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Abstract 

 

We characterise the sources, pathways and export fluxes of particulate organic carbon 

(POC) in a headwater catchment in the Swiss Alps, where suspended sediment has a 

mean organic carbon concentration of 1.45% ± 0.06 .  By chemically fingerprinting 

this carbon and its potential sources using carbon and nitrogen elemental and isotopic 

compositions, we show that it derives from binary mixing between bedrock and 

modern biomass with a soil-like composition.  The hillslope and channel are strongly 

coupled, allowing runoff to deliver recent organic carbon directly to the stream 

beyond a moderate discharge threshold.  At higher flows, more biomass is mobilized 

and the fraction of modern carbon in the suspended load reaches 0.70, increased from 

0.30 during background conditions.  Significant amounts of non-fossil organic carbon 

are thus transferred from the hillslope without the need for extreme events such as 

landsliding.  Precipitation is key: as soon as the rain stops, biomass supply ceases and 

fossil carbon again dominates.  We use rating curves modeled using samples from 

five storm events integrated over 29-year discharge records to calculate long-term 

export fluxes of total POC and non-fossil POC from the catchment of 23.3 ± 5.8 and 

14.0 ± 4.4 tonnes km-2 yr-1 respectively.  These yields are comparable to those from 

active mountain belts, yet the processes responsible are much more widely applicable.  

Such settings have the potential to play a significant role in the global drawdown of 

carbon dioxide via riverine biomass erosion, and their contribution to the global flux 

of POC to the ocean may be more important than previously thought. 
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1. Introduction1 1 

 2 

Export and deep marine burial of carbon from plants and soils, recently fixed from the 3 

atmosphere by photosynthesis, transfers carbon from the atmosphere into geological 4 

storage (e.g. Berner, 1982; France-Lanord and Derry, 1997).  Previous work on 5 

carbon export from catchments has focused on active mountain belts because of their 6 

importance in the physical erosion budget (Milliman and Syvitski, 1992).  For 7 

example, recent studies (Carey et al., 2005; Hilton et al., 2008a, 2008b; Lyons et al., 8 

2002) suggest that storm-driven erosion of terrestrial biomass can effectively 9 

sequester carbon in tectonically and climatically extreme regimes, such as the active 10 

mountain belts of Taiwan and New Zealand.  Deep-seated landslides and gully 11 

erosion are important in mobilising particulate organic carbon (POC) in extreme 12 

events in these environments (Hilton et al., 2008a; West et al., 2011).  This POC 13 

consists of both modern POC from biomass and fossil POC from sedimentary 14 

bedrock.  However, there are also indications that erosion processes associated with 15 

less intense runoff, driven directly by precipitation, may also be important, 16 

particularly in shifting the balance of POC carried in the suspended load towards non-17 

fossil sources (Gomez et al., 2010; Hilton et al., 2012a, 2008b).  While deep 18 

landslides and gully erosion mobilize bedrock as well as POC, runoff erosion via 19 

                                                 
1 Abbreviations used throughout the article: 
POC: particulate organic carbon 
tPOC: total particulate organic carbon 
fPOC: fossil particulate organic carbon 
nfPOC: non-fossil particulate organic carbon 
Corg: organic carbon concentration 
SS: suspended sediment 
SSC: suspended sediment concentration 
TSL: total suspended load 
Fnf: modeled fraction of non-fossil organic carbon 
Fmod: fraction of non-fossil organic carbon obtained from radiocarbon measurements 
Qe: effective discharge 
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overland flow removes only the surface layer of soil (Horton, 1945).  If such 20 

processes are significant, the harvest of non-fossil POC stored in plants and soils 21 

could happen anywhere that there is enough rain on vegetated hillslopes to generate 22 

overland flow or shallow landslides. 23 

 24 

Evidence for terrestrial POC export in temperate settings unaffected by rapid uplift 25 

and tropical storms exists in marine sediments (Gordon and Goñi, 2003; Prahl et al., 26 

1994) and in inputs to the ocean (Hatten et al., 2012), but there is still insufficient 27 

understanding of the processes which mobilize POC in the headwater source areas of 28 

these deposits.  Here, we investigate POC sources and initial pathways under 29 

changing hydrologic conditions in a temperate, partly forested headwater catchment in 30 

the Swiss Prealps, where the runoff effect is not normally masked by deep-seated 31 

landsliding.  We find strong evidence for runoff-driven transfer of significant amounts 32 

of modern soil-derived biomass during moderate hydrologic conditions, with the 33 

proportion of modern carbon in the suspended load increasing with discharge. 34 

 35 

2. Study Site 36 

 37 

The Erlenbach is a first order tributary of the Alp River, located 40 km south of 38 

Zurich near the town of Einsiedeln.  It has a small catchment area (0.74 km3), 39 

elevation 1110 to 1655 m above sea level and average slope of 20% (Hagedorn et al., 40 

2000).  The mean annual air temperature is 6 °C and mean annual precipitation is 41 

2300 mm (Hagedorn et al., 2001), 800 mm of this falling as snow in winter (Schleppi 42 

et al., 2005).  The largest precipitation events occur as convective rainfall during the 43 

summer.  In common with other small mountain river systems (Wheatcroft et al., 44 
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2010), discharge rises quickly during storms and is highly episodic in response to 45 

rainfall (Schleppi et al., 2006). 46 

 47 

The catchment is developed on pelitic turbidites of the Eocene Wägital-Flysch 48 

Formation (Winkler et al., 1985).  Recent glacial till overlies these rocks, particularly 49 

at lower elevations with a cover of up to several metres thick on the lower left bank.  50 

Both bedrock and drift are fine-grained, clay-rich and impermeable, resulting in 51 

water-saturated gleysols.  Creep landslides are common, particularly in the lower 52 

reaches where steep channel sides cut into active complexes developed mainly in the 53 

till.  These incrementally deliver substantial amounts of sediment to the stream 54 

channel during winter, which is removed by summer storms (Schuerch et al., 2006).  55 

The Erlenbach lacks a well-developed riparian zone and has a step-pool morphology 56 

with both logs and boulders forming the steps (Turowski et al., 2009).  The catchment 57 

is 40% forest and 60% wetland and alpine meadow (Turowski et al., 2009).  The main 58 

tree species are Norway Spruce (Picea abies) and European Silver Fir (Abies alba), 59 

with some green Alder (Alnus viridis) (Schleppi et al., 1999). 60 

 61 

The Erlenbach is an experimental catchment of the Swiss Federal Institute for Forest, 62 

Snow and Landscape Research (WSL) (Hegg et al., 2006).  Over the time period 63 

1983-2011 inclusive, discharge (Q) recorded at 10-minute intervals ranged from 0 to 64 

11946 l s-1 with an average (Qmean) of 38.6 l s-1.  In this study, we report discharges 65 

relative to this value (as Q/Qmean), as well as absolute values, to allow comparison to 66 

other catchments.  Over the monitoring period, flow was less than or equal to Qmean 67 

for 77% of the time, with such discharges accounting for about 1% of suspended 68 

sediment transport.  Less than 1% of discharges were above the threshold at which 69 
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substantial bedload transport starts, which corresponds to Q/Qmean ~13 (Turowski et 70 

al., 2011).  The catchment is also a site for the NITREX project (NITRogen saturation 71 

EXperiments) (Wright and Rasmussen, 1998), and has three <1 ha sub-plots equipped 72 

with V-notch weirs in forest, forest with experimental nitrogen addition, and meadow 73 

(Schleppi et al., 1998). 74 

 75 

3. Methods 76 

 77 

POC in riverine suspended sediment is a mixture of carbon from two or more end 78 

member sources (Blair et al., 2003; Hilton et al., 2008a, 2008b; Komada et al., 2004; 79 

Leithold et al., 2006).  It is particularly important to distinguish between carbon from 80 

fossil and non-fossil sources, because re-burial of fossil carbon has no effect on 81 

contemporary CO2 drawdown, while burial of non-fossil carbon bypasses the usual 82 

rapid oxidation pathway and sequesters carbon (Berner, 1982).  Mixing relationships 83 

can be primarily elucidated in N/C-δ13C and C/N-δ15N space (e.g. Hilton et al., 2010), 84 

while 14C provides an additional constraint on the input of fossil carbon (e.g. Blair et 85 

al., 2003; Hilton et al., 2008b; Komada et al., 2005).   86 

 87 

3.1 Sample Collection 88 

 89 

Instantaneous suspended sediment samples were collected direct from the stream at 90 

the upper gauging station in 100 ml plastic bottles, every few minutes during five 91 

storm events in July 2010.  The largest of these (12 July) had a return period of about 92 

one year and a peak discharge of 2290 l s-1, corresponding to a Q/Qmean of ~59.  The 93 

remaining four events took place within 10 days and covered a range of peak 94 
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discharges from 300 to 1580 l s-1 [Table 1].  With the exception of the 12 July event, 95 

the storms were characterised by intermittent rain.  The hydrographs for three of the 96 

events are shown in Figure 1.  After collection, each turbid sample was passed 97 

through a 0.2 μm nylon filter within two weeks (mostly within three days), following 98 

interim storage at 5 °C.  The filters with sediment were stored in glass petri dishes at -99 

18 °C before lyophilization. 100 

 101 

110 samples from potential sources for the riverine suspended sediment, including 102 

bedrock, surface soil, deeper soil profiles, foliage, wood, bedload and material from 103 

landslides and banks adjoining the channel, were collected between October 2009 and 104 

August 2010.  All samples were stored in sealed plastic bags and oven-dried in 105 

covered foil dishes at <80 °C as soon as possible (1-12 days) after collection. 106 

 107 

Surface soil and foliage were collected in transects across the catchment at a range of 108 

elevations, covering all major geomorphologic and ecologic conditions.  At each 109 

locality, samples as representative as possible of the immediate surroundings were 110 

taken.  Surface soil (a combination of O and A layers) was collected from the top ~10 111 

cm with a clean trowel, after removal of overlying vegetation.  Although the timing of 112 

collection could potentially affect the isotopic composition of soil samples because 113 

more decomposed litter could be enriched in 13C and 15N (e.g. Dijkstra et al., 2008), 114 

the collection method and subsequent processing result in samples homogenised over 115 

a long enough period to negate any seasonal differences.  Foliage included multiple 116 

samples, comprising needles, leaves and twigs from all sides, of the three main tree 117 

types and representative understory.  Samples of woody debris embedded in 118 

landslides and the channel bed were also collected across the catchment.  Throughout 119 
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this study, ‘foliage’ and ‘wood’ are used as convenient terms for different types of 120 

standing biomass, and include all associated microbial organisms. 121 

 122 

Two vertical profiles were taken through landslides (down to 80 cm and 170 cm), and 123 

two through stable hillslopes (to 60 cm and 160 cm); these were sampled at 10-60 cm 124 

intervals.  In reporting the results, the uppermost soil samples from each stable 125 

hillslope profile are treated as ‘surface soils’ and are excluded from the profile group 126 

(‘deep soils’).  Soil is generally poorly developed on top of the landslides and so no 127 

such distinction is made.  22 bedrock samples were obtained across the catchment 128 

(from both hillslopes and stream bed).  Bedload was collected along the full length of 129 

the main channel.   130 

 131 

Discharge-proportional compound samples of suspended sediment were collected 132 

from the forest control and meadow sub-plots weekly (when there was enough runoff) 133 

between August 2009 and August 2011.  A representative subset of each of these was 134 

analyzed to obtain an estimate of the hillslope input signal. 135 

 136 

3.2 Sample Preparation 137 

 138 

For source sediments, only the suspendable fraction (<2 mm), isolated through wet- 139 

and dry-sieving, was subjected to further analysis.  Suspended sediment occasionally 140 

contained material >2 mm; these particles, mainly large organic material such as 141 

spruce or fir needles, were excluded from chemical analysis, though their weight was 142 

recorded and used in calculations of suspended sediment concentrations.  Bedrock and 143 

vegetation samples were analyzed in bulk. 144 
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 145 

All samples were homogenized using either a ball mill grinder, a pestle and mortar 146 

(for small samples) or a blade mill grinder (for vegetation).  Bedrock samples were 147 

first crushed using a jaw crusher to fragments <5 mm.  Pulverized samples and blanks 148 

were heated to 80 °C with dilute (1M) hydrochloric acid for three hours to remove 149 

carbonate, rinsed with de-ionized water and dried thoroughly (France-Lanord and 150 

Derry, 1994; Galy et al., 2007a; Hilton et al., 2008a).  Between 5 and 30% of each 151 

sample was lost through the carbonate removal process, with no apparent disparity 152 

between different types of material.  Most of this loss corresponds to carbonate 153 

dissolution plus loss of particles on the vessels used in treatment (Galy et al., 2007a; 154 

Hilton et al., 2008a; Brodie et al., 2011).  This process unavoidably causes loss of a 155 

labile fraction of organic C, and the results reported here relate to the non-labile 156 

fraction only.  However, it is this more recalcitrant fraction that is most likely to be 157 

ultimately buried in the ocean, and therefore of interest in this study.  This procedure 158 

was carried out on all samples (including vegetation), so that any isotopic 159 

fractionation effects of the de-carbonation process (Brodie et al., 2011) are universally 160 

applied and the results are internally consistent. 161 

 162 

3.3 Analysis 163 

 164 

Processed, powdered samples were combusted, and the resultant N2 and CO2 165 

concentrations (reported in weight %) and carbon and nitrogen isotopic compositions 166 

(δ13C and δ15N, reported in ‰) were obtained using a flash Elemental Analyser 167 

coupled to a continuous flow Nier-type mass spectrometer via a gas bench for gas 168 

separation.  All measurements were corrected for procedural blanks following 169 
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published methods (Hilton et al., 2010; 2012b).  Multiple aliquots of varying material 170 

were analyzed; the average relative difference was <<0.001% for C and N, and 171 

average standard deviation was 0.05‰ for δ13C and 0.3‰ for δ15N.  To test for long-172 

term machine drift, 10 samples were analyzed a second time one year after the first 173 

analysis.  This set of repeats had an average relative difference of 0.06% for C and 174 

0.07% for N, and average standard deviation of 0.05‰ for δ13C and 0.3‰ for δ15N.  175 

 176 

14C measurements on 14 graphitized samples were obtained by accelerator mass 177 

spectrometry at the NERC Radiocarbon Laboratory in East Kilbride, UK.  Reported 178 

results comprise the proportion of 14C atoms in each sample compared to that present 179 

in the year 1950 (Fmod), Δ
14C in ‰, and conventional radiocarbon age.  The standard 180 

IAEA-C5, subjected to the same carbonate-removal procedure as the samples, 181 

returned 14C to within 1σ of the consensus value.  182 

 183 

4. Results 184 

 185 

4.1 Concentration and Composition of Organic Carbon in Source Materials 186 

 187 

Composition data for riverine suspended sediment, hillslope runoff input and major 188 

carbon stores within the catchment are summarised in Table 2 while the radiocarbon 189 

data are shown separately in Table 3. 190 

 191 

Bedrock has organic carbon concentrations (Corg) ranging from 0.16-1.15%, with a 192 

mean of 0.54% ± 0.11 (± 2σmean, n = 22), C/N of 7.81 ± 1.7, δ13C =-25.71‰ ± 0.36 193 

and δ15N =3.34‰ ± 0.26.  Bedload, channel banks and landslide deposits have 194 
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similarly low Corg (all means <1%), and are compositionally very similar to bedrock.  195 

Modern sources, surface soil (n = 17) and foliage (n = 8), have significantly higher 196 

Corg (16.5% ± 6.3 and 46.9% ± 2.0 respectively).  Both pools have high C/N and are 197 

depleted in heavy isotopes of C and N, but do not overlap: surface soil has C/N of 198 

17.9 ± 2.2, δ13C of -26.84‰ ± 0.48 and δ15N of -1.33‰ ± 0.76, while foliage has C/N 199 

of 55.5 ± 17, δ13C of -28.30‰ ± 1.13 and δ15N of -5.87‰ ± 1.67.  The 14C results 200 

from surface soils show that they are essentially modern; the one soil Fmod value of 201 

less than 1 is explained by its close association with a landslide and lack of overhead 202 

forest canopy.  Woody debris (up to 4000 years old) have high Corg (49.1% ± 1.8; n = 203 

12), high C/N (173 ± 98), are depleted in 15N (δ15N =-3.99‰ ± 1.29), and enriched in 204 

13C (δ13C =-25.25‰ ± 0.69), in contrast to modern vegetation. 205 

 206 

Landslide complexes have homogeneous compositions throughout their depth, with 207 

no systematic variations in Corg, C/N, δ13C or δ15N.  In contrast, the soil profiles from 208 

stable slopes show a significant decrease in Corg and C/N (to levels comparable to the 209 

landslides) at ~40-60 cm depth, although there are no clear patterns in isotopic 210 

composition.   The landslide profiles sampled show very little incorporation of non-211 

fossil material, while the soil profiles (even without the uppermost samples) document 212 

a transition from surface-like horizons to a more fossil-like layer at depth. 213 

 214 

4.2 Concentration of Organic Carbon in Riverine Suspended Sediment  215 

 216 

The observed range of Corg in riverine suspended sediment samples was 0.78-2.52%, 217 

with a mean of 1.45% ± 0.06 (±2σmean, n = 122).  Within each event, there appears to 218 

be no consistent pattern in Corg over the hydrograph [Figure 1].  However, when all 219 
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data are considered together, there is a clear parabolic pattern in the variation of Corg 220 

with both Q and suspended sediment concentration (SSC), with negligible difference 221 

in Corg patterns between rising and falling limbs.  The product of Q and SSC combines 222 

both effects in the parameter ‘total suspended load’ (TSL, in g s-1) [Figure 2].  At low 223 

TSL, Corg is initially variable, then decreases with increasing TSL.  Beyond a 224 

threshold of ~500 g s-1 (corresponding to Q/Qmean ~10 and SSC ~1600 mg l-1), Corg 225 

increases:  this trend continues up to at least ~40000 g s-1 (Q/Qmean ~60).  The 226 

threshold is reached under moderate conditions, occurring several times per year, and 227 

in four of the five events sampled.  Because of this change in behaviour, we take 228 

flows of Q/Qmean <10 to represent background conditions, after Gomez et al. (2010). 229 

 230 

4.3 Composition of Organic Carbon in River and Runoff Suspended Sediment 231 

 232 

C/N ranges from 6.9 to 13, with a mean of 9.55 ± 0.24 (±2σmean, n = 122); δ13C ranges 233 

from -27.55 to -24.25‰ with a mean of -26.33‰ ± 0.08; and δ15N ranges from 0.15 234 

to 5.08‰ with a mean of 2.21‰ ± 0.16. There are compositional differences between 235 

samples collected on the rising and falling limbs, and during rain and dry periods 236 

[Table 2], with the former group having higher C/N and lower δ13C and δ15N in each 237 

case.  The mean Fmod for the six suspended sediment samples sent for Δ14C analysis 238 

was 0.65 ± 0.08 (±2σmean, n = 6). In both N/C-δ13C and C/N-δ15N compositional space 239 

where mixing relationships are linear, POC in riverine suspended sediment samples 240 

plots in a broadly linear range bounded approximately by bedrock and soil [Figure 3].  241 

Suspended sediment samples with higher δ15N than the bedrock range may indicate 242 

that the stream is sampling bedrock compositions not exposed at the surface 243 

elsewhere in the catchment. 244 
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 245 

In contrast to most pools, the mean composition of carbon in the hillslope runoff 246 

suspended sediment samples suggests different relationships in the N/C-δ13C and 247 

C/N-δ15N plots. In N/C-δ13C space, forest and meadow runoff samples have the same 248 

composition within error, and lie at the low-N/C, low-δ13C end of the riverine 249 

suspended sediment range.  In C/N-δ15N space, forest and meadow runoff are 250 

compositionally distinct, and both lie outside the compositional range of riverine 251 

suspended sediment [Figure 3].  Both sets of runoff samples have higher Corg values 252 

than riverine suspended sediment, of 9.12% ± 0.9 (±2σmean, n = 38; forest) and 15.9% 253 

± 1.7 (±2σmean,  n= 10; meadow). 254 

 255 

5. Discussion 256 

 257 

Both the compositional distribution and Fmod values of riverine suspended sediment 258 

are consistent with mixing between fossil and non-fossil end members.  Although Corg 259 

in the suspended sediment is always higher than that of bedrock, indicating that there 260 

is some non-fossil input at all times, this input becomes increasingly significant at 261 

higher TSL and Q [Figure 4].  POC from samples collected at low TSL cover the 262 

whole compositional range, but are strongly concentrated towards low C/N and high 263 

δ13C and δ15N (that is, a ‘fossil’ composition).  During larger events, there is a bulk 264 

shift away from the fossil towards the non-fossil end of the mixing line.  265 

 266 

5.1 Nature of the Non-Fossil End Member 267 

 268 
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Because the composition of the POC exported from the catchment plots in the space 269 

between several different carbon pools, careful definition of the end members is 270 

necessary.  Although the ‘fossil’ chemical composition of bedload, landslides and 271 

channel banks suggests that these pools all derive from bedrock, we take bedrock 272 

alone as the unequivocal fossil end member.  Of the non-fossil carbon pools, surface 273 

soil and foliage are closest to but not exactly on the mixing trend defined by bedrock 274 

and the suspended sediment samples. Non-fossil material comes from a range of 275 

sources, so we calculate a hypothetical non-fossil end member using Fmod and δ13C 276 

following the procedure defined by Hilton et al. (2010).  Briefly, the δ13C of the 277 

individual non-fossil end member for each suspended sediment sample with known 278 

Fmod is calculated according to the mixing relationship  279 

δ13Csample = Fmod.δ
13Cnf + (1-Fmod).δ

13Cfos 280 

where δ13Cnf and δ13Cfos are the δ13C values of a hypothetical non-fossil end member 281 

and the average δ13C of bedrock samples respectively.  The mean of the six calculated 282 

values of δ13Cnf is taken.  We then use lines of best fit, calculated using only points 283 

with Q/Qmean >10, to find the corresponding N/C, C/N and δ15N.  Uncertainties of 284 

twice the standard error on the mean of the initial δ13C value are propagated through 285 

this calculation procedure.  The resulting hypothetical end member [Figure 4] has C/N 286 

of 15.8 ± 6.8, δ13C of -27.15‰ ± 0.53 and δ15N of 0.61‰ ± 1.40.  This is much more 287 

similar to surface soil than foliage, suggesting that soil is heavily implicated in the 288 

non-fossil POC input.  It is also similar to the forest hillslope runoff signal in N/C-289 

δ13C space, but the two have distinctly different δ15N values. 290 

 291 

The concentrations of fossil and non-fossil POC in milligrams per litre can be 292 

obtained for each sample, and then used to determine independent relationships with 293 
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discharge, if we know the proportion of organic carbon derived from non-fossil 294 

sources.  Given the simple mixing exhibited by the system, it is possible to model this 295 

parameter for each suspended sediment sample, denoted Fnf to distinguish it from Fmod 296 

measured using 14C, using the mixing equation given above, the δ13C of the sample 297 

and two end members (Hilton et al., 2010).  We used bedrock and the hypothetical 298 

non-fossil end member determined above.  Owing to scatter in the system, calculated 299 

Fnf values for 9% of the samples fell outside the possible range of 0-1.1.  For these, a 300 

value of 0 or 1.1 was substituted as appropriate.  On the samples sent for 14C analysis, 301 

Fnf shows reasonable agreement with Fmod, reproducing it to within 0.24 at the 95% 302 

level. 303 

 304 

5.2 Long-Term Carbon Export Flux:  Fossil and Non-Fossil Components 305 

 306 

It is important to consider not only the export of total carbon, but of fossil carbon and 307 

non-fossil carbon separately, because only non-fossil carbon burial has an effect on 308 

contemporary carbon dioxide drawdown (e.g. Berner, 1982; Blair and Aller, 2012).  309 

Because distinct pools of organic carbon behave differently, shown by the changing 310 

composition of POC at different discharges, their long-term export should be 311 

considered independently (Wheatcroft et al., 2010).  312 

 313 

We used the calculated Fnf values to construct rating curves describing the 314 

relationships between discharge and load of four components: suspended sediment 315 

(SS), total POC (tPOC), fossil POC (fPOC) and non-fossil POC (nfPOC).  These are 316 

all power laws of the form a(Q/Qmean) 
b [Table 4; Figure 5].  Because of the threshold 317 

switch to POC addition at Q/Qmean >10, and the fact that flows above background 318 



 Page 17 of 46 

conditions are disproportionately important in transporting sediment and POC, we 319 

would ideally only use samples at Q/Qmean >10 to fit the rating curves.  However, this 320 

is mathematically unsatisfactory as it restricts the range of Q/Qmean to less than one 321 

order of magnitude and results in large uncertainties on a and b.  We therefore use 322 

relationships determined using the full sample set (three orders of magnitude in 323 

Q/Qmean), but check their geomorphological validity by comparing with those 324 

determined using only samples with Q/Qmean >10, finding in all cases that a and b are 325 

well within error [Table 4]. 326 

 327 

The larger exponent for tPOC (b = 1.33) compared to SS (b = 1.19) means that 328 

relatively more POC is exported at higher discharges than SS, in contrast to the 329 

relationships seen in the Waipaoa River (New Zealand) and Alsea River (Oregon) 330 

(Wheatcroft et al., 2010).  The effect is even more pronounced for nfPOC (b = 1.45) 331 

than for tPOC. The exponent for fPOC (b = 1.08) is within error of that for SS, 332 

reflecting their shared clastic origin.  Differences in the rating curve exponents are 333 

mirrored by those in effective discharge (Qe), the discharge that, on average, 334 

transports the largest proportion of a given constituent load (Andrews, 1980; Nash, 335 

1994; Wheatcroft et al., 2010).  Qe is greatest for nfPOC (corresponding to Q/Qmean of 336 

13.4), and lowest for fPOC (5.6).  Qe for all four components [Table 4] corresponds to 337 

similar flows (relative to Qmean) to many other small mountain rivers (Wheatcroft et 338 

al., 2010).   339 

 340 

Applying these rating relationships to the discharge record for the Erlenbach, we 341 

modeled the export of the four components over the period 1983-2011 inclusive, with 342 

full results shown in [Table 5].  The mean annual yields and export fluxes of each 343 
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component were: 1220 ± 232 t yr-1 and 1648 ± 313 t km-2 yr-1 (SS); 17.3 ± 4.3 t yr-1 344 

and 23.3 ± 5.8 t km-2 yr-1 (tPOC); 7.4 ± 1.2 t yr-1 and 10.1 ± 1.6 t km-2 yr-1 (fPOC); 345 

and 10.4 ± 3.2 t yr-1 and 14.0 ± 4.4 t km-2 yr-1 (nfPOC). These amounts of fossil and 346 

non-fossil carbon exported were used to calculate a mean Fnf value for each year, both 347 

overall and at different discharges [Table 5].  According to the model, 61% of all the 348 

organic carbon exported from the Erlenbach over this 29-year period came from non-349 

fossil sources (mean overall Fnf = 0.61 ± 0.02). 350 

 351 

The yield of fPOC based on rating curve [Table 5] is  within error of the ‘expected’ 352 

mean annual yield of fossil carbon (7.3 ± 1.3 t yr-1), reached by multiplying the 353 

average Corg of the bedrock samples by suspended sediment yield.  This suggests that 354 

there is no significant remineralization of fossil organic carbon during bedrock 355 

erosion and export from these headwaters, in common with findings from the French 356 

Alpes-de-Haute-Provence (Graz et al., 2011), although oxidation may occur during 357 

onward transport and floodplain storage (Bouchez et al., 2010). 358 

 359 

The effect of the different rating curve exponents is illustrated by comparing the 360 

proportional yields of each component at different discharges, with the largest flows 361 

transporting a greater proportion of nfPOC than tPOC, and a greater proportion of 362 

tPOC than SS and fPOC.  We define three discharge class boundaries, corresponding 363 

to Q/Qmean = 1, 10 and 60.  Q/Qmean = 10 is the threshold above which POC is added, 364 

while Q/Qmean = 60 is the approximate limit of discharges we have sampled.  This 365 

limit is only exceeded very rarely (5.4x10-5 of the time), but can be exceeded 366 

substantially: the largest discharge recorded in the 10-minute dataset during the 367 

monitoring period was 11950 l s-1 (Q/Qmean ~309), on 25 July 1984.  Our results show 368 
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that the lowest discharge class (the state of the stream for over three quarters of the 369 

time) is insignificant in terms of both SS and POC export and POC would be 370 

dominated by fossil origin (modeled Fnf =0.30).  Conversely, if the same rating curve 371 

applied above the upper limit, discharges of Q/Qmean >60 would transport considerable 372 

quantities of sediment, POC and particularly nfPOC (10, 12 and 13% of total transport 373 

respectively), despite occurring less than 0.01% of the time. Beyond Q/Qmean = 60, Fnf 374 

would be 0.76 if the same rating relationship applied.  However, because of the lack 375 

of constraints on processes or suspended load at these flows, this assumption is not 376 

conservative; for example, if landslides are activated, there may be an increase in the 377 

proportion of fPOC.  Instead, we assume a constant load of all four components for 378 

Q/Qmean >60, giving Fnf of 0.70 for this discharge range, and conservative estimate for 379 

the total yields.   380 

 381 

5.3 Sources and Pathways of Non-fossil Organic Carbon in the Erlenbach 382 

 383 

In order to draw more general conclusions from the detailed study of nfPOC export in 384 

the Erlenbach, the origins and harvesting mechanism of this nfPOC need to be better 385 

understood.  When there is a small overall load, incidental, local mobilisation 386 

dominates and suspended sediment shows the natural variability of catchment 387 

composition and process [Figures 2 and 4].  Subsequent POC dilution to a minimum 388 

of ~1% [Figure 2] must be due to an increased input of material with low Corg, by a 389 

mechanism that does not require high-energy flows.  This is likely due to higher 390 

discharge causing an increase in bed shear stress, which mobilizes fossil-derived 391 

material already in the channel.  This lithic material (left by previous events, delivered 392 

to the channel by creep landslides, or exposed bedrock) contains small amounts of 393 
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fossil Corg: bedrock, bedload, landslide and channel bank pools all have average Corg 394 

<1%. 395 

 396 

Beyond the 500 g s-1 threshold (at Q/Qmean ~10), material with a higher Corg than 397 

bedrock or any of the groups derived from it must be added to the suspended load.  398 

Addition of fossil organic carbon released from bedrock, either directly or via 399 

landslides and channel banks, cannot explain the compositional trends observed in the 400 

suspended load with increasing discharge [Figures 3 and 4].  Instead, the sourcing 401 

mechanism must mobilize only surface soil, litter and vegetation, in a way that gives 402 

the composition of the non-fossil end member calculated above.  This strongly 403 

suggests that surface runoff processes are responsible, but there is a compositional 404 

discrepancy in δ15N between runoff suspended sediment and the hypothetical end 405 

member.  However, the subplots (where the runoff suspended sediment samples were 406 

collected) are situated towards the edge of the catchment, whereas runoff entering the 407 

stream comes from lower, steeper hillslopes.  Here, the bed stress is higher and runoff 408 

may penetrate deeper via transient gullying (Horton, 1945), allowing overland flow to 409 

pick up more soil and reducing δ15N values to the hypothetical composition. 410 

Considering these processes, hillslope activation driven by surface runoff can account 411 

for the change in composition of river suspended sediment POC above background 412 

flow, and so for the material added in this hydrological phase.  This is supported by 413 

end member mixing analysis using dissolved nutrient tracers in the Erlenbach 414 

catchment which suggests that, at moderate summer storm peak discharges, over half 415 

the runoff in the stream comes directly from precipitation (Hagedorn et al., 2000).  416 

The Q/Qmean = 10 threshold, therefore, appears to reflect a critical shear stress at 417 

which slope material is mobilised. 418 
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 419 

The flood hydrographs [Figure 1] suggest that as soon as discharge has peaked, 420 

hillslopes are deactivated and delivery of non-fossil organic carbon to the stream is 421 

staunched, shown by decrease in C/N and δ13C.  This reflects the differing 422 

compositions of suspended sediment collected during the rising limb of the 423 

hydrograph, when it is usually raining, and falling limb, when it is largely dry.  424 

Similarly, the Fnf value is significantly higher for samples collected during rainfall 425 

(0.54 ± 0.05; ±2σmean, n = 85) and the rising limb (0.51 ± 0.05; n = 72) than dry 426 

periods (0.25 ± 0.06; n = 37) or the falling limb (0.36 ± 0.08; n = 50). 427 

 428 

5.4 Caveats 429 

 430 

So far we have only considered processes operating during moderate to large flows: 431 

having only sampled up to Q/Qmean ~60, we have no insight into the geomorphic 432 

dynamic at very high flow rates.  If extreme precipitation could trigger rapid 433 

landslides, then the system may cross a threshold into a more ‘active margin-like’ 434 

mode of behaviour, where mass wasting during storms causes progressive dilution of 435 

modern organic carbon (Blair and Aller, 2012; Kao and Liu, 1996; Masiello and 436 

Druffel, 2001). 437 

 438 

The calculated Fnf of POC exported from the catchment is systematically biased by 439 

not including bedload, because bedload is closely related to bedrock [Figure 3] and 440 

contains dominantly fossil carbon.  This is particularly true in small catchments with 441 

high sediment load like the Erlenbach, where bedload is relatively more important 442 

than in large mountain rivers (Rickenmann et al., 2012).  We chose to exclude 443 
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bedload in order to enable comparison with other sites, since only suspended load data 444 

are available at most locations.  However, because bedload transport is constrained to 445 

some extent in the Erlenbach, we briefly discuss the implications.  The total sediment 446 

volume accumulated in the retention basin between August 1982 and October 2012 447 

was 17730 m3, including pore space and suspendable fines.  Using a bulk density of 448 

1750 kg m-3 (Rickenmann and McArdell, 2007), and assuming that 75-80% of the 449 

material is larger than 2 mm, this gives ~800 tonnes per year.  Using the bedrock Corg 450 

of 0.54%, this equates to an additional ~4 tonnes of organic carbon per year.  An 451 

alternative estimate, assuming that bedload volume is approximately equal to 452 

suspended load volume in the Erlenbach (Turowski et al., 2010), gives an additional 453 

~7 tonnes of organic carbon per year.  These figures suggest that, if bedload as well as 454 

suspended load is considered, the overall Fnf would decrease from 0.6 [Table 5] to 455 

between 0.4 and 0.5.  A further consideration is the possibility that non-fossil carbon 456 

in the form of coarse woody debris is transported in the bedload, meaning that total 457 

nfPOC export is also underestimated by our analysis.  However, more work is needed 458 

to quantify this. 459 

 460 

Additional biases may result from the fact that our rating curves and flux estimates are 461 

based on samples collected during the summer only and so take no account of 462 

possible seasonal changes in the relationships between discharge and tPOC, fPOC and 463 

nfPOC concentrations.   It is likely that significantly different processes to those we 464 

have constrained occur only during the winter and early spring, when there is snow on 465 

the ground or melting.  The last panel in Figure 1 shows that, although discharge is 466 

highest during snow melt in April-May, suspended sediment concentrations are 467 

relatively low throughout winter and spring.  Multiplying mean discharge by mean 468 
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SSC gives mean total suspended load values of ~3 g s-1 for winter/spring (December-469 

May) and ~15 g s-1 for summer/autumn (June-November).  Thus, the mass of material 470 

exported under the conditions we have constrained is approximately five times greater 471 

than that exported at other times.  Even if somewhat different processes were shown 472 

to operate in winter and taken into account, the long-term fluxes would not change 473 

substantially and our conclusions would be unaffected. 474 

 475 

5.5 Global Significance of POC Flux and Processes Observed in the Erlenbach 476 

 477 

The rate of export of non-fossil POC from the Erlenbach (14.0 ± 4.4 tonnes km-2 yr-1) 478 

is broadly comparable to yields of non-fossil POC reported from Taiwan (21 ± 10 479 

tonnes km-2 yr-1) (Hilton et al., 2012a) and New Zealand (~39 tonnes km-2 yr-1) 480 

(Hilton et al., 2008a), and an order of magnitude greater than from the Ganges-481 

Brahmaputra basin (~3 tonnes km-2 yr-1) (Galy et al., 2007b).  However, the real 482 

significance lies in the contrasting processes responsible for these fluxes and their 483 

geographical scope.  In some mountainous settings, high rates of tectonic uplift, often 484 

combined with intense cyclonic storms, drive deep-seated landsliding and flooding on 485 

a scale and frequency not seen elsewhere.  In contrast, runoff-driven hillslope 486 

activation observed in the Erlenbach are widely applicable and do not require 487 

catastrophic events to initiate significant carbon POC export.  Similar processes are 488 

likely to occur wherever there is rain on steep, soil-mantled hillslopes that are 489 

effectively coupled to stream channels so that there is a direct, unfiltered transfer of 490 

material into them.   491 

 492 
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Meybeck (1993) estimated that 18% of total atmospheric (i.e. modern) carbon (overall 493 

flux of 542 x 1012 g yr-1) is exported as soil-derived POC, or ~98 x 1012 g yr-1.  A 494 

direct comparison with the Erlenbach non-fossil POC flux of 14 tonnes km-2 yr-1 495 

suggests that ~4.6% of the world’s total land area behaving like the Erlenbach could 496 

account for this flux.  The global area covered by temperate broadleaf and mixed 497 

forests is ~13.5 million km2 (Mace et al., 2005), or 9% of the world’s land; if other 498 

biomes with the potential to host runoff-driven POC export are included (such as 499 

temperate coniferous forests and montane grasslands), this rises to 15%.  However, it 500 

should be noted that steep topography is also an essential ingredient in creating 501 

Erlenbach-like conditions.  While the biome classification, based on WWF terrestrial 502 

ecoregions (Olson et al., 2001), takes account of some factors related to topography, 503 

such as climate, it is unlikely to accurately map the topographic limits for the runoff 504 

processes described above.  Nevertheless, these considerations tentatively suggest that 505 

the contribution to global riverine POC flux, particularly the export of non-fossil 506 

POC, from Erlenbach-like settings may be more significant than suggested by extant 507 

global estimates. 508 

 509 

6. Conclusions 510 

 511 

We have characterised the processes responsible for transferring organic carbon from 512 

hillslope to stream in an alpine headwater catchment with Corg-rich bedrock, a high 513 

degree of hillslope-channel coupling and no extreme mass wasting over the timescale 514 

of the study.  Additionally, we have determined the long-term yields of suspended 515 

sediment, total POC, fossil POC and non-fossil POC from this system under moderate 516 

conditions. 517 
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 518 

Suspended sediment exported from the Erlenbach has a mean Corg of 1.45 ± 0.06 %.  519 

Both concentration and composition of this organic carbon vary systematically with 520 

hydrological conditions, although variations over any single hydrograph are highly 521 

individual.  At low discharge, POC concentration and composition is highly variable, 522 

due to natural heterogeneity in the small amount of material transported.  As 523 

discharge increases (along with total suspended load), in-channel clearing causes 524 

initial dilution of POC.  At a moderate, frequently-crossed threshold (Q/Qmean = 10), 525 

the hillslope becomes active and runoff delivers additional POC to the stream in the 526 

form of largely soil-derived biomass, causing a bulk shift to higher C/N and lower 527 

δ13C and δ15N.  This is associated with an increase in the Fnf from 0.30 during 528 

background flow to 0.70 at the highest discharges we have sampled (Q/Qmean ~60).   529 

Active precipitation is crucial to the mechanism, with riverine suspended sediment 530 

showing greater non-fossil influence and significantly higher Fnf during rain and on 531 

the rising limb than when the rain has stopped and flow is waning.  Landslides and 532 

channel bank collapse do not regularly contribute to the POC exported under these 533 

conditions, but may be activated at extremely high flow rates. 534 

 535 

Rating curves show power law relationships between discharge and four components: 536 

suspended sediment, total POC, fossil POC and non-fossil POC.  All exponents are 537 

>1, with fossil POC the lowest at 1.08.  Total POC has a significantly higher exponent 538 

than suspended sediment, and non-fossil POC has one greater still.  Over the past 29 539 

years, the conservative estimates of average export fluxes of suspended sediment, 540 

total POC, fossil POC and non-fossil POC (in tonnes km-2 yr-1) were 1648 ± 313, 23.3 541 

± 5.8, 10.1 ± 1.6 and 14.0 ± 4.4 respectively. 542 
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 543 

We propose that the runoff-driven export of soil-derived POC observed in the 544 

Erlenbach is a model for other temperate forested uplands where there is good 545 

connectivity between the hillslope and channel.  The yield of non-fossil POC from 546 

such settings is of the same order of magnitude as those reported from active margin 547 

mountain belts, yet the potential area available for this non-catastrophic mode of POC 548 

mobilisation extends to large parts of the Earth’s continents.  Considering our results 549 

in the context of previous global estimates of riverine POC discharge, it seems likely 550 

that the collective contribution of settings where these processes operate may be more 551 

important than previously thought.  If the non-fossil POC exported from the 552 

Erlenbach and similar catchments is ultimately buried in the ocean, this mechanism 553 

could significantly contribute to carbon dioxide drawdown on geological timescales.554 
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Figure Captions 

 

Figure 1.  Hydrographs for 3 of the 5 storm events sampled in July 2010.  Dark grey 

area is precipitation (x 100, in mm); light grey area is discharge (Q, in l s-1).  

Suspended sediment concentration (SSC, x 100, in g l-1), organic carbon concentration 

(Corg, in %), carbon isotopic composition (δ13C in ‰), and organic carbon to nitrogen 

ratio (C/N) are represented by circles, squares, triangles, and diamonds, respectively.  

Final panel shows the average annual hydrograph over the 29-year monitoring period 

(1983-2011), and mean suspended sediment concentrations of samples collected every 

1-2 weeks over a 6-year period (2005-2010) (SSC data from the Swiss National River 

Monitoring and Survey Programme, 

http://www.eawag.ch/forschung/wut/schwerpunkte/chemievonwasserresourcen/naduf/

datendownload_EN). 

 

Figure 2.  Variation of organic carbon concentration in riverine suspended sediment 

with total suspended load (note logarithmic x-axis).  Open symbols are background 

flow (Q/Qmean <10).  POC = particulate organic carbon. 

 

Figure 3.  Top: nitrogen to carbon ratios (N/C) and carbon isotopic composition 

(δ13C) of Erlenbach riverine suspended sediment, hillslope runoff suspended sediment 

and major stores of carbon within the catchment.  Bottom: carbon to nitrogen ratios 

(C/N) and nitrogen isotopic composition (δ15N) of the same pools. 

 

Figure 4.  Zoomed-in views of the plots in Figure 3, where suspended sediment 

samples are colour-coded according to total suspended load (warm colours represent 
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low values; cold colours represent high values).  Open squares are background flow 

(Q/Qmean <10).  ‘Fossil end member’ includes bedrock, bedload, channel banks and 

landslides.  Dotted lines indicate potential mixing zones between the fossil end 

member and non-fossil sources.  Determination and nature of the hypothetical non-

fossil end member is discussed section 5.1. 

 

Figure 5.  Rating curves showing power law relationships between Q/Qmean and 

suspended sediment concentration, total POC (tPOC), fossil POC (fPOC) and non-

fossil POC (nfPOC), all in mg l-1.  POC is particulate organic carbon concentration.  

Small squares represent individual samples; open symbols are background flow 

(Q/Qmean <10).  Dashed lines are 95% confidence bands. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 Page 39 of 46 

Table 1.  Characteristics of the five storm events sampled.  

 

aAdditional samples for 22 and 26 July were collected at intervening low flow. 
bQ/Qmean is the discharge relative to the average discharge over the period 1983-2011 
inclusive (38.6 l s-1). 
 

Date Approx. time (UTC+2) Number of samplesa Peak Q (l s-1) Peak Q/Qmean
b 

12 July 2010 19.00-20.30 37 2290 59 
22-23 July 2010 20.30-02.30 37 + 1 preceding 420 11 
26 July 2010 21.00-00.00 16 + 1 preceding 300 8 
29 July 2010 06.30-16.45 25 1190 31 
30 July 2010 08.45-16.00 9 1580 41 
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Table 2.  Organic carbon concentration (Corg), carbon to nitrogen ratio (C/N), carbon isotopic composition (δ13C) and nitrogen isotopic 
composition (δ15N) of major carbon stores within the catchment, and hillslope runoff and riverine suspended sedimenta. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

aσ = standard 
deviation; errors are ± twice the standard error on the mean.   
bSurface soil samples were collected from the top ~10cm (without overlying vegetation); deep soil samples were collected from below 10 cm in 
two vertical profiles.   
cRiverine suspended sediment is subdivided into samples collected during i) rising and falling limbs and ii) active rainfall and dry periods. 

 n Corg (%) C/N δ13C (‰) δ15N (‰) 
Mean σ Mean σ Mean σ Mean σ 

Bedrock 22 0.54 ± 0.11 0.26 7.81 ± 1.7 3.98 -25.71 ± 0.36 0.84 3.34 ± 0.26 0.60 
Bedload 11 0.87 ± 0.21 0.36 9.78 ± 0.9 1.57 -25.84 ± 0.10 0.17 2.13 ± 0.23 0.38 
Channel banks 8 0.87 ± 0.22 0.32 8.12 ± 1.1 1.58 -25.89 ± 0.40 0.57 2.91 ± 0.29 0.40 
Landslide profile 22 0.64 ± 0.06 0.15 7.38 ± 0.4 0.87 -26.03 ± 0.12 0.28 2.67 ± 0.30 0.71 
Deep soilb 10 2.15 ± 1.2 1.85 11.8 ± 2.3 3.64 -25.98 ± 0.34 0.54 3.56 ± 1.99 3.14 
Surface soilb 17 16.5 ± 6.3 12.9 17.9 ± 2.2 4.45 -26.84 ± 0.48 0.98 -1.33 ± 0.77 1.59 
Foliage 8 46.9 ± 2.0 2.88 55.5 ± 17 24.2 -28.30 ± 1.13 1.60 -5.87 ± 1.67 2.36 
Woody debris 12 49.1 ± 1.8 3.18 173 ± 98 170 -25.25 ± 0.69 1.19 -3.99 ± 1.29 2.24 
Hypothetical non-fossil end 
member 

- - - 15.8 ± 6.8 - -27.15 ± 0.53 - 
0.61 ± 1.40 - 

Forest hillslope runoff 38 9.12 ± 0.9 2.77 12.6 ± 0.7 2.28 -26.50 ± 0.08 0.23 2.48 ± 0.30 0.93 
Meadow hillslope runoff 10 15.9 ± 1.7 2.67 12.6 ± 1.8 2.91 -26.56 ± 0.50 0.79 4.43 ± 1.04 1.64 
Riverine suspended sedimentc 122 1.45 ± 0.06 0.32 9.55 ± 0.2 1.34 -26.33 ± 0.08 0.45 2.21 ± 0.16 0.87 
          Rising limb 72 1.36 ± 0.07 0.29 9.89 ± 0.3 1.35 -26.45 ± 0.08 0.32 1.95 ± 0.13 0.56 
          Falling limb 50 1.57 ± 0.09 0.33 9.16 ± 0.4 1.29 -26.16 ± 0.15 0.54 2.58 ± 0.31 1.09 
          Raining 85 1.40 ± 0.06 0.29 10.0 ± 0.3 1.32 -26.49 ± 0.07 0.34 1.94 ± 0.12 0.53 
          Dry 37 1.55 ± 0.12 0.37 8.69 ± 0.4 1.07 -25.98 ± 0.15 0.47 2.83 ± 0.38 1.15 
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Table 3.  Results of radiocarbon analysis on selected samplesa.   

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

aErrors are ±1σ.   
bReference date for Fmod is 1950; therefore Fmod can be >1 in plants and soils due to incorporation of 14C from nuclear weapons testing during the 
second half of the twentieth century. 

Sample Type 
Sample ID 

Publication 
code 

Corg 
(%) 

Fmod 
(fraction of 
modern C)b 

Δ14C (‰) 
Conventional 
radiocarbon 
age (years BP) 

Suspended 
sediment 

Q (l s-1) 

78 12.7 1748 SUERC-40494 2.2 0.68 ± 0.004 -317.9 ± 3.5 3073 ± 41 
394 12.7 1719 SUERC-39226 1.2 0.67 ± 0.003 -328.0 ± 3.2 3193 ± 38 
517 29.7 1768 SUERC-39232 1.3 0.47 ± 0.002 -530.5 ± 2.3 6074 ± 39 
1170 12.7 1711 SUERC-39229 2.2 0.74 ± 0.004 -256.5 ± 3.5 2381 ± 38 
2060 12.7 1707 SUERC-39230 1.9 0.69 ± 0.003 -314.4 ± 3.2 3033 ± 38 
2290 12.7 1729 SUERC-39231 1.8 0.67 ± 0.003 -333.8 ± 3.2 3262 ± 38 

Surface soil 

ER-ST-1-L-0 SUERC-39216 1.2 0.53 ± 0.003 -471.7 ± 2.6 5123 ± 39 
ER-ST-2-L-15 SUERC-39219 6.0 1.00 ± 0.005 -3.5 ± 4.7 Modern 
ER-ST-1-R-350 SUERC-39220 25 1.06 ± 0.005 64.8 ± 5.0 Modern 
ER-ST-1-R-20 SUERC-39221 11 1.05 ± 0.005 53.9 ± 5.0 Modern 

Wood entrained in bedload 
ER-V-19 SUERC-39222 50 0.81 ± 0.004 -186.5 ± 3.8 1658 ± 37 
ER-V-11 SUERC-39223 50 1.00 ± 0.005 -0.1 ± 4.5 Modern 

Wood entrained in landslides 
ER-V-17 SUERC-39224 52 0.87 ± 0.004 -132.1 ± 4.1 1138 ± 38 
ER-V-20 SUERC-39225 50 0.61 ± 0.003 -392.9 ± 2.7 4009 ± 36 
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Table 4.  Rating curve parameters for power law relationships between Q/Qmean and 
suspended sediment (SS) or particulate organic carbon (POC), of the form SS or POC 
= a(Q/Qmean)

b(a).   

 
aValues in regular type (used for flux calculations) are based on the whole sample set; 
values in italics are based only on samples with Q/Qmean>10.  There are three classes 
of POC: total (tPOC), fossil (fPOC) and non-fossil (nfPOC).   
bCorrelation coefficients are given as R2.  
cQe is the effective discharge, as defined by Wheatcroft et al. (2010).  Q/Qmean is the 
discharge relative to the average discharge over the period 1983-2011 inclusive (38.6 l 
s-1). 
 
 
 
Table 5.  Modeled export of suspended sediment (SS) and total, fossil and non-fossil 
particulate organic carbon (tPOC, fPOC and nfPOC), averaged over 29 years (1983-
2011 inclusive).  

 
aFnf is the modeled fraction of organic carbon derived from non-fossil sources, given 
overall in the first column and then for separate discharge classes.   
bFor Q/Qmean >60, the top line (normal type; used in calculating overall yields and 
fluxes) assumes that the rating curves are flat from Q/Qmean = 60; the bottom line 
(italics; given for comparison only) assumes that the same rating relationships apply 
above this limit. 
 

 

 a b R2(b) Qe (l s
-1)c 

Qe 
(Q/Qmean)c 

SS 
99.7 ± 29.4 
96.0 ± 44.2 

1.19 ± 0.08 
1.20 ± 0.12 

0.78 
0.68 

300 7.7 

tPOC 
0.96 ± 0.30 
0.96 ± 0.48 

1.33 ± 0.08 
1.33 ± 0.13 

0.81 
0.71 

400 10.4 

fPOC 
0.80 ± 0.39 
0.75 ± 0.64 

1.08 ± 0.13 
1.10 ± 0.23 

0.50 
0.32 

230 5.6 

nfPOC 
0.41 ± 0.20 
0.44 ± 0.33 

1.45 ± 0.13 
1.43 ± 0.20 

0.70 
0.57 

520 13.4 

 

Mean 
annual 
yield 
(tonnes) 

Mean annual yield (tonnes) according to Q/Qmean (l s-1).  Proportions in each 
class are given in brackets. Export 

flux (t 
km-2 yr-1) Q/Qmean ≤1  

(77%) 
1< Q/Qmean  ≤10 
(22%) 

10< Q/Qmean  ≤60 
(1%) 

Q/Qmean >60b 
(<0.01%) 

SS 
1220 ± 
232 

12.0 ± 0.79 
(1.1%) 

376 ± 35.3 
(32%) 

740 ± 91.8  
(61%) 

91.1 ± 61.3 (5.8%) 
215 ± 171 (10%) 

1648 ± 
313 

tPOC 17.3 ± 4.3 
0.11 ± 0.01 
(0.7%) 

4.57 ± 0.44 
(28%) 

11.0 ± 1.40 
(64%) 

1.57 ± 1.06 (6.9%) 
4.21 ± 3.43 (12%) 

23.3 ± 5.8 

fPOC 7.44 ± 1.2 
0.10 ± 0.01 
(1.5%) 

2.56 ± 0.24  
(36%) 

4.30 ± 0.53 
(58%) 

0.47 ± 0.32 (5.1%) 
1.02 ± 0.79 (8.6%) 

10.1 ± 1.6 

nfPOC 10.4 ± 3.2 
0.04 ± 0.00 
(0.5%) 

2.39 ± 0.23 
(26%) 

6.85 ± 0.88 
(67%) 

1.10 ± 0.74 (7.3%) 
3.29 ± 2.73 (13%) 

14.0 ± 4.4 

Fnf
a 

0.61 ± 
0.02 

0.30 ± 0.00 0.48 ± 0.00 0.61 ± 0.00 
0.70 ± 0.00 
0.76 ± 0.02 

- 
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Figure 3 
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