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Abstract 

 

Deciphering the mechanisms linking glacial-interglacial climate dynamics and atmospheric 

CO2 concentration has largely focused on the last termination (Termination I), where high 

resolution records and accurate chronologies are available. The observed sequences of events 

suggest simultaneous Northern Hemisphere cooling, Asian weak monsoon interval, CO2 rise 

and Antarctic warming. Here, we present new high resolution records of atmospheric 

composition and climate from the air trapped in the EPICA Dome C ice core spanning 

Termination II. Using a proxy for climate in the gas record allows direct comparison with 

changes in atmospheric composition on a common age scale. While CO2 and Antarctic 

temperature started increasing in phase at around 136 thousands of years before present (ka 

BP), an unequivocal lag of CO2 vs Antarctic temperature is evidenced at the mid-slope of 

Termination II. This decoupling between Antarctic temperature and CO2 is related to a two-

step structure of Termination II with a decoupling between CO2 and Antarctic temperature 

over the second phase (130.5 to 129 ka BP) of Termination II. This second phase coincides 

with an intensification of the low latitude hydrological cycle and we suggest that a low latitude 

CO2 sink counteracted the CO2

  

 outgassing from the austral ocean over this period.  

The penultimate deglaciation (from about 136 to 129 ka BP) occurred under a different climatic and 

orbital context than the last deglaciation, characterized by larger glacial Euroasian ice sheets1, a 

larger eccentricity and a different phasing between precession and obliquity2. The European Project 

for Ice Coring in Antarctica Dome C (EDC) ice core is ideally suited to identify the mechanisms at 

play during this time period thanks to the detailed climate and atmospheric composition information 

archived within about 100 m of ice. Ice cores record variations in local temperature through water 

stable isotopes in the ice phase, and variations in global atmospheric composition (e.g. CO2 and 

CH4 concentrations) in the gas phase. Estimates of the age difference between the ice and the 

entrapped air are associated with uncertainties reaching several centuries3. In order to circumvent 

this difficulty, a profile of δ15N in N2 has been measured with an average resolution of 200 years for 

the period covering Termination II and the last interglacial period (~136-115 ka on the EDC3 

timescale4

 

, Supplementary Online Material, SOM, Figure 1).  

Changes in δ15N reflect past variations of firnification processes, largely driven by local 

temperature and accumulation, itself strongly linked to temperature in central Antarctica (see, 

SOM). Our data reveal a very close correlation (R2 =0.85) between the δ15N gas record and the ice 
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δD, a proxy of local precipitation-weighted condensation temperature. This correlation is improved 

(R2=0.89) when correcting δD for changes in oceanic moisture sources5 (Figure 1).  Following 

Caillon et al.6 and Dreyfus et al.7, this change in δ15N is assumed to be driven by a change in 

surface temperature and/or accumulation rate, giving access to changes in polar climate recorded in 

the same gas phase as changes in global atmospheric composition. Our assumption of concomitant 

changes in δ15N, Antarctic surface temperature and/or accumulation rate is consistent with the use 

of δ15N as an indicator of the gas lock-in depth8 which allows, after correction for ice thinning, a 

direct estimate of the ice age – gas age difference during Termination I (see SOM). The latter 

approach cannot however be applied for Termination II due to increasing uncertainty on ice 

thinning with depth. Using δ15N as a climate proxy allows a precise quantification of leads and lags 

between changes in Antarctic climate and in atmospheric composition during Termination II. 

Existing CO2 and CH4 data9, 10 from the same EDC ice core were therefore complemented by new 

measurements to improve the resolution of the CO2 record, and to characterize high resolution 

variations of δ18Oatm of O2, a complex tracer integrating changes in global sea level, hydrological 

cycle and biosphere productivity11

The comparison of the evolutions of the CO

 (Figure 2).  

2 concentration and Antarctic temperature 

reveals two distinct phases within Termination II. Phase II-a is characterized by a parallel increase 

in CO2 and Antarctic temperature. It is followed by phase II-b where atmospheric CO2 

concentration stabilizes around 260 ppm, preceding an abrupt increase to 285 ppm marking the end 

of Phase II-b and the onset of the last interglacial. During phase II-b, the rate of Antarctic 

temperature increase is reduced compared to Phase II-a. Our high resolution records thus evidence a 

decoupling between the dynamics of CO2 and Antarctic temperature over the two phases of 

Termination II. Within the uncertainty linked with the data resolution and variability, the onsets of 

deglacial δ15N and CO2 changes occur simultaneously. At mid-slope, there is an unequivocal lead of 

δ15N over CO2 of 900 ± 325 years. This lead is slightly reduced to 675 ± 350 years when 

considering the radiative forcing caused by changes in CO2 (see SOM). This different behaviour of 

CO2 and Antarctic temperature contrasts with CO2 evolving in parallel with Antarctic temperature 

over Termination I12,13. While earlier studies relying on firn models had reported a significant lead 

of Antarctic temperature on CO2 during Termination I (e.g. 800±600 years14), the latest study using 

δ15N data to constrain the gas ice – ice age difference13 has depicted synchronous rise in CO2 and 

Antarctic temperature at the beginning of the Termination and a lead of Antarctic temperature by 

260 ± 130 years only at the beginning of the Bølling-Allerød (B/A). Over Termination III, an 

average lead of 800 years of Antarctic temperature on CO2 was identified using a methodology 

similar to ours6 but the low resolution of the records did not allow to assess the stability of this lead 



4 
 

through time. From the differences between the high resolution records of Termination I and 

Termination II, we conclude that Antarctic temperature and CO2

Different mechanisms have been proposed to explain the simultaneous increase of CO

 are less closely related during 

Termination II than during Termination I.  

2 and 

Antarctic temperature over Terminations, consistent with the sequence of events over Termination 

I15. The first one describes Terminations as a super Dansgaard-Oeschger (D/O) event16 with AMOC 

change leading to a bipolar see-saw17. In this view, North Atlantic cooling is associated with 

Southern Ocean (and Antarctic) warming and associated outgassing of CO2. The second one is 

based on atmospheric teleconnections with increased winter northern hemisphere sea-ice and 

concomitant southward shifts of ITCZ and southern westerly winds leading to both an outgassing of 

CO2 in the Southern Ocean18 and Antarctic warming. A third mechanism invokes brine formation 

on the Antarctic margins19. The maximum expansion of the Antarctic ice sheet could stop brine 

formation, leading to CO2 outgassing leading to simultaneous Antarctic warming through the added 

greenhouse effect. All these mechanisms can explain parallel rises in CO2 and Antarctic 

temperature observed during Termination I and Phase II-a of Termination II, but cannot account for 

a rise of Antarctic temperature without an associated increase in atmospheric CO2 concentration as 

identified during Phase II-b. The transition between Phase II-a and Phase II-b is also identified by 

an inflection toward a significant rise in the δ13C record of CO2
9,20, likely reflecting (1) a change in 

AMOC strength, a northward shift of westerlies in the southern ocean and then reduced upwelling 

and CO2 outgassing or (2) an increase in terrestrial or marine biological productivity9,20,21,22

To shed light on possible mechanisms at play during Phase II-b, we now take advantage of 

our δ

.  

18Oatm record. δ18Oatm depends on the isotopic composition of water used by marine and 

terrestrial plants for their respiration. It is therefore sensitive to changes in continental ice volume 

which control sea-water δ18Osw and indirectly all meteoric waters23,24. At precessional and 

millennial scales, strong similarities have recently been identified between δ18Oatm and Chinese 

speleothem calcite δ18O, reflecting changes in the East Asian monsoon24,25,26. At these time scales, 

the low latitude hydrological cycle is therefore believed to control changes in δ18Oatm

We first summarize the structure of δ

 through its 

impact on meteoric water isotopic composition and global oxygen production. 
18Oatm changes along Termination I (Figure 3).  During 

Heinrich Stadial 1 (HS 1) 27, δ18Oatm shows a slight increase, very likely reflecting the fingerprint of 

the Weak Monsoon Interval28. It decreases at the onset of the B/A, assumed to coincide with the 

resumption of AMOC at the end of HS 1 and the end of WMI15. The first phase of Termination II 

(II-a) is associated with an increase of δ18Oatm. At the beginning of Phase II-b, δ18Oatm stopped to 

increase thus marking a clear inflection point and is followed by a slow δ18Oatm decrease over phase 
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II-b. This slow decrease, close to a plateau between 130 and 129 ka, coincides with the plateau of 

CO2 concentration, when CH4 concentrations remain intermediate but Antarctic temperature is 

rising. By analogy with Termination I (Phases I-a and I-b), this pattern of CH4 and Antarctic 

temperature could be explained by a weak AMOC and reduced NH monsoons. However, the weak 

monsoon periods of Termination I (Phases I-a and I-b) are characterized by an increase in δ18Oatm, 

in contrast with the decreasing δ18Oatm 

Within age scale uncertainties, Phase II-b may correspond to the ~1.5 ka pause identified 

during the second half of Termination II

during Phase II-b.  

28, 29,30 in  some deep sea sediment and sea-level records. In 

well dated and high resolution Chinese speleothem calcite δ18O data28,31 (Figure 2), Termination II 

is depicted by a first long weak monsoon phase (WMI-II, corresponding to HS 11) perhaps 

punctuated by a brief multi-centennial wet phase at 134 ka BP28. The abrupt end of Termination II is 

identified in a sharp decrease of calcite δ18O at 129 ka BP28. Using the high resolution record from 

Sanbao cave28, a first 1‰ step drop in calcite δ18O precedes by about 1.5 ka the main sharp 

decrease of 3‰ at 129 ka BP (SB25, Figure 2). Consistent with the 2 ka uncertainty between the 

chronology of ice cores and speleothems over Termination II32, we propose that the first Sanbao 

calcite δ18O drop at 130.5 ka corresponds to the inflection point in δ18Oatm

Altogether, these paleoclimate records evidence a climate event which affected the global 

carbon and oxygen cycles as well as the global atmospheric composition over 1.5 to 2 ka before the 

end of Termination II. During Termination I, the relatively small lag between Antarctic temperature 

and CO

 and hence to the 

transition between Phases II-a and II-b.  

2 has been attributed to the response time of the ventilation of the Southern Ocean13,19,21,22,33.  

The same mechanism may be at play during Phase II-a, with a weak AMOC corresponding to a 

“Heinrich Stadial”34 associated with Antarctic warming and CO2

We now investigate the processes which may explain the slowdown of the atmospheric CO

 degassing from the Southern 

Ocean. Our new data however point to a different process during Phase II-b of Termination II, 

which has no analogue during Termination I.  

2 

concentration when Antarctic temperature is rising, during Phase II-b. At the beginning of Phase II-

b, the global δ18Oatm and the calcite δ18O record from Sanbao cave consistently point to an 

intensification of the Northern Hemisphere low latitude hydrological cycle. This water cycle 

intensification is possibly associated with a slightly strengthened AMOC and change in productivity 

(as suggested by δ13C of CO2 
20,21) possibly corresponding to a transition from an “Heinrich stadial” 

to a “D/O stadial34” and/or a reduced Northern Hemisphere sea-ice extent. We propose that the 

change in low latitude climate enhanced the low latitude carbon sinks due to changes in the 

biosphere productivity and the ocean-atmosphere CO2 exchange35, which compensated the CO2 
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degassing from the warming Southern Ocean, explaining the observed plateau of CO2 

concentration. The significant rise in δ13C of CO2 observed at that time20 is in line with this 

interpretation, either through a low latitude carbon uptake process or resulting from a slight 

decrease in CO2 deep water outgassing in the southern ocean following a northward shift of 

westerly winds22

The end of phase II-b and hence of Termination II is then characterized by a strong 

enhancement of the low latitude hydrological cycle, tracked by a steeper decreasing rate of δ

.  

18Oatm 

and the large decrease of Sanbao Cave28 calcite δ18O probably coincident with a large AMOC 

strengthening. In our Antarctic records, it is clearly identified through an abrupt rise in CH4, peak 

Antarctic temperature and CO2 concentration. This final abrupt increase in CO2 concentration is 

also concomitant with an abrupt shift in deuterium excess, a proxy of Antarctic moisture source 

shifts36. This suggests that the end of phase II-b is associated with an abrupt shift in southern 

westerlies favoring a final CO2

Why are the sequences of events different during HS1-Termination I and HS11 – 

Termination II? These two terminations occur under different orbital contexts and the duration of 

HS 11 is estimated to have been twice longer than HS 1

 outgassing from the southern ocean that is no longer counteracted 

by low latitude sinks.  

27 (6 ka vs 3 ka). The higher eccentricity 

during Termination II strengthens the magnitude and rate of changes in Northern Hemisphere 

summer insolation, compared to Termination I2. Climate models relate freshwater fluxes and 

AMOC intensity. A stronger rate of retreat of the Laurentide ice sheet may therefore have 

maintained a reduced AMOC for a longer time during Termination II compared to Termination I, 

where an early AMOC recovery corresponding to the B/A is interrupted by HS0 leading to the 

Northern Hemisphere Younger Dryas cooling. Do these differences in AMOC histories have 

different impacts on the carbon cycle through different rates of southern ocean destratification and 

CO2

Additionnal informations: 

 outgassing? Does the orbital context of Termination II explain a larger response of the low 

latitude water cycle at the end of Termination II? The new questions unveiled thanks to the detailed 

global sequence of events during Termination II should be tested using Earth system models, 

expanding the possibility to test climate and carbon cycle mechanisms during two different 

transitions. 

Supplementary information is available in the online version of the paper. Correspondence and 
requests for materials should be addressed to A. La. 
 

Authors contributions:  



7 
 

A.La., J.J. and V.M-D. formulated the project. A.La., G.D., E.C., F.Pr. and G.T. performed the 

measurements. A.La, G. D., E. C., J. J., V. M.-D., D.M.R., N. C., J. C., M. L., A. Lo, F . Pa. and D. 

R. performed the analysis and contributed to the writing and polishing of the manuscript. 

 

 

Acknowledgments:  

This work is a contribution to the European Project for Ice Coring in Antarctica (EPICA), a joint 

ESF (European Science Foundation)/EC scientific program, funded by the European Commission 

and by national contributions from Belgium, Denmark, France, Germany, Italy, the Netherlands, 

Norway, Sweden, Switzerland and the United Kingdom. The main logistic support was provided by 

IPEV and PNRA (at Dome C). The research leading to these results has received funding from the 

European Union’s Seventh Framework program (FP7/2007-2013) under grant agreement no 

243908, "Past4Future: Climate change - Learning from the past climate”. This manuscript benefited 

from very constructive reviews of three referees as well as fruitful discussions with C. Waelbroeck, 

E. Michel, D. Paillard M.F. Sanchez-Goni, L. Bazin, M. Guillevic, H. Fischer and J. Schmitt. 



8 
 

 

References: 

 
1 Lambeck, K. et al. Constraints on the Late Saalian to Early Middle Weichselian ice sheet of 
Eurasia from field data and rebound modelling. Boreas
 

 35, 539-575 (2006) 

2 Berger, B. Long term variations of daily insolation and Quaternary climatic changes. Journal of 
Atmospheric Sciences 35(12), 2362-2367 (1978) 
 
3 Fischer, H., Wahlen, M., Smith, J., Mastroianni, D. & Deck, B., Ice Core Records of Atmospheric 
CO2
 

 Around the Last Three Glacial Terminations. Science. 283, 1712-1714 (1999) 

4 Parrenin, F. et al. The EDC3 agescale for the EPICA Dome C ice core. Clim. Past 3, 485-497 
(2007) 
 
5 Stenni, B. et al. The deuterium excess records of EPICA Dome C and Dronning Maud Land ice 
cores (East Antarctica). Quaternary Science Reviews 29, 146-159 (2010) 
 
6 Caillon, N. et al. Timing of atmospheric CO2 and Antarctic temperature changes across 
Termination III. Science 299, 1728-1731 (2003) 
 
7 Dreyfus G.B. et al. Firn processes and δ15

 

N: potential for a gas-phase climate proxy. Quaternary 
Science Reviews 29, 222-234 (2010) 

8 Parrenin, F. et al. On the gas-ice depth difference (Δdepth) at EPICA Dome C. Clim. Past 8, 1239-
1255 (2012). 
 
9 Lourantou, A., Chappellaz, J., Barnola, J.-M., Masson-Delmotte, V. & Raynaud, D. Changes in 
atmospheric CO2

 

 and its carbon isotopic ratio during the penultimate deglaciation. Quaternary 
Science Reviews 29, 1983-1992 (2010) 

10 Loulergue, L. et al. Orbital and millennial-scale features of atmospheric CH4 over the past 
800,000 years. Nature 453, 383-386 (2008) 
 
11 Bender, M., T. Sowers & Labeyrie L. The Dole Effect and its variations during the last 130,000 
years as measured in the Vostok Ice Core, Global Biogeochem. Cycles 8, 363–376 (1994)  
 
12 Pedro, J. B., Rasmussen, S. O. & van Ommen, T. D. Tightened constraints on the time-lag 
between Antarctic temperature and CO2

 

 during the last deglaciation. Clim. Past 8, 1213-1221 
(2012) 

13 Parrenin, F. et al. Zero phasing between CO2

 

 and Antarctic temperature during the last deglacial 
warming, Science 339, 1060-1063 (2013) 

14 Monnin, E. et al.,Atmospheric CO2

 

 concentrations over the last glacial termination. Science 291, 
112-114 (2001) 

15 Denton, G.H. et al. The last glacial termination
 

. Science 328, 1652-1656 (2010). 

16 Wolff, E.W., Fischer, H. & Rothlisberger, R. Glacial terminations as southern warmings without 
northern control. Nature Geoscience 2, 206-209 (2009) 



9 
 

 
17 Broecker, W. S., Paleocean circulation during the Last Deglaciation: A bipolar seesaw?, 
Paleoceanography, 13, 119–121 (1998) 
 
18 Skinner, L. C., Fallon, S., Waelbroeck, C., Michel, E. & Barker, S. Ventilation of the deep 
southern ocean and deglacial CO2
 

 rise, Science 328, 1147-1151 (2010) 

19 Bouttes, N., Paillard D. & Roche, D.M. Impact of brine-induced stratification on the glacial 
carbon cycle, Clim. Past 6, 575-589 (2010) 
 
20 Schneider, R., Schmitt, J., Köhler, P., Joos, F. & Fischer, H. A high resolution record of 
atmospheric carbon dioxide and its stable carbon isotopic composition from the penultimate glacial 
maximum to the glacial inception, Clim. Past Discuss. 9, 2015-2057 (2013) 
 
21 Lourantou, A. et al. Constraint of the CO2 rise by new atmospheric carbon isotopic 
measurements during the last deglaciation. Global Biogeochem. Cycles 24, GB2015 (2010) 
 
22 Schmitt, J. et al. Carbon isotope constraints on the deglacial CO2

 

 rise from ice cores. Science 
336, 711-714 (2012) 

23 Jouzel, J., Hoffmann, G., Parrenin, F., & Waelbroeck, C. Atmospheric oxygen 18 and sea- 
level changes. Quat. Sci. Rev. 21, 307–314 (2002) 
 
24 Severinghaus, J.P., Beaudette, R.A., Headly, M., Taylor, K. & Brook, E. J. Oxygen-18 of O2 
Records the Impact of Abrupt Climate Change on the Terrestrial Biosphere. Science 324

 

, 1431-1434 
(2009) 

25 Wang Y. al. Millennial- and orbital-scale changes in the East Asian monsoon over the past 
224,000 years. Nature 451, 1090-1093 (2008) 
 
26 Landais, A. et al. What drives the orbital and millennial variations of d18Oatm? Quaternary 
Science Reviews 292, 235-246 (2010) 
 
27 Barker, S. et al. Interhemispheric Atlantic seesaw response during the last deglaciation, Nature 
457, 1097-1102 (2009) 
 
28 Cheng, H. et al. Ice Age Terminations. Science 326, 248-251 (2009) 
 
29 Gallup, C. D. , Cheng, H., Taylor, F.W. & Edwards, R.L. Direct Determination of the Timing of 
Sea Level Change During Termination II. Science 295, 310-313 (2002) 
 
30 Gouzy A., Malaize B., Pujol C. & Charlier K. Climatic -pause- during Termination II identified 
in shallow and intermediate waters off the Iberian margin, Quaternary Science Reviews 23, 1523-
1528 (2004) 
 
31 Cheng, H., Edwards, R.L., Wang, Y., Kong, X. et al., A penultimate glacial monsoon record from 
Hulu Cave and two-phase glacial terminations: Geology 34, 217–220 (2006) 
 
32 Bazin, L. et al., An optimized multi-  proxy, multi-site Antarctic ice and gas orbital chronology 
(AICC2012): 120–800 ka, Clim. Past  9, 1715-1731 (2013) 
 
33 Koehler, P.; Fischer, H. & Schmitt, J. Atmospheric delta (CO2) - C-13 and its relation to pCO(2) 



10 
 

and deep ocean delta C-13 during the late Pleistocene, Paleoceanography 25, PA2216 (2010) 
 
34 Alley, R., Anandakrishnan, S., and Jung, P.: Stochastic resonance in the North Atlantic. 
Paleoceanography 450, 190–198 (2001) 
 
35 Douville, E. et al., Abrupt sea surface pH change at the end of the Younger Dryas in the central 
sub-equatorial Pacific inferred from boron isotope abundance in corals (Porites), Biogeosciences 7, 
2445–2459 (2010). 
 
36 Masson-Delmotte, V. et al. An abrupt change of Antarctic moisture origin at the end of 
Termination II. PNAS 107, 12091-12094 
         

(2010) 

37 Jouzel, J. et al. Orbital and Millennial Antarctic Climate Variability over the Past 800,000 Years. 
Science 317, 793-797 (2007) 
 
 
 
 
 
 
     

 



11 
 

Figure 1: Comparison of EDC δ15N and Tsite

T

 records on the EDC3 timescale. 

site has been calculated from the combination of ice δ18O and δD8. The vertical scales have been 

adjusted around the present-day levels of δ15N and Tsite. The horizontal dashed line indicates 

present-day levels of EDC δ15N and Tsite

 

. 

Figure 2: 

From top to bottom are displayed δ

Sequence of events over Termination II 
18Ocalcite from the Sanbao cave25, 28 and EDC data records 

(CH4
10,CO2 

9 with new data in purple, δ15N7 with new data in points, δD4, δ18Oatm measured at 

Princeton with open squares and at LSCE with points). The horizontal dashed grey line highlights 

the change of timescale between speleothem and ice core records. The grey arrow indicates the 

“interstadial” event identified in Sanbao cave record27 during Termination 2. The ramps fitting CO2 

and δ15

 

N records (SOM) are indicated in light red and light blue respectively. Standard deviations 

are indicated as error bars on y-axis.  

Figure 3 : 

From top to bottom are displayed EDC data records (CH

Sequence of events over Termination I 

4
10, CO2

9, δD37, δ18Oatm). The location of 

HS 1 (Heinrich Stadial 1) is indicated27 as well as phases I-a, I-b, I-c, I-d corresponding to phases 1, 

2, 3, 4 of Monnin et al.14

 

.  
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Supplementary material to “Step changes in CO2, Antarctic temperature and global 

climate during Termination II” by A. Landais et al. 

 
 
1- Phase relationship between the CO2

 

 concentration and Antarctic temperature 
change during Termination II 

 
Because past variations in atmospheric CO2 concentrations are measured in the gas phase 

while the classical temperature proxy, δD, is measured in the ice phase of ice cores, 

evaluating their phase relationships requires quantification of the depth difference between a 

synchronous event recorded in the ice and gas phases (∆depth) or the age difference between 

gas and ice at the same depth (∆age). This depth or age difference has commonly been 

estimated using firnification modelsS1, S2, S3. In low accumulation rate sites of central East 

Antarctica, independent ∆depth estimates have revealed that these models appear to 

systematically overestimate ∆depth under glacial conditions at these sitesS4, S5, challenging 

their use for estimating the CO2-Antarctic temperature timing under glacial conditions.  

The isotopic composition of nitrogen (δ15N of N2, hereafter δ15N) or argon (δ40Ar of Ar) 

in air trapped in ice cores, can be used to assess past changes in ∆depth. Indeed, assuming 

that the firn structure remains roughly the same over glacial-interglacial changes (constant 

depth of convective zone, constant average firn density and constant vertical temperature 

gradient), δ15N changes enable to estimate changes in lock-in depth (LID, where air no longer 

diffuses in the firn) during Termination IS4. Alternatively a record of δ40Ar during 

Termination III was interpreted as an indicator of surface temperature and/or accumulation 

rate changes in the gas phaseS6. The strong influence of accumulation rate on δ15N evolution 

over deglaciation has been recently confirmed on a compilation of δ15N measurements at 

different Antarctic sitesS5. Over Termination III, Vostok temperature and/or accumulation rate 

changes were shown to lead changes in atmospheric CO2 concentration by 800 ± 200 years 

on average. 

Figure S1 displays the complete high-resolution δ15N profile measured at the Laboratoire 

des Sciences du Climat et de l’Environnement (LSCE) over Termination II and the last 

interglacial period, consisting of 20 duplicated depth levels already publishedS7 and 130 new 

depth levels measured in 2010 using a melt-refreeze method for air extraction and dual inlet 

mass spectrometry for measurementsS8 of δ15N of N2. The resulting uncertainty on δ15N 
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measurement over this series of measurements is of 5 ppm (1 σ). The average depth 

resolution is 2.75 m corresponding to an age resolution of 200 years over Termination II. We 

therefore reach a temporal resolution similar to that of available CO2 measurementsS9 over 

Termination II and completed in this study by 12 additional measurements at the start of 

Termination II on the same ice core (Figure 1).   

Using the EDC3 gas and ice timescalesS10,S11, δD and δ15N are highly correlated (R2 of 

0.85, n= 150) with a lag of δ15N with respect to δD by ~3 ka over the optimum of the last 

interglacial period. Polar precipitation δD is an integrated tracer of the water cycle, which is 

not only affected by changes in condensation temperature but also by changes in evaporation 

conditions (isotopic composition, surface temperature and humidity at evaporative sources). 

After accounting for source conditions using the second-order parameter deuterium excess, 

Stenni et al.S12 have estimated changes in EDC site temperature (Tsite). The comparison 

between Tsite and δ15N shows a slightly stronger correlation compared to the one obtained 

with δD (R2=0.89, n=150). During the glacial inception, around 115 kyrs BP, δ15N and Tsite 

synchronously decrease (Figure 2). This comparison confirms the inference of Stenni et al.S12 

that δD is affected by warm source conditions at the glacial inception, which enhance isotopic 

depletion.  

The good correlation between δ15N and both δD and Tsite on their EDC3 timescales 

supports a previous conclusionS6,S7 that glacial-interglacial variations of δ15N are driven by 

changes in surface temperature and/or accumulation rate. Accumulation rate changes in ice 

cores are assumed to be driven by variations of surface temperature through an exponential 

lawS13 and this general relationship between accumulation rate and temperature is in general 

agreement with layer counting measurements in Greenland ice coresS14. As a consequence, 

both accumulation rate and temperature variations are expected to be in phase with δD 

variations in ice cores. Recently, changes in dust content have been suggested to be an 

additional driver of snow metamorphism and firn depthS15. A recent compilation of coastal to 

central Antarctic δ15N records spanning the last deglaciation did however not exhibit any 

obvious relationship between dust concentration and δ15N, while the correlations between 

δ15N  and δD variations were shown to be robust with an important influence of changes in 

accumulation rate on δ15N variationsS5. During Termination II, the onset of EDC dust 

concentration decrease coincides with the start of δD increaseS16, S17, hence at much shallower 

depth (30 m) than the start of the δ15N increase which can therefore not be explained by the 

increase in dust concentration near the firn pore close-off. Moreover, the dust concentration 
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reaches an interglacial level quickly, about 2.5 ka before δDS16, S17. If dust concentration was 

the primary driver of δ15N, a decoupling between δ15N and δD should be recorded during the 

intervals of large dust variations but this is not observed. Still, we cannot rule out a lag 

between changes in surface temperature / accumulation rate and δ15N at firn close-off. 

However, we can safely consider that δ15N did not change before and more rapidly than 

temperature / accumulation rate at the surface.  

With these limitations in the interpretation of δ15N in mind, we now compare δ15N 

evolution over Termination II with the EDC record of CO2 on the same depth scale (Table 1, 

Figure 3). Comparing the two evolutions is not easy because the rate of δD, δ15N and CO2 

increases are not constant over Termination II. This is especially true for the end of 

Termination II where the rate of increase in δ15N slows at ~1750 m (when interglacial δ15N 

values are reached). δ15N values then continue to increase slowly until the optimum of MIS 

5.5 is reached at ~1716 m. In contrast CO2 reaches a plateau between 1741 m and 1724 m 

before the overshoot occurring in phase with the δ15N maximum at the MIS 5.5 optimum. 

Despite these slight differences in behaviors at the end of Termination II, we have chosen to 

use a determination based on the Rampfit softwareS18 to compare objectively the onsets and 

mid-slopes of the main increases in levels of CO2, δ15N, and δD (Table 1). We used depth 

windows of 1680 – 1840 m for the gas phase and 1620-1780 m for the ice phase (or the 

equivalent time windows). 

 While the onsets of δ15N and CO2 cannot be distinguished within the ~2 m 

uncertainty, we see a clear lead of δ15N over CO2 at the mid-slope (10.2 ± 3.6 m) of the main 

increasing phase of Termination II. This lead is not modified if we remove the CO2 inflexion 

point at 1741.3 m and the associated error bar is only increased by 0.17 m. The rate of 

increase in δ15N is thus greater than for CO2 resulting in δ15N achieving its mid-points ahead 

of CO2. This result is robust regardless of differences in behavior of these two parameters 

during the last interglacial, as discussed above. Over the last part of the Termination II, 

quantifying the visible lead of δ15N over CO2 is not easy since both signals show a different 

dynamic with a slow and rather constant increase for δ15N versus a plateau followed by an 

overshoot for CO2.     

 Assuming that the firn structure did not change over time (no convective zone)S19, 

δ15N can be used as an indicator of LID. We therefore apply the method proposed by Bender 

et al.S20 and Parrenin et al.S4 to Termination II at EDC. The depth difference, ∆depth, between 
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concomitant change in gas and ice phases is calculatedS4 from (i) the thinning value at the 

depth of Termination II and (ii) the lock-in depth inferred from δ15N and the barometric 

equation. The main limitation of this approach lies in the ~10 % uncertainty in the thinning 

function at 1700 m depth, which leads to a 3.5 m uncertainty on the ∆depth calculation.  

While this uncertainty prevents us from firm conclusions on the mid-slope lead or lag of CO2 

vs temperature, we note that the shape of the δD increase, when shifted by ∆depth, is very 

close to the δ15N increase (difference of 2 m) which supports our use of δ15N as a proxy for 

δD in the gas phase. The same exercise has been done over Termination III at Vostok 

comparing the results obtained by Caillon et al.S6 and our ∆depth approach using in this case 

a convective zone of 13 m as for present-day Vostok conditionsS20. Again the two approaches 

give similar results despite large uncertainties in the ∆depth approach (Figure S4). 

Finally, our most robust finding is that the initial increase in δ15N and CO2 occur 

synchronously, within uncertainty, and that the mid-slope of δ15N increase (which cannot 

precede changes in temperature and accumulation over Termination II as discussed above 

through its link with δD or Tsite and timing of dust increase) occurs prior to the mid-slope of 

CO2 increase. At mid-slopes, the increase in δ15N   leads by 900 ± 325 years those of CO2. We 

know from modeling studies that Antarctic temperature is not a linear function of CO2 

concentrationS21. This is due to the following logarithmic relationshipS22 between radiative 

forcing (RF) and the atmospheric concentration of CO2. 

 

RF (W.m-2) = 5.35 ln(CO2/CO2,0) with CO2,0 = 278 ppm. (Equation 1) 

 

 We have thus repeated our ramp analysis using the radiative forcing of CO2 (Table 

S1) deduced from Equation (1). In this case, δ15N still leads CO2 radiative change by 675 ± 

350 years at mid-slope. 

  

2- High resolution measurements of δ18Oatm over Termination I and Termination II. 

 

δ18O of O2 is measured on the same samples than δ15N of N2. For measurements performed at 

LSCE, the same melt-refreeze method is usedS8 and the same dual inlet mass spectrometer 

run measures δ15N of N2 and δ18O of O2 using a Thermo Delta V equipped with masses 28, 

29, 30, 32, 33, 34 and 44. For measurements performed at Princeton, the headspace 

equilibration method inspired from Emerson et al.S23 and improved by Dreyfus et al.S7 has 
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been applied. Simultaneous measurements of δ15NS7 and δ18O were achieved using a Delta 

Plus XP mass spectrometer. For both sets of measurements, corrections for CO+ influence on 

mass 28 and for influences of the δO2/N2 on δ15N and δ18O values are doneS8,S24.  

A gas loss effect has been shown to influence measurements of both δ18O of O2 and δO2/N2 in 

air trapped in ice core with a constant slopeS25,S26,S27,S28 of 0.01‰/‰ between the changes in 

δO2/N2] so that the corrected δ18O of O2 is calculated asS29: 

      

δ18Ocorr = δ18Omeasured + (δO2/N2+10) × 0.01 

 

To separate the firn and atmospheric fractionation processes, the influence of gravitational 

fractionation in the firn is removed from corrected δ18O of O2 using the δ15N measurements 

so that: 

 

 δ18Oatm = δ18Ocorr – 2 δ15N 

 

The final uncertainty attached to δ18Oatm values at each level is of 0.025 ‰ (1 σ) for the 

series of data from Termination II and Termination I presented here.  

 

3- Measurements of CO2 concentration 

 

The CO2 data plotted on Figure 2 include 2 sets of measurements. The first set was obtained 

from the published data by Lourantou et al.S9 while the second one has been obtained for this 

study. The same extraction method has been used in both cases, i.e. 40 – 50g of ice are placed 

under vacuum and crushed in a steel ball mill.  

In the case of the Lourantou et al.S9 set, CO2 and its carbon isotopic ratio measurements are 

coupled. The extracted gas is expanded in a 10 cm3 sample loop. From there, an ultra pure 

helium stream flushes the gas through a glass trap where CO2 is frozen out at −196  °C. The 

trapped CO2 is then transferred into a low flow rate helium stream, to be cryofocused on a 

small volume glass capillary tubing also at −196  °C. The subsequent warming of the capillary 

allows the gas transfer through a gas chromatograph to separate the CO2 from residual 

impurities such as N2O and its introduction in the isotope ratio mass spectrometer IRMS 

(Finnigan MAT 252). The CO2 mixing ratio in the ice samples is deduced from a linear 

regression between standard gas injections (CO2 = 260.26 ± 0.2 ppmv in dry air) at different 
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pressures and the corresponding CO2 peak amplitude measured by the IRMS. Each sample or 

external standard introduction in the IRMS is bracketed with injections of a pure CO2 

standard reference gas (internal standard, ATMO MESSER, δ13C of −6.5  ± 0.1‰ versus 

VPDB). Each result of ice core gas sample consists of the mean of three consecutive 

measurements of the same sample gas stored in the extraction container and expanded three 

times. For this analytical series on Termination II EDC samples, the pooled standard 

deviation associated with the average value of three replicate measurements of the same 

extracted gas amounts to 1.9 ppmv for CO2. 

In the case of the new set of measurements (this work), the extracted gas is expanded in a 1 

cm3 sample loop and flushes with an ultra pure helium stream through inox tubing line. A Gas 

Chromatograph (GC) Varian 3300 separates the CO2, reduces it to CH4 through a methanizer, 

and with a Flame Ionised Detector produces an electrical signal proportional to the 

concentration. The CO2 mixing ratio is deduced using the same protocol as Lourantou et al. 

We use a linear regression between standard gas injections (CO2 = 232.6 ± 0.2 ppmv) at 

different pressures and the corresponding CO2 peak amplitude measured by the GC. Each ice 

core gas sample result is calculated as the mean of minimum 4 replicate measurements of the 

same sample gas stored in the extraction cell. The standard deviation associated with the 

average value of replicate measurements amounts to 1.3 ppmv.  

We note the good agreement between the 2 sets of measurements, which have been obtained 

with 2 different analytical procedures. 
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Table S1 : Results from a Rampfit analysis to quantify the start, mid slope and end of 

Termination II increases in δD, accumulation rate (in the ice depth), δ15N and δD shifted by 

∆depth, atmospheric CO2 concentration and CO2 radiative forcing (in the gas depth). All 

depths and the associated uncertainties are reported in meters of ice. 

 
 
units: meters depth_bot uncertainty depth_top uncertainty depth_mid uncertainty
δD 1771.5 4.1 1712.7 3.1 1742.8 1.8
accumulation rate 1766 5.6 1714.9 5.9 1740.5 3.1
δ15N 1793 2.9 1749 2.1 1771 1.8
δD shifted by ∆depth 1791.4 4.4 1747.3 3 1769.4 1.9
CO2 1796.8 2.7 1724.8 3.6 1760.8 1.8

CO2 forcing 1801.8 3.1 1724.8 3.8 1763.3 1.9  
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Figure S1 : 

Top: new δ15N data (blue crosses) and previously published δ15N data (blue circlesS7) from 

the EDC ice core. The analytical accuracy of replicate measurements is 6 per meg. 

Middle: new CO2 data (brown crosses) and previously published CO2 data (red circlesS9) 

from the EDC ice core.  

Bottom: Atmospheric CH4 concentrations (ppbv) from EDCS30 

. 
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Figure S2a (left):  

Comparison of δ15N and δD records on the EDC3 gas and ice timescales respectively. The 

vertical scales have been adjusted around the present-day levels of δ15N and δD. 

Figure S2b (right): 

Comparison of the δ15N and Tsite records on the EDC3 timescale. The vertical scales have 

been adjusted around the present-day levels of δ15N and Tsite. 
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Figure S3: 

Evolutions of δ15N  (blue), CO2 (red), radiative forcing of CO2 (pink) and δD shifted by 

∆depth (grey) following the approach by Parrenin et al.S4 over Termination 2. Linear 

segments obtained using the Rampfit softwareS18 are represented as solid lines of the same 

color of each record.  

Note that the ramp is not modified when removing the CO2 inflexion point at 1741.3 m depth. 
 
The radiative forcing of CO2 is calculated following Equation (1)  
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Figure S4: 

Evolutions of δ40Ar (blue), CO2 (red) and δD shifted by ∆depth (grey) following the 

approach by Parrenin et al.S4 over Termination II. 
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