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In this paper, we show that one of the most widely used methods to solve the non-linear viscous–plastic
(VP) sea ice rheology, the elastic–viscous–plastic (EVP) method, generates artificial linear bands of high
deformation that may be confounded with real linear kinematic features observed in the Arctic ice pack.
These numerical artefacts are easily filtered out by using a slightly different regularization of the internal
stress. In addition, the EVP method is reinterpreted as an iterative solver and a clear distinction appears
between the numerical and physical parameters. Two numerical parameters determine the stability and
accuracy of the method and are adjusted to avoid the noisy ice deformation fields frequently observed
with the EVP method in nearly rigid ice areas. This study also confirms the unsatisfactory numerical con-
vergence of the EVP method and investigates the effects of the numerical parameters on sea ice deforma-
tion, internal stress and velocity fields obtained with unconverged solutions.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Most large-scale sea ice models use some variants of the vis-
cous–plastic (VP) rheology (Hibler, 1979) and produce realistic
mean ice drift patterns (Martin and Gerdes, 2007). However, there
is evidence that numerical sea ice models do not reproduce ice
deformation fields at small spatial and temporal scales (Kwok
et al., 2008; Girard et al., 2009). This raises questions about the
principal assumptions on which plastic sea ice rheologies rely
(Coon et al., 2007) and generates renewed interest in setting up
new frameworks for sea ice dynamics (e.g., Hibler and Schulson,
2000; Wilchinsky and Feltham, 2004; Schreyer et al., 2006; Girard
et al., 2011). On the other hand, some authors claim that higher
resolution combined with appropriate plastic yield curves allows
the VP rheology to simulate bands of high ice deformation (e.g.,
Wang and Wang, 2009; Maslowski and Lipscomb, 2003) similar
to the linear kinematic features observed in the Arctic (Kwok,
2006). This paper participates in this discussion by showing that
the generation of some linear kinematic features by sea ice models
are due to numerical artefacts.

One of the most commonly used method to find numerical solu-
tions for ice trajectories is the elastic–viscous–plastic (EVP) meth-
od which is thoroughly documented in Hunke and Dukowicz
(1997), Hunke and Dukowicz (2002) and Hunke and Lipscomb,
2008. We will refer here to the classical version presented in
Hunke (2001) and to the modified version proposed by Lemieux
et al. (2012). The EVP method is based on subcycling iterations dur-
ing which the ice velocities and internal stresses are successively
updated towards the solution of the non-linear VP equations.
Relaxation terms, also called regularization terms, are introduced
to avoid instabilities. In the classical version, the regularization
consists in adding an artificial elastic term whereas the modified
version also relies on an extra inertial term to control the relaxa-
tion to the solution of the VP equations. These terms may generate
oscillations of the solution which need to be damped before the
end of the iterative process.

The trivial parallelization of the EVP method explains its success
in coupled ice-ocean models. However, this method presents sev-
eral drawbacks. Several studies showed that the EVP method
may not convergence (or very slowly) to the solution of the VP
equation (Losch and Danilov, 2012; Lemieux et al., 2012). The
insufficient numerical convergence implies a strong impact of the
numerical parameters on the results (Losch et al., 2010). Another
serious problem, coming from numerical instabilities or a lack of
damping, is the generation of noisy deformation fields in nearly
rigid ice areas (Hunke, 2001), leading to large errors in the simu-
lated thickness and concentration fields (Lemieux et al., 2012). This
problem is critical in the Canadian Arctic Archipelago (CAA) where
deformation rates are very low and ice thickness is relatively high.

Other methods are also used to solve the non-linear VP equa-
tions. Most of them are based on the linearization of the equations
obtained from the implicit time discretization of the VP model. The
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resulting system of equations is solved with various linear solvers.
As the non-linear terms are linearized by using the velocities from
the previous timestep, the solution is supposed to be correctly
approximated if the timestep is much smaller than the forcing
timescale. This constraint is relaxed by using outer-loop iterations
(sometimes referred to as Picard iterations or pseudo time steps)
during which forcing is held constant (Zhang and Hibler, 1997;
Zhang and Rothrock, 2000) and the non-linear terms are linearized
with the velocities from the previous iteration. In all cases, a linear
solver is needed, making the parallelization of the code more com-
plex. These methods usually converge but with poor rates of con-
vergence (Lemieux and Tremblay, 2009).

An interesting approach is the use of general non-linear solvers.
Lemieux et al. (2010) implemented a Jacobian-free Newton–Krylov
method which is based on a more sophisticated linearization of the
VP equations. The resulting matrix also contains derivatives rela-
tive to the unknowns, speeding up the convergence of the non-lin-
ear problem. A linear solver is still needed and the efficiency has
not been evaluated in parallel environments.

The first goal of our study was the mitigation of the noise in the
deformation fields produced by the EVP method in nearly rigid ice
regions. By reinterpreting EVP as an iterative solver, we define
clear criteria for stability and damping, leading to a better control
of the noise in the deformation fields. This reinterpretation of the
EVP method also leads to a new regularization of the internal stress
ensuring the same relaxation for all the stress components. With
the old regularization (initially proposed by Hunke and Dukowicz
(1997) and used in nearly all EVP implementations), results may
exhibit linear bands of high ice deformation aligned with the grid.
These bands are not obtained with the new regularization which
has also lower remaining errors.

This paper is organized in three sections. Section 2 briefly pre-
sents the VP equations. Section 3 presents their spatial and tempo-
ral discretizations, along with the reinterpretation of EVP and the
new regularization of the internal stress. The stability and damping
criteria are analytically derived from a simplified one-dimensional
problem. Several simulations are presented in Section 4 to illus-
trate the effects of numerical parameters on the behaviour of the
method and on the quality of the solutions obtained with a limited
number of iterations. A comparison of results obtained with both
the old and new regularizations of the internal stress shows the
strong impact of numerical details on the generation of linear
bands of high ice deformation, and their correlation with large
remaining errors in the velocity field.
Table 1
Definition and units of the variables used in the text.

Symbol Definition Units

P ice strength N m�1

m mass of snow and ice per unit area kg m�2

h mean ice thickness m
A ice concentration –
D measure of the deformation rate s�1

F ¼ ðFu; FvÞ stress divergence N m�2

_�ij component of the strain rate tensor s�1

rij component of the stress tensor N m�1

u ¼ ðu;vÞ ice velocity m s�1

sw; sa ocean and atmosphere stresses N m�2

g sea surface elevation m
2. Model description

The viscous–plastic sea ice rheology proposed by Hibler (1979)
is widely used in many large-scale ice-ocean models (e.g., CCSM,
HadGEM3, MITgcm and NEMO-LIM). It is based on the assumption
that sea ice has no (or little) tensile strength but responds in a plas-
tic way to compressive and shear deformations. Combined with a
parameterization of the ice strength, this model is able to repro-
duce the mean ice drift reasonably well and leads to a realistic
ice thickness distribution within the Arctic basin (e.g., Zhang and
Rothrock, 2000).

The momentum equation obtained by integrating the three-
dimensional momentum equation through the snow and ice in
the vertical direction is

m@tu ¼ r � rþ A ðsa þ swÞ �mf k� u�mgrg; ð1Þ

where m is the total mass of snow and ice per unit area, @t is the
temporal derivative, u is the horizontal ice velocity and r is the
internal ice stress tensor. The momentum advection is ignored be-
cause inertial forces are small compared to other forces in most
applications (Fichefet et al., 1998). The wind stress sa and the
ocean stress sw are multiplied by the ice concentration, A, follow-
ing the proper area scaling determined by Connolley et al. (2004)
and Hunke and Dukowicz, 2003. sa is an external forcing and sw

is given by a quadratic expression, cD qo juo � ujðuo � uÞ, where cD

is the water drag coefficient, q0 is the reference density of seawa-
ter and uo is the oceanic surface velocity. The last two terms of
Eq. (1) are related to the Coriolis effect and to the slope of the
sea surface; f is the Coriolis parameter, k is an unit vector normal
to the reference surface of the Earth, g is gravity and g is the sea
surface elevation. Definitions and units of symbols used in the
text are detailed in Table 1.

The VP constitutive law relates the components of the strain
rate tensor:

_�ij ¼
1
2

@ui

@xi
þ @uj

@xj

� �
; ð2Þ

to the components of the internal ice stress tensor by:

rij ¼
P

2ðDþ DminÞ
_�kk � Dð Þdij þ

1
e2 2 _�ij � _�kkdij
� �� �

; ð3Þ

where P is the ice strength, D is a particular measure of the defor-
mation rate and Dmin is a parameter determining a smooth transi-
tion from pure viscous flow (D� Dmin) to pure plastic flow
(D� Dmin). _�kk is the trace of the strain rate tensor, dij is the Kro-
necker unit tensor and e is a parameter giving the ratio between
the maximum compressive stress and twice the maximum shear
stress. D is given by

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_�2

d þ
1
e2

_�2
s

r
; ð4Þ

where _�d is the divergence rate and _�s is the shear strain rate,

respectively given by _�d ¼ ð _�11 þ _�22Þ and _�s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð _�11 � _�22Þ

2 þ 4 _�2
12

q
.

Note that P= 2ðDþ DminÞð Þ in Eq. (3) is an alternative to the non-lin-
ear bulk viscosity with capping proposed by Hibler (1979). This for-
mulation of the VP rheology is differentiable, well defined, and gives
no internal stress when D tends to zero.

In the pure plastic case (D� Dmin), the compressive stress

rd ¼ ðr11 þ r22Þ and the shear stress rs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r11 � r22ð Þ2 þ 4r2

12

q
are linked by the quadratic relationship ðrd þ PÞ2 þ e2r2

s ¼ P2,
which defines an elliptical yield curve translated along the com-
pressive stress to be entirely in the compressive part ðrd 6 0Þ of
the stress space. The position on that ellipse does not depend on
the magnitude of the deformation rate but only on the direction
of the strain rate vector (defined by _�d and _�s) which must be nor-
mal to the yield curve.

According to Hibler (1979), the ice strength P is parameterized
as



Fig. 1. Arrangement of variables on the C-grid. Velocities are defined on u- and v-
points. Scalars are defined on t-points, as well as r1;r2; _�1 and _�2. r12 and 2 _�12 are
defined on f-points.
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P ¼ P�he�Cð1�AÞ; ð5Þ

where P� and C are empirical positive parameters. h is the mean ice
thickness, corresponding to the volume of ice per unit area. Other
yield curves, flow rules and strength parameterizations have been
proposed (e.g., Zhang and Rothrock, 2005), but this combination
of the elliptical yield curve, normal flow rule and Hibler’s parame-
terization for the ice strength is very popular.

3. The revised elastic–viscous–plastic method

The EVP method is based on subcycling iterations during which
the ice velocities and internal stresses are successively updated to-
wards the solution of the coupled Eqs. (1) and (3). Regularization
terms are introduced to avoid large oscillations and instabilities
during the iterative process. In this study, the regularization con-
sists in adding the term 2T@terij to the left-hand side of Eq. (3). T
is the elastic damping timescale and @te is a pseudo time derivative
that represents the evolution of the solution during the iterative
process. This new regularization is slightly different from the reg-
ularization initially proposed by Hunke and Dukowicz (1997),
which consists in adding the same regularization term but to the
left-hand side of the following equation, which is equivalent to
Eq. (3):

e2rij þ
1� e2

2

� �
rkkdij þ

D P
ðDþ DminÞ

dij ¼
P

ðDþ DminÞ
_�ij: ð6Þ

This presentation of the EVP method is potentially confusing
and the mixing between the numerical and physical terms
may be problematic for the choice of parameters and the inter-
pretation of results produced by this method. We then propose
to revise the EVP method to have a clear distinction between
the numerical and physical parameters. In the following, we first
present the spatial discretization. We then describe the temporal
discretization with a simple one-dimensional example and we
explain our reinterpretation of the EVP method. The stability
and damping properties are then analytically derived. Finally,
the entire algorithm is detailed.

3.1. The spatial discretization

The spatial discretization is based on the C-grid arrangement
of variables (Fig. 1) with cells centred on scalar points (t-points).
Velocity points (u- and v-points) are defined at the centre of
each edge of the cells. In order to minimize the number of aver-
aging operations for the evaluation of the different derivatives,
_�1 and _�2 are defined as the values of ð _�11 þ _�22Þ and
ð _�11 � _�22Þ, respectively, at the centre of each cell (t-points),
whereas _�12 is computed on the corners of the cells (f-points).
r1 and r2 are then naturally defined on t-points as ðr11 þ r22Þ
and ðr11 � r22Þ respectively by

r1 ¼
P

Dþ Dminð Þ
_�1 � Dð Þ; ð7Þ

r2 ¼
P

Dþ Dminð Þ
_�2

e2 : ð8Þ

Similarly r12 is naturally defined on f-points by

r12 ¼
P

Dþ Dminð Þ

				
f

_�12

e2 : ð9Þ

In the above equations, D is given by

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_�2

1 þ
1
e2

_�2
2 þ 4 _�2

12

		
t


 �r
ð10Þ

and the averaging operators used to compute _�12 on t-points and
P= Dþ Dminð Þ on f-points are defined as
_�2
12

		
t ¼

1
e1te2t

_�2
12 e1f e2f

i; j; ð11Þ

P
Dþ Dminð Þ

				
f

¼ P
Dþ Dminð Þ

iþ1
2; jþ

1
2: ð12Þ

The quantities e1t ; e2t ; e1f and e2f are the grid lengths in each
direction as defined at t- and f-points. The operator q i; j corre-
sponds to

q i; j ¼
qi;j þ qi;j�1 þ qi�1;j þ qi�1;j�1

4
; ð13Þ

where indices i and j cover all of the domain and indicate where a
quantity is computed. (i; j) corresponds to t-points, (iþ 1

2 ; j) to u-
points, (i; jþ 1

2) to v-points and (iþ 1
2 ; jþ 1

2) to f-points.
Apart from this averaging method, the spatial discretization is

the same as that presented in Bouillon et al. (2009). This change
ensures that the discretized equations satisfy the dissipative prop-
erties of the VP model but does not lead to noticeable changes in
the results. The corrected discretization is used for all the experi-
ments presented in this study.

3.2. The temporal discretization

In order to illustrate the temporal discretization and the rein-
terpretation of the EVP method, the following simplified one-
dimensional version of the VP problem is used:

r ¼ P
2D

@xu; ð14Þ

D ¼ j@xuj; ð15Þ

m@tu ¼ @xrþ s; ð16Þ

where u is the ice velocity in the x direction, s is the external stress
which is held constant and @x is the spatial derivative.

The simplest temporal discretization is an explicit scheme that
advances from timestep n to timestep nþ 1 using:
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m
unþ1 � un

Dt
¼ @x

P
2Dn

@xun þ s; ð17Þ

where Dn ¼ j@xunj. The stability criterion scales quadratically with
Dx as

Dt 6
mD
P

Dx2: ð18Þ

If the deformation rate D is 10�9 s�1, the spatial resolution
Dx ¼ 50 km;P ¼ 20000 N m�1 and m ¼ 1000 kg m�2, the order of
magnitude of the required timestep would be 0:1 s. To allow larger
timesteps, implicit schemes are required.

Solving the full implicit equations is not easy because of the
presence of the term P= 2Dð Þ in Eq. (14). First implementations sim-
ply used the value of D from the previous timestep by using
P= 2Dnð Þ instead of solving the non-linear equations, but Hunke
and Zhang (1999) showed that the resulting sea ice responds too
slowly to forcing changes. An alternative is to solve the non-linear
equation by using outer-loop iterations (Zhang and Hibler, 1997)
where an additional loop of iterations is performed with indices
p. The equations are linearized by using the velocity from the pre-
vious iteration.

m
upþ1

nþ1 � un

Dt
¼ @x

P
2Dp

nþ1

@xupþ1
nþ1 þ s: ð19Þ

The main drawback of this simple non-linear solver is the slow
convergence towards the solution. Even with 40 outer-loop itera-
tions, the velocity field can have significant errors (as shown by
Lemieux and Tremblay (2009)). A solver (e.g., GMRES or LSOR) is
called at each iteration to solve the linear system of equations.
To speed up the convergence, Lemieux et al. (2010) proposed to
use a Jacobian-free Newton–Krylov method to solve the non-linear
set of equations but this method is not yet used in current coupled
ice-ocean models.

The EVP method aims to solve the VP non-linear equations
without the need of a linear solver. In the one-dimensional exam-
ple, the modified EVP method proposed by Lemieux et al. (2012)
corresponds to the following equations:

2T
rpþ1 � rp

Dte
þ rp ¼ P

2Dp @xup; ð20Þ
b�
upþ1 � up

Dte
þm

up � un

Dt
¼ @xrpþ1 þ s; ð21Þ

where b� is an extra parameter having the same unit as m. The sub-
scripts corresponding to the global timestep are not written any
more except when equal to n. During the sub-iterations, other vari-
ables are not updated and the forcing is kept constant. This method
does not need a solver because the update of the internal stress and
velocity components are decoupled and local. A crucial difference
between the classical and the modified EVP method is the treat-
ment of the physical inertial term m@tu which is discretized into
m u�un

Dt . In the classical EVP method, it is confounded with the update
of the velocity during the iterative process as the left-hand side of
Eq. (21) is replaced by m upþ1�up

Dte
. In consequence, the number of iter-

ations nevp must be equal to Dt
Dte

, in order to remain consistent with
the momentum equation. In the modified EVP method, the con-
straint on the number of iterations disappears, since the velocity
update b� upþ1�up

Dte
and the physical inertial term m up�un

Dt are treated
separately. The elimination of the constraint on nevp allows to eval-
uate the error of the approximate solution during the iterative pro-
cess and to stop it when a prescribed accuracy is reached.
3.3. Reinterpretation of EVP

In this section, we completely reinterpret EVP as an iterative
solver for the system of non-linear equations obtained from the
implicit time discretization of the VP problem. Applied to the
one-dimensional case presented in Section 3.2, the algorithm suc-
cessively executes these operations:

rpþ1 ¼ rp þ r̂p � rpð Þ1
a
; ð22Þ

upþ1 ¼ up þ ûp � upð Þ1
b
; ð23Þ

where a and b are non-dimensional parameters larger than 1. Inter-
nal stress is firstly updated towards the target r̂p ¼ P= 2Dpð Þ@xup,
then, velocity is updated towards the target ûp ¼ unþ
@xrpþ1 þ s
� �

Dt
m. The proposed method exactly corresponds to the

modified EVP method proposed by Lemieux et al. (2012) if the
remaining two numerical parameters (a and b) are defined by:

a ¼ 2T
Dte

; ð24Þ

b ¼ b�

m
Dt
Dte

; ð25Þ

where T;Dte and b� are the three numerical parameters used in
Lemieux et al. (2012).

The proposed method also closely corresponds to the classical
EVP method of Hunke (2001), if

b ¼ Dt
Dte

; ð26Þ

and if the terms rp and up inside the parenthesis of the right hand
side of Eqs. (22) and (23) are replaced by rpþ1 and upþ1. However, no
significant changes in terms of convergence or stability have been
found in our study when using rp and up instead of rpþ1 and upþ1.

3.4. Convergence and stability of the method

The iterative process corresponds to

rpþ1 ¼ rp þ P
2Dp @xup � rp

� �
1
a
; ð27Þ

upþ1 ¼ up þ @xrpþ1 þ s�m
up � un

Dt

� �
Dt
m

1
b
: ð28Þ

To simplify the analysis and to mimic the one made by Hunke
(2001), the term m up�un

Dt is neglected in the following. Combining
Eqs. (27) and (28) and assuming that P and D are constant leads to:

ðupþ1 � 2up þ up�1Þ þ ðup � up�1Þ1
a
� @2

x up c
ab
¼ sDt

m
1
ab

; ð29Þ

where

c ¼ P
2D

Dt
m
: ð30Þ

Eq. (29) looks like a wave equation describing the evolution of
the approximate solution during the iterative process. By dropping
the non-homogeneous term and assuming solutions of the form
upðxÞ � eiðkx�xpÞ, one obtains the dispersion relation:

x2 þ ix
1
a
� k2 c

ab
¼ 0; ð31Þ

where i ¼
ffiffiffiffiffiffiffi
�1
p

; k is the wave number (with condition k2Dx2
6 1)

and x is a non-dimensional complex number. For each term, the
following relations have been used, respectively:
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e�i2x � 2e�ix þ 1g�x2; ð32Þ

e�ix � 1g� ix; ð33Þ

e�ixg1: ð34Þ

The damping is controlled by the imaginary part of x, given by:

x ¼ 1
2a

�iþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n2 � 1

s !
; ð35Þ

where n is the damping ratio defined by n ¼ Sv
Se, where Se and Sv are

two non-dimensional positive numbers defined by:

Se ¼
ffiffiffiffiffiffi
ab
c

s
Dx; ð36Þ

Sv ¼
b
c

Dx2

2
; ð37Þ

where c comes from (30). The value of the damping ratio n deter-
mines the type of damping. Oscillations occur during the approach
to the solution if n < 1 and the damping rate is equal to 1

2a. The con-
dition n2 > 1 corresponds to the relation T < e2mDx2D

8P found by Hunke
(2001).

The definitions of Se and Sv transform Eq. (29) into the following
discrete wave equation:

ðupþ1 � 2up þ up�1ÞS2
e þ ðup � up�1Þ2Sv � d2

x up ¼ sDt
m

Dx2

c
; ð38Þ

with the second order finite difference:

d2
x up ¼ upðxþ DxÞ � 2upðxÞ þ upðx� DxÞ: ð39Þ

The stability criterion is developed by assuming that up ¼ apeikx,
where ap ¼ kap�1. By introducing a solution of this form and drop-
ping the non-homogeneous term, Eq. (38) becomes:

k2 � 2� k2Dx2

S2
e

� 1
a

 !
kþ 1� 1

a

� �
¼ 0: ð40Þ

The method is stable if jkj < 1. Using the properties a > 1 and
k2Dx2

6 1, the stability criterion is given by

S2
e > 0:5: ð41Þ

This stability criterion is similar to the condition T >
Pð1þe2Þ2Dt2

e
32mDx2e2D

developed by Hunke (2001).
In cases where the internal stress is negligible, i.e., under ice

divergence or in regions with low ice concentration, the problem
reduces to:

bðupþ1 � upÞ ¼ s
Dt
m
þ un

� �
� up: ð42Þ

The residual decreases as e�
1
bp and the convergence is controlled

by 1
b. The method is always stable and locally convergent.
Equivalently, for a constant strain rate, the convergence rate of

the stress state is given by 1
a and the distance to the correct stress

state decreases as e�1
ap.

3.5. Summary and details of implementation

In summary, EVP is an ad hoc solver for the system of non-linear
equations obtained from the implicit time discretization of the VP
model. Convergence and stability of the method depend on the two
non-dimensional numerical parameters, a and b. Three non-
dimensional positive numbers, Se; Sv and n, are defined and used
to characterize the behaviour of the solver.
In previous implementations of EVP, numerical and physical
terms were somewhat confounded, generating some confusion be-
tween the numerical method and the physical model. In the classi-
cal EVP method of Hunke (2001), the numerical parameters were
interpreted as an elastic damping timescale T and a subcycling
timestep Dte. The number of iterations nevp had to be equal to Dt

Dte
.

The modified EVP method of Lemieux et al. (2012) suppresses
the need for a fixed number of iterations, but adds an additional
parameter, b�, interpreted as an artificial mass. In the revised EVP
method, only two non-dimensional numerical parameters remain
and the condition on the number of iterations is relaxed. The par-
allelization is still trivial and the computational time is unchanged.

The treatment of the stress update is slightly different from pre-
vious EVP implementations, where 2T@tr1;

2T
e2 @tr2;

2T
e2 @tr12, were

added to the left-hand side of Eqs. (7)–(9) to regularize the defini-
tion of the stress. The reinterpretation of EVP leads to a new regu-
larization where r1 is not treated differently than r2 and r12. The
relaxation of each stress component is then similar and is con-
trolled by a. To reproduce the old regularization, one can use
a ¼ 2T

Dte
for r1, and a ¼ 1

e2
2T
Dte

for r2 and r12. Keeping the same a
for the three equations has a surprisingly good impact on the qual-
ity of the solution as analysed in the next section.

At the first iteration (p ¼ 1) of each global timestep, an initial
guess for u;rð Þ has to be defined. For the ice velocity, we take
the velocity from the previous timestep. For the ice internal stress,
we set r1;r2;r12 at zero at the beginning of each timestep, as it is
usually done. This allows us to evaluate the quality of the stress
states by the distance to the ellipse. Other initial guesses could also
be used, such as the free drift velocity or a smoothed version of the
previous velocity and internal stress.

The entire algorithm is detailed hereafter to simplify implemen-
tation in sea ice models. Within the iterative process, variables in-
dexed with p are updated, while variables indexed with n are
referred to the global timestep and stay constant. The number of
iterations, nevp, can be fixed a priori or depend on a termination cri-
terion as a function of the residual. At each solver iteration, the
internal stress tensor is updated first by:

aðrpþ1
1 � rp

1Þ ¼
P

Dp þ Dminð Þ
_�p

1 � Dp� �
� rp

1; ð43Þ

aðrpþ1
2 � rp

2Þ ¼
P

Dp þ Dminð Þ
_�p

2

e2 � rp
2; ð44Þ

aðrpþ1
12 � rp

12Þ ¼
P

Dp þ Dminð Þ
_�p

12

e2 � rp
12: ð45Þ

The internal force vector is then computed by:

Fpþ1 ¼ ðFpþ1
u ; Fpþ1

v Þ ¼ r � rpþ1 ð46Þ

and used to update the velocity.
The updates of u and v are decoupled. In odd iterations, (47) is

solved first with v� as an interpolation of vp on u-points and u�

equal to upþ1. Then, (48) is solved with v� ¼ vpþ1 and u� is upþ1

interpolated on v-points. The reverse order is applied for even iter-
ations. One therefore has:

b
m
Dt
ðupþ1 � upÞ ¼ Fpþ1

u � m
Dt
ðupþ1 � unÞ

þ A sau þ cD qo juo � ðu�; v�Þjðuo � upþ1Þ
� �

þmfv� ð47Þ

and

b
m
Dt
ðvpþ1 � vpÞ ¼ Fpþ1

v � m
Dt
ðvpþ1 � vnÞ þ A sav þ cD qo juoð

�ðu�; v�Þjðvo � vpþ1Þ
�
�mfu�: ð48Þ
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4. Results and discussion

Different simulations are performed to analyse the impacts of
the numerical parameters on the quality of the solution. Compari-
sons between the old and new stress regularizations highlight the
strong link between the generation of linear bands of high ice
deformation and numerical problems.

We work in the framework of the Nucleus for European
Modelling of the Ocean (NEMO) model (Madec, 2008) with the
Louvain-la-Neuve sea Ice Model (LIM) discretized on a C-grid.
The modifications are made to version 3.4 of NEMO-LIM (branch/
dev_r3322_NOCS09_SAS) with the LIM2 version of the sea ice
model on the ORCA05 grid in an Arctic configuration (see Madec
et al. (1998) and Fichefet and Maqueda (1997) for a description
of LIM2). The ocean is assumed to be at rest with no elevation.
The ocean stress is computed using a quadratic formula with a drag
coefficient cD ¼ 5� 10�3. The surface wind is obtained from the 6
hourly DFS4.1 10 m wind data (Brodeau et al., 2010). Surface
boundary conditions (wind stress and other fluxes) are determined
by the CORE bulk formulae proposed by Large and Yeager (2004).
The timestep is equal to 4 h (Dt ¼ 14400 s) and all simulations
start the first of January 1991. To simplify the analysis, very simple
initial conditions are chosen. There is no ice wherever the sea sur-
face temperature is 2� C above the seawater freezing point, 3 m of
ice and 50 cm of snow elsewhere. Sea surface temperatures and
salinities are derived from the Levitus98 monthly climatology
(Boyer et al., 1998). The initial concentration of the ice pack is
equal to 1. The ORCA05 tripolar grid has a resolution of about
15 km in the Canadian Arctic Archipelago and around 25 km in
the central Arctic (Fig. 2). The domain is restricted to the ocean sur-
face at latitudes higher than 25� North. The model parameters are
the following: P� ¼ 104 N m�2 and C ¼ 20. We choose a very small
value for Dmin (10�20 s�1Þ in order to model nearly pure plastic flow.

An advantage of the revised EVP method is the possibility of
evaluating the numerical convergence by computing the residual
of the equations. Similarly to Lemieux et al. (2012), we find that
the EVP method exhibits stagnation and oscillation of the residual
for the standard parameters presented here above, but is able to
converge to machine accuracy with a 10 times smaller ice strength
Fig. 2. ORCA05 mesh over the Canadian Arctic Archipelago (CAA). The resolution
varies from 15 km in the CAA to about 25 km in the central Arctic.
and Dmin ¼ 2� 10�9 s�1. Our corrections of the EVP method and the
tuning of the numerical parameters do not help in avoiding the
stagnation of the residual. This lack of numerical convergence is
still an open question and is not solved in this paper. Our study
focus on the effect of numerical details on unconverged solutions.

Section 4.1 concerns the choice of the values of the numerical
parameters a and b in order to have a correct approximation of
the solution within a limited number of iterations. The effect of
these parameters on stability and damping is checked by looking
at three diagnostics: the evolution of the maximum increment of
the velocity during the iterative process, the stress states after
300 iterations and the divergence rate field after 300 iterations in
the Canadian Arctic Archipelago (CAA), which is a region where
sea ice deformation is very low and where the EVP method suffers
stability and underdamping problems (e.g., Hunke, 2001). The
maximum increment of the velocity is computed as the largest
difference in velocity components between the current and the
previous iteration. An optimal set of parameters is proposed to
avoid the noisy ice deformation fields in the CAA and to maintain
stress states on the yield curve while avoiding oscillations during
the iterative process.

In Section 4.2, two slightly different regularizations are com-
pared, the new one where the three stress components use the
same a, and the old one that is equivalent to using a

e2 to update
r2 and r12, and a to update r1. For each regularization, the error
is evaluated a posteriori by comparing the solution with the solu-
tion obtained with the same regularization when a very large num-
ber of iterations has been used. The large remaining errors in the
velocity fields with the old regularization correlates with the gen-
eration of linear bands of high deformation.

4.1. Selection of the values of the numerical parameters

Previous studies (e.g., Hunke, 2001) showed noisy divergence
fields in nearly rigid ice regions, where P is large and D is small.
These features arise from numerical instabilities and have also
been detected in Lemieux et al. (2012). To circumvent this issue,
the classical approach involves reducing the subcycling timestep
Dte to improve the stability criterion. However, this reduction of
Dte requires a larger number of iterations, either for consistency
or damping, which may be unaffordable for many applications.
An alternative option that improves stability while preserving
damping is to increase the value of the extra inertial term in the
modified EVP method which corresponds to the b parameter in
our revised method. This idea has never been tested and will be
used in this section to study the effect of numerical parameters
on the quality of unresolved solutions in nearly rigid ice areas.

Here is a brief summary useful for the analysis of our results. a
and b are the only two numerical parameters of the solver. a con-
trols the stress update and b the velocity update. Their combina-
tion controls the stability of the method and the damping of
oscillations during the solving process. Se; Sv and n are three non-
dimensional positive numbers that can be compared from different
configurations. In nearly rigid ice regions, the oscillations are
underdamped as n is much lower than 1, and the damping rate is
inversely proportional to a. The stability criterion is given by Eq.
(41).

Four simulations over a few days are performed to analyse the
effects of a and b (Table 2). All simulations have the same number
of iterations, nevp ¼ 300, which is affordable for most applications.
Only results for the first timestep are shown, but the analysis re-
mains valid for the other timesteps. Each experiment has the same
forcing and initial conditions.

To compute the diagnostics presented in Table 2, we had to
evaluate the value of the non-dimensional number c, which is a
function of Dt;D and the strength-to-mass ratio of the ice. To do



Table 2
Values of the two non-dimensional numerical parameters a and b and the non-
dimensional number Se for the four set of parameters used in the present study.

Name a b Se

Exp1 40 3000 0.87
Exp2 98 122 0.27
Exp3 126 947 0.86
Exp4 40 300 0.27

0 50 100 150 200 250 300
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01
(a) Exp1
(b) Exp2
(c) Exp3
(d) Exp4

Fig. 4. Evolution of the maximum increment of the velocity [m s�1] during the first
300 iterations of the first timestep. Exp1 corresponds to the dashed blue curve,
Exp2 to the red curve, Exp3 to the dashed red curve and Exp4 to the blue curve.
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so, D is evaluated a posteriori from the simulated ice velocity field
(Fig. 3 shows the logarithm of D after 300 iterations for Exp1). The
minimum value of D in a cell that is not at the coast or at the ice
edge is around 2� 10�9 s�1. It is a better estimate than Dmin, which
is in our case very small and never reached (10�20s�1). This value
leads to evaluate c ¼ 36� 1012 which is used to estimate Se; Sv

and n for the different set of parameters. Therefore, these diagnos-
tics characterize the behaviour of the method in nearly rigid ice re-
gions, where the oscillations are underdamped (n2 < 1). In regions
with larger deformation rates, stability and damping conditions are
relaxed since Se and n increase with

ffiffiffiffi
D
p

.
Three quantities are used to compare the four simulations. The

first one is the maximum velocity update whose evolution during
the iterative process indicates stability problems as shown in Fig. 4.
The second quantity is the normalized stress state at iteration 300
which should be on the elliptical yield curve (Fig. 5). Note that this
indicator is not completely appropriate as the stress states can be
on the elliptic yield curve but not at the correct location, which
is the unique point on the curve where the normal flow rule is re-
spected. The third variable of interest is the divergence rate in the
CAA (Fig. 6), given at iteration 300. This field is noisy when the sol-
ver encounters stability or underdamping problems.

Exp1 respects the stability criterion given by (41) if
D > 1:5� 10�9 s�1 and has the highest damping rate of the four
experiments (Table 2). The maximum increment of the velocity
monotonically decreases and most of the stress states are on the
expected yield curve (Fig. 4 and 5). The noise in the ice divergence
rate is low (Fig. 6) and only visible in Fig. 3 where the logarithm of
D is shown.

Exp2 leads to the poorest performances. The stability criterion
is only valid where D > 1:5� 10�8 s�1 and the damping rate is
Fig. 3. Logarithm of D after 300 iterations for the first timestep with parameters
given by Exp1. Noise in the ice deformation field is visible in narrow passages and
nearly rigid ice regions but with low magnitude, around 10�9 s�1.
low. Large and rapid oscillations are noticed in the evolution of
the maximum increment of the velocity (red line in Fig. 4), corre-
sponding to instabilities generated by this set of parameters. The
stress states are still not on the expected ellipse after 300 iterations
but are on a smaller ellipse (Fig. 5) and noise in ice deformation is
observed as in Hunke (2001) (Fig. 6).

Exp3 has the same stability criterion as Exp1 but the damping
rate is lower due to the higher value of a. At first, the velocity up-
date is higher than for Exp1 (red dashed line in Fig. 4), but it de-
creases more rapidly and starts to slightly oscillate in the last 20
iterations. The distance of the stress state to the ellipse is still large
after 300 iterations (Fig. 5). Noise in ice deformation is observed in
the CAA but to a lesser extent and with a smaller magnitude than
in Exp2 and Exp4 (Fig. 6).

In Exp4, the damping property is restored to the detriment of
the stability criteria Se, which drops down to the same value as
in Exp2. Exp4 has stress states near the ellipse thanks to the smal-
ler value of a (Fig. 5) but experiences an oscillatory behaviour sim-
ilar to that seen in Exp2 (blue line in Fig. 4). Deformation fields
remain noisy in the CAA (Fig. 6).

To summarize, Exp2 and Exp4 do not respect the stability cri-
terion where D is low and exhibit large oscillations in the max-
imum increment of the velocity and stagnation of its value
around 0:1 cm s�1. Exp1 and Exp3 respect the stability criterion
where D > 1:5� 10�9 s�1, but Exp3 exhibits weak oscillations in
the maximum increment of the velocity and little noise in ice
deformation in the CAA, which are associated with stress states
far from the ellipse and caused by the large value of a. In con-
clusion, the noise in the CAA can have two origins: either insuf-
ficient damping of the oscillations or instabilities of the method.
Both problems are addressed in Exp1 which has a well-repro-
duced yield curve and limited noise in the ice deformation field
in nearly rigid ice regions.

Because of the poor convergence and stability of the EVP
method, the solutions obtained after a limited number of itera-
tions are strongly influenced by the numerical parameters and
may exhibit noise in the deformation fields and poorly resolved
stress states. Our analysis presents a new way to reduce instabil-
ities and oscillations. By playing with the value of b one can pre-
clude a noisy ice deformation field while maintaining stress
states near the ellipse without any additional computational
cost. In the following section, another impact of numerical de-
tails is explored.



(a) (b)

(c) (d)

Fig. 5. Internal ice stress normalized by the ice strength P for the entire domain (except the cells near the coast) after 300 iterations for the first timestep of experiments Exp1
(a), Exp2 (b), Exp3 (c) and Exp4 (d). The red curve is the reference ellipse. The black curve in the panel (b) and (c) corresponds to the reference ellipse scaled by 0.95 and 0.91,
respectively.

-0.02 0.02

Divergence
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(c) (d)

Fig. 6. Sea ice divergence rate within the Canadian Arctic Archipelago after 300 iterations for the first timestep of experiments Exp1 (a), Exp2 (b), Exp3 (c) and Exp4 (d).
0:02 day�1 is approximately equal to 2� 10�7 s�1.

S. Bouillon et al. / Ocean Modelling 71 (2013) 2–12 9
4.2. Comparison of the old and new regularizations

To mimic the original regularization of EVP used in previous
studies (Hunke, 2001; Hunke and Dukowicz, 2002; Bouillon
et al., 2009; Lemieux et al., 2012), the value of a is divided by e2

for updating r2 and r12. This small difference between the two reg-
ularization does not change the equations for which the solver is
called but has a large impact on the quality of the solution. The
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effect of using the old regularization is clearly visible when looking
at the stress state after 300 iterations obtained with the set of
parameters having the poorest performances (Exp2). The solution
obtained with the old regularization (see Fig. 7) does not have
the expected aspect ratio, indicating faster convergence in the
shear stress direction than in the compressive stress direction.
The stress states obtained with the new regularization shown on
Fig. 7. Internal ice stress normalized by the ice strength P for all the domain (except
the cells near the coast) after 300 iterations for the first timestep of the same
experiment as Exp2 but with the old regularization instead of the new one. The red
curve is the reference ellipse which has an aspect ratio equal to e. The black ellipse
is contracted in the compressive dimension by a factor 0.95.

(a)

(C)

Fig. 8. Sea ice divergence rate (top) and shear rate (bottom) after 30000 iterations for the
on the left and with the new one on the right. The values of the numerical parameters ar
grid in both directions and are one cell wide. 0:02day�1 is approximately equal to 2� 1
Fig. 5(b) are not on the expected yield curve either but are located
on an ellipse having the correct aspect ratio thanks to the identical
treatment of the stress components. With more iterations, both
solutions have stress states on the correct yield curve but still lead
to different deformation and velocity fields.

Results with the two regularizations are now compared with
the same parameters, initial conditions and external forcing as in
Exp1. The analysis presented here has been verified for all sets of
parameters, with no noticeable change. The two regularizations
are compared in terms of simulated deformation fields and
remaining errors in the velocity fields.

Fig. 8 displays the ice divergence and shear rates obtained after
30000 iterations with the two versions of the solver. The maximum
velocity update at iteration 30000 is about 0:4� 10�5 ms�1 with
the two versions. The old regularization produces linear bands of
high ice deformation which are not present with the new regular-
ization. High positive values for the divergence are observed in
those bands which are aligned with the grid in both directions
and are one cell wide. In the rest of the domain, deformation and
velocity fields are similar between the two versions of the code.
(b)

(d)

first timestep with two stress regularizations. Results with the old regularization are
e the same as in Exp1. The linear bands of high ice deformation are aligned with the
0�7 s�1.
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With both versions, no noise is observed in the ice deformation
fields in the CAA, and the stress states are well located on the el-
lipse (not shown).

The error at iteration 300 (or 3000) is measured by computing
the differences in velocity between the approximate solutions at
iteration 300 (or 3000) and 30000. The error after 300 iterations
is of the same order of magnitude for both versions (Fig. 9). The
maximum error in the velocity components is 0:13 cm s�1 for the
old regularization and 0:08 cm s�1 for the new one. After 3000 iter-
ations, the maximum error is reduced by a factor of 2 for the old
regularization and by 40 for the new one (0:06 and 0:002cm s�1,
respectively) (Fig. 9). In both cases, the average error decreases,
but locally, the error remains significant in large parts of the do-
main when the old regularization is used. The linear bands of high
ice deformation are correlated with large up-and-down variations
in the profile of the velocity field in both directions (up to
0:06 cm s�1) (not shown). Such structures in the velocity field are
not observed with the new regularization except in narrow pas-
sages (e.g., Nares Strait), but with a much lower magnitude of
0:0005 cm s�1.
(a) (

(c) (

Fig. 9. Norm of the ice velocity difference between the solutions after 300 and 30000 iter
the first timestep with the two versions of the method. Results from the old regularizat
parameters are the same as in Exp1. For the old regularization, the maximum value o
0:06 cm s�1 at iteration 30000. For the new one, it is reduced by a factor of 40 going fro
Our explanation of the problematic behaviour of the old regu-
larization is that the different treatment of the stress components
excites oscillations and causes the production of high deformation
bands aligned with the grid.

Other studies present deformation fields with parallel bands of
high deformation aligned with the numerical grid. These stripes in
the divergence and shear fields are similar to the patterns pro-
duced by our simulation with the old regularization (see Fig. 8
(a) and (c)). Lemieux et al. (2012) compared solutions given by
the classical EVP method to a fully converged solution obtained
with a Picard scheme and a tight non-linear convergence criterion.
The EVP solver after about 2000 iterations captures the general
pattern of ice deformation but produces additional high deforma-
tion features. Some of these features are aligned with the grid
and are organized into stripes (see the divergence rate field on
their Fig. 8f). The deformation fields obtained by Maslowski and
Lipscomb (2003) with EVP at a 9 km resolution also exhibit high
deformation stripes.

The similarities between these studies and the simulation with
the old regularization presented here may help in clarifying the
origin of some of the linear bands of high ice deformation. We
b)

d)

ations (top) and between the solutions after 3000 and 30000 iterations (bottom) for
ion are on the left and from the new one on the right. The values of the numerical
f the error is reduced by a factor of 2 going from 0:13 cm s�1 at iteration 300 to
m 0:08 cm s�1 at iteration 300 to 0:002cm s�1 at iteration 30000.
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suggest that the cause of the generation of these high deformation
stripes can be the poor numerical behaviour of the methods used
to solve the non-linear VP problem. Their appearance is character-
ized by large remaining errors in the velocity field and the align-
ment with the grid is further evidence of poor numerical
behaviour.

5. Conclusions

In this paper, we reinterpret the EVP model as an iterative sol-
ver. This allows us to define a clear distinction between the numer-
ical and physical parameters and to remove the constraint on the
number of iterations. Similarly to previous studies, we find that
the EVP method has poor numerical convergence. In consequence
numerical details may have significant impact on the approximate
solution.

The new numerical parameters gives clear criteria to control the
stability of the method and the damping of oscillations during the
iterative process. We also propose a set of parameters that avoid
the noisy deformation fields in nearly rigid ice regions as in the
Canadian Arctic Archipelago (CAA).

By analysing the stress states during the iterative process, we
find that the relaxation of the compressive stress component is
lower than the relaxation of the shear stress components, with
the classical EVP formulation proposed by Hunke and Dukowicz
(1997). We propose a new regularization of the internal stress to
correct this discrepancy. Comparison between the old and new
regularizations illustrates the strong impact of numerical details
on solutions obtained with the EVP method even after a large num-
ber of iterations. The old regularization produces linear bands of
high deformation aligned with the grid that may be confounded
with real linear kinematic features but are in fact the results of a
numerical artefact. Their appearance correlates with the persis-
tence of significant errors in the velocity field in large parts of
the domain even after many iterations. All the implementations
based on this regularization may exhibit the same behaviour.

In previous studies, similar features were obtained numerically
(Wang and Wang, 2009; Maslowski and Lipscomb, 2003) and com-
pared to linear kinematic features observed by Kwok (2006). Our
analysis indicates that in some cases such features could arise from
numerical artefacts and correlate with large remaining errors in
the velocity field.
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Lemieux, J.-F., Tremblay, B., Sedláček, J., Tupper, P., Thomas, S., Huard, D., Auclair, J.-
P., 2010. Improving the numerical convergence of viscous–plastic sea ice
models with the Jacobian-free Newton–Krylov method. Journal of
Computational Physics 229, 2840–2852.

Losch, M., Danilov, S., 2012. On solving the momentum equations of dynamic sea ice
models with implicit solvers and the elastic–viscous–plastic technique. Ocean
Modelling 41, 42–52.

Losch, M., Menemenlis, D., Campin, J.-M., Heimbach, P., Hill, C., 2010. On the
formulation of sea-ice models. Part 1: Effects of different solver
implementations and parameterizations. Ocean Modelling 33 (1–2), 129–144.

Madec, G., May 2008. NEMO Ocean engine. Pôle de modélisation de l’Institut Pierre-
Simon Laplace.

Madec, G., Delecluse, P., Imbard, M., Lévy, C., 1998. OPA 8.1 Ocean general
circulation model reference manual. Note du Pôle de modélisation, Tech. Rep.
XX, Institut Pierre Simon Laplace (IPSL) pp. 91.

Martin, T., Gerdes, R., 2007. Sea ice drift variability in arctic ocean model
intercomparison project models and observations. Journal of Geophysical
Research 112.

Maslowski, W., Lipscomb, W., 2003. High resolution simulations of arctic sea ice,
1979–1993. Polar Research 22 (1), 67–74.

Schreyer, H.L., Sulsky, D.L., Munday, L.B., Coon, M.D., Kwok, R., 2006. Elastic-
decohesive constitutive model for sea ice. Journal of Geophysical Research 111,
C11S26.

Wang, K., Wang, C., 2009. Modeling linear kinematic features in pack ice. Journal of
Geophysical Research 114 (C12), C12011.

Wilchinsky, A.V., Feltham, D.L., 2004. A continuum anisotropic model of sea-ice
dynamics. Royal Society 460, 2105–2140.

Zhang, J., Hibler, W.D., 1997. On an efficient numerical method for modelling sea ice
dynamics. Journal of Geophysical Research 102, 8691–8702.

Zhang, J., Rothrock, D., 2000. Modeling arctic sea ice with an efficient plastic
solution. Journal of Geophysical Research 105 (C2), 3325–3338.

Zhang, J., Rothrock, D.A., 2005. Effect of sea ice rheology in numerical investigations
of climate. Journal of Geophysical Research 110, C08014.

http://is.enes.org
http://www.myocean.eu
http://refhub.elsevier.com/S1463-5003(13)00098-X/h0005
http://refhub.elsevier.com/S1463-5003(13)00098-X/h0005
http://refhub.elsevier.com/S1463-5003(13)00098-X/h0005
http://refhub.elsevier.com/S1463-5003(13)00098-X/h0010
http://refhub.elsevier.com/S1463-5003(13)00098-X/h0010
http://refhub.elsevier.com/S1463-5003(13)00098-X/h0010
http://refhub.elsevier.com/S1463-5003(13)00098-X/h0015
http://refhub.elsevier.com/S1463-5003(13)00098-X/h0015
http://refhub.elsevier.com/S1463-5003(13)00098-X/h0015
http://refhub.elsevier.com/S1463-5003(13)00098-X/h0020
http://refhub.elsevier.com/S1463-5003(13)00098-X/h0020
http://refhub.elsevier.com/S1463-5003(13)00098-X/h0020
http://refhub.elsevier.com/S1463-5003(13)00098-X/h0025
http://refhub.elsevier.com/S1463-5003(13)00098-X/h0025
http://refhub.elsevier.com/S1463-5003(13)00098-X/h0025
http://refhub.elsevier.com/S1463-5003(13)00098-X/h0030
http://refhub.elsevier.com/S1463-5003(13)00098-X/h0030
http://refhub.elsevier.com/S1463-5003(13)00098-X/h0030
http://refhub.elsevier.com/S1463-5003(13)00098-X/h0035
http://refhub.elsevier.com/S1463-5003(13)00098-X/h0035
http://refhub.elsevier.com/S1463-5003(13)00098-X/h0035
http://refhub.elsevier.com/S1463-5003(13)00098-X/h0040
http://refhub.elsevier.com/S1463-5003(13)00098-X/h0040
http://refhub.elsevier.com/S1463-5003(13)00098-X/h0040
http://refhub.elsevier.com/S1463-5003(13)00098-X/h0045
http://refhub.elsevier.com/S1463-5003(13)00098-X/h0045
http://refhub.elsevier.com/S1463-5003(13)00098-X/h0050
http://refhub.elsevier.com/S1463-5003(13)00098-X/h0050
http://refhub.elsevier.com/S1463-5003(13)00098-X/h0055
http://refhub.elsevier.com/S1463-5003(13)00098-X/h0055
http://refhub.elsevier.com/S1463-5003(13)00098-X/h0060
http://refhub.elsevier.com/S1463-5003(13)00098-X/h0060
http://refhub.elsevier.com/S1463-5003(13)00098-X/h0060
http://refhub.elsevier.com/S1463-5003(13)00098-X/h0065
http://refhub.elsevier.com/S1463-5003(13)00098-X/h0065
http://refhub.elsevier.com/S1463-5003(13)00098-X/h0070
http://refhub.elsevier.com/S1463-5003(13)00098-X/h0070
http://refhub.elsevier.com/S1463-5003(13)00098-X/h0075
http://refhub.elsevier.com/S1463-5003(13)00098-X/h0075
http://refhub.elsevier.com/S1463-5003(13)00098-X/h0075
http://refhub.elsevier.com/S1463-5003(13)00098-X/h0080
http://refhub.elsevier.com/S1463-5003(13)00098-X/h0080
http://refhub.elsevier.com/S1463-5003(13)00098-X/h0080
http://refhub.elsevier.com/S1463-5003(13)00098-X/h0085
http://refhub.elsevier.com/S1463-5003(13)00098-X/h0085
http://refhub.elsevier.com/S1463-5003(13)00098-X/h0085
http://refhub.elsevier.com/S1463-5003(13)00098-X/h0085
http://refhub.elsevier.com/S1463-5003(13)00098-X/h0085
http://refhub.elsevier.com/S1463-5003(13)00098-X/h0090
http://refhub.elsevier.com/S1463-5003(13)00098-X/h0090
http://refhub.elsevier.com/S1463-5003(13)00098-X/h0095
http://refhub.elsevier.com/S1463-5003(13)00098-X/h0095
http://refhub.elsevier.com/S1463-5003(13)00098-X/h0095
http://refhub.elsevier.com/S1463-5003(13)00098-X/h0095
http://refhub.elsevier.com/S1463-5003(13)00098-X/h0100
http://refhub.elsevier.com/S1463-5003(13)00098-X/h0100
http://refhub.elsevier.com/S1463-5003(13)00098-X/h0100
http://refhub.elsevier.com/S1463-5003(13)00098-X/h0105
http://refhub.elsevier.com/S1463-5003(13)00098-X/h0105
http://refhub.elsevier.com/S1463-5003(13)00098-X/h0105
http://refhub.elsevier.com/S1463-5003(13)00098-X/h0110
http://refhub.elsevier.com/S1463-5003(13)00098-X/h0110
http://refhub.elsevier.com/S1463-5003(13)00098-X/h0110
http://refhub.elsevier.com/S1463-5003(13)00098-X/h0115
http://refhub.elsevier.com/S1463-5003(13)00098-X/h0115
http://refhub.elsevier.com/S1463-5003(13)00098-X/h0120
http://refhub.elsevier.com/S1463-5003(13)00098-X/h0120
http://refhub.elsevier.com/S1463-5003(13)00098-X/h0120
http://refhub.elsevier.com/S1463-5003(13)00098-X/h0125
http://refhub.elsevier.com/S1463-5003(13)00098-X/h0125
http://refhub.elsevier.com/S1463-5003(13)00098-X/h0130
http://refhub.elsevier.com/S1463-5003(13)00098-X/h0130
http://refhub.elsevier.com/S1463-5003(13)00098-X/h0135
http://refhub.elsevier.com/S1463-5003(13)00098-X/h0135
http://refhub.elsevier.com/S1463-5003(13)00098-X/h0140
http://refhub.elsevier.com/S1463-5003(13)00098-X/h0140
http://refhub.elsevier.com/S1463-5003(13)00098-X/h0145
http://refhub.elsevier.com/S1463-5003(13)00098-X/h0145

	The elastic–viscous–plastic method revisited
	1 Introduction
	2 Model description
	3 The revised elastic–viscous–plastic method
	3.1 The spatial discretization
	3.2 The temporal discretization
	3.3 Reinterpretation of EVP
	3.4 Convergence and stability of the method
	3.5 Summary and details of implementation

	4 Results and discussion
	4.1 Selection of the values of the numerical parameters
	4.2 Comparison of the old and new regularizations

	5 Conclusions
	Acknowledgements
	References


