fluxes into the subsurface chlorophyll maximum at stations MS2a (a), MS2b (b), MS2c (c), MS4a (d) and MS4b (e). Filled circles represent estimates for
each VMP cast. Upwards fluxes, from the BML into the SCM, are in black. Downward fluxes, from the SCM into the BML, are in red. Daily average values of fluxnitrate, and
fluxsilicate and fluxphosphate, are presented in Table 2.
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4. Discussion

Mixing events of enhanced turbulent dissipation and vertical
diffusivity were observed over the bank during spring tides, asso-
ciated with periods of internal wave activity. These events drive in-
creased fluxes of nutrients from the BML into the thermocline.
Here we will discuss the cause of these mixing events, and further
look at the potential influence on primary production, through the
impact of the mixing events on nutrient fluxes.
4.1. Influence of the bank on nutrient fluxes

The data from the MS2 site demonstrates enhanced mixing
over the bank. Increased internal wave activity was seen, partic-
ularly during spring tides, caused by hydraulic control of tidal
flow over the bank (Palmer et al., 2013). These regions of hydrau-
lic control create lee waves which, when released by reduction in
the tidal currents, propagate as internal waves over the bank
slope. These internal waves result in mixing events, which are ob-
served as a short-lived peaks in Kz:THERMO, occurring with semi-
diurnal frequency at spring tides (Fig. 4). These peaks in Kz:THERMO

drive peaks in fluxnutrient, pumping nutrients from the BML into
the region of the SCM. This leads to the significantly higher nutri-
ent fluxes observed at spring tides compared to neap tides over
the bank (Table 2).

Although these lee wave driven mixing events are relatively
brief, they have a considerable impact on the daily mean flux esti-
mates. Daily average fluxnitrate values can be re-estimated without
these events for stations MS2a and MS2c, where internal waves
were observed. Without lee wave events the daily mean fluxnitrate

decreases significantly, from 8.1 to 2.3 mmol m�2 day�1 during
stormy MS2a, and from 52 to 0.8 mmol m�2 day�1 during the calm
spring tide MS2c. This ‘background’ fluxnitrate value for MS2c is very
similar to that of MS2b, observed during neap tide and with little
internal wave activity, and to those flux values observed at MS4,
away from the bank. Thus without these short-lived mixing events
the daily supply of nitrate over the bank at spring tide would not
be significantly different to the oft reported ‘flat seabed’ nitrate
flux value of �2 mmol m�2 day�1 (Sharples et al., 2001; Tweddle,
2007; Rippeth et al., 2009).

It is noteworthy that the nitrate flux observed during calm
spring tides over the bank (station MS2c) was substantially larger
than that observed during stormy conditions and spring tides
(MS2a). Thermocline turbulent diffusivities were similar; the con-
trast in the nitrate flux is attributable to differences in the vertical
nitrate gradient (Table 2). Thus, perhaps counter-intuitively, it ap-
pears that the storm acted to reduce the vertical nitrate flux by
reducing the vertical nitrate gradient upon which the lee wave tur-
bulence operated.

The spatial influence of these bank-generated internal waves on
turbulent mixing was not established, however it is not likely to be
extensive. An ADCP and thermistor chain mooring placed at the
base of the bank slope showed greatly decreased internal wave
activity and associated mixing 10 km down slope of MS2 (Palmer
et al., 2013). The elliptical rotation of tidal currents over banks in
the Celtic Sea could potentially trigger lee waves to form over dif-
ferent regions of the bank with varying tidal current directions
(Palmer et al., 2013). Site MS4 was 23 km from MS2, in a direction
perpendicular to the major tidal axis. MS4 stations showed no evi-
dence of bank generated internal waves reaching them. However,
the spatial influence of the bank in directly influencing turbulent
mixing does necessarily correspond to the affects on primary pro-
duction, particularly when advection of mixing-influenced water
away from the mixing sites is considered (Inall et al., 2013; David-
son et al., 2013).
At site MS4 several mixing events were observed which were
not associated with internal waves (e.g. �yearday 194.60,
Fig. 7d). The thermocline of the Celtic Sea is only marginally sta-
ble (Palmer et al., 2008, 2013) and small energy inputs can cause
mixing. Wind interaction with the water column produces iner-
tial oscillations, which creates shear across the thermocline and
can provide enough energy to cause turbulent mixing (Palmer
et al., 2008; Rippeth et al., 2009). Inertial oscillations were ob-
served in the vicinity of Jones Bank (Inall et al., 2013), driving a
persistent shear layer at the base of the thermocline (Palmer
et al., 2013). The inertial oscillations can interact with the baro-
tropic tidal currents to create ‘‘shear-spiking’’ (Burchard and
Rippeth, 2009; Inall et al., 2013), potentially driving observed
pulses in nutrient flux.

4.2. Influence of the bank on potential primary production

Measurements of primary production (PP) rates, using 14C incu-
bations, were made over the bank (Davidson et al., 2013). During
stormy MS2a PP estimates of �350 mg C m�2 day�1, integrated
over the whole water column, were measured. The nitrate supply
of 8.1 mmol m�2 day�1, however, was capable of supporting
‘new’ PP of �640 mg C m�2 day�1, assuming the Redfield ratio of
106:16 for phytoplankton C:N. Nitrate and phosphate were sup-
plied at a ratio of �19:1, close to the Redfield N:P ratio of 16:1. Sil-
icate was supplied below the Redfield ratio of Si:N:P of 15:16:1, at
�5:16:1, however this should be sufficient for diatom growth
(Turner et al., 1998). The nitrate fluxes during the calm spring tide
(MS2c) could, assuming Redfield C:N, support new production at a
rate of 4 g C m�2 d�1. This is in excess of any of the production
measurements made during the cruise (Davidson et al., 2013),
but is similar to the typical carbon fixation rates of 1–6 g C m�2 d�1

seen in the Celtic Sea during the spring bloom (Pingree et al., 1976;
Rees et al., 1999). PP estimates during MS2b, the calm neap tide
station on the bank, were �300 mg C m�2 day�1 during MS2b.
The nitrate flux of 0.8 mmol m�2 day�1 was capable of supporting
only 63 mg C m�2 day�1 of new production over the bank during
this time. Away from the bank �150 mg C m�2 day�1 was support-
able by the nitrate flux (1.8–1.9 mmol m�2 day�1), compared to the
�340 and �250 mg C m�2 day�1, measured during MS4a and
MS4b, respectively.

There are several issues to consider when comparing the mea-
sured depth integrated PP to the potential ‘new’ production sup-
ported by the supplied nutrients. Firstly, primary production in
the SCM is light limited, with light being typically 5–10% of surface
values (Hickman et al., in press), so excess nitrate fluxes (i.e. sur-
plus nitrate beyond that required by the light limited rates of
SCM PP) are unlikely to be converted to production in that day,
but utilised over the following days. Sharples et al. (2007) found
potential for excess nitrate supplied over the shelf break during
springs to be utilised over the following few days, maximum Chl
concentrations occurring �3.5 days after maximum nitrate fluxes.
This nitrate also provides a pool of nutrients available for ‘‘luxury’’
uptake. There is the potential for an analogous effect to also occur
over banks, allowing the phytoplankton to utilise the supplied
nutrients in the days following large nutrient fluxes, without the
need for sudden large increases in primary production rates. Model
data in Davidson et al. (2013) showed PP rates increased by up to a
factor of 2 over the bank slope, peaking just at the edge of the bank,
and then reducing to ‘background’, non-bank levels 25 km
(13 days) downstream of the bank.

Secondly, the Eulerian method used in sampling the stations,
combined with the advection of water over the bank (Inall et al.,
2013), results in complications in comparing primary production
observations with those inferred from the nitrate fluxes. The inter-
nal wave driven mixing events are short, sharp events, not fully
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represented by a daily average. A ‘parcel’ of water subjected to
mixing will experience nutrient fluxes intensified by several orders
of magnitude. This ‘parcel’ will then be advected away from the
sampling site, creating a spatially localised patch of nutrient rich
thermocline. The remainder of the time ‘background’ fluxes of
nutrients are experienced over the sampling station. The PP values
presented in Davidson et al. (2013) were taken from water samples
collected during times of ‘background’ mixing levels, and so are
likely lower than those attainable by phytoplankton exposed to
strong nutrient fluxes.

At neap tides over the bank, or at any time away from the bank,
the amount of potential nitrate-fuelled new production was always
less than the primary production measured. We can interpret the
ratio between the predicted and observed production as a mini-
mum value for the ratio between new and regenerated production
(the f-ratio) within the SCM. For the neap tide at MS2b this yields
f = 63/300 = 0.2. Away from the bank at MS4 we have f = 150/
340 = 0.4 and 150/250 = 0.6. When the production possible in re-
sponse to the nitrate flux is in excess of the observed primary pro-
duction, the implication is that the nitrate supply will be used over
the next few days as the enriched water drifts away from the bank.
In that case it is not possible using our data to make any estimate
of the SCM production f-ratio, though we expect it to be higher
than the background values.

4.3. Conclusions

Previously observed nitrate fluxes of 1–2 mmol m�2 day�1 into
the seasonal thermocline (Sharples et al., 2001; Rippeth et al.,
2009), are similar to those reported here away from a seabed bank
in the stratified shelf sea, driven by the barotropic tide and near
inertial oscillations. Nitrate fluxes of 1–9 mmol m�2 day�1 have
been reported at the shelf edge (Sharples et al., 2007), and 3–
11 mmol m�2 day�1 at a tidal mixing front on Georges Bank (Horne
et al., 1996). The elevated, though localised, nitrate fluxes at the
shelf edge and the tidal mixing fronts is a key factor in those sites
being recognised as important regions of biological productivity in
shelf seas. Mean daily vertical nitrate fluxes over the topographic
feature Jones Bank (0.8–52 mmol m�2 day�1) were increased by
up to a factor of 25 compared to over a flat seabed, particularly
at spring tide. The high spring tide fluxes are driven by short mix-
ing events as a lee wave breaks over the bank slope.

Nitrate and phosphate were supplied in approximate Redfield
ratio (N:P � 19:1), and silicate supplied in non-limiting amounts
(Si:N:P � 5:16:1). The increased nutrient fluxes over the bank at
spring tides were capable of supporting greater primary produc-
tion rates than were observed: 640–4000 mg C m�2 day�1, com-
pared to the directly measured rate of �350 mg C m�2 day�1. We
infer this discrepancy to be in part due to the dynamic nature of
the mixing environment over the bank. Short-lived, spatially lim-
ited mixing events driven by lee wave formation and dispersion,
lead to a localised patches of relatively high nutrient thermocline
waters. This patch is then advected away from its initial position.
In effect the bank will ‘shed’ a patch for each mixing event, each
patch containing nutrients sufficient to support enhanced produc-
tion over the following few days. This enhanced production driven
by the banks could significantly raise the typical estimates of an-
nual primary production rates in shelf seas.
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