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ABSTRACT 

Imaging spectroscopy (IS) can identify target materials at both mineralogical and geochemical level. Therefore, in environmental applications 

it can be used to assess contamination derived from mining activities, moving from contamination sources along pathways to receptors as 

Acid Mine Drainage (AMD). This can be based on the spectra of specific assemblages of minerals from spectral libraries, which can indicate 

pH values at the time of their generation and the subsequent acid generating potential. Alternatively, field spectral measurements can be used 
as input data for mapping algorithms. This study presents a new methodological approach developed to improve the results for mapping 

contamination sources and pathways, by combining multi-source spectra from both these approaches at different scales. In addition to the 

mineralogical libraries and field spectra already mentioned, additional endmembers spectra are used that are extracted from IS data, so as to 

highlight particular site phenomena otherwise undetected by the two previous approaches. The highly correlated spectra are then used as input 

to the Spectral Angle Mapper algorithm, to establish a map of local field spectra and also one from image endmembers. The intersection of the 

two maps results in an improved map, assigned in terms of correlation ≥0.8 of mineralogical assemblages focused on AMD indicators. This 

methodology was tested in the abandoned S. Domingos Mine, in SE Portugal`s Iberian Pyrite Belt, with AMD caused by long-term 

exploitation of Volcanogenic Massive Sulphide deposits. Data from the HyMapTM sensor covered the area and field spectroradiometric 

measurements were undertaken and analysed for mineralogical and geochemical content. A fligthline containing the open pit was processed 

according to the aforementioned methodology, focusing directly on the target of interest and minimising errors. The final map displays the 

mineralogical assemblage correlations ≥0.8 of variable pH indicators, particularly isolating a low pH combination of significance to the 
contamination in the area.  
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_____________________________________________________________________________________ 

1. Introduction  

The analysis of imaging spectroscopy (IS) or hyperspectral imaging sensors, characterized by high spectral resolution across a wide range of 

the electromagnetic spectrum, with dedicated algorithms, enables the identification of the chemical and mineralogical composition of the 

imaged target. Thus, wide fields of application can take advantage of IS capabilities. Focusing on environmental concerns such as 

contamination related to mining areas, several studies have provided valuable information on mineralogical assemblages with the purpose of 

assessing (Swayze et al., 1996; 2000; Dalton et al., 1998) and monitoring (Ong et al., 2003; Zabcic et al., 2005) areas affected by Acid Mine 

Drainage (AMD) and consequent release of hazardous elements into the environment. Rather than using mineralogical assemblages contained 

in  mineralogical spectral libraries, which are processed in the identifiable spectral range of the minerals searched, another possibility is to 
directly map the contaminants using spectral field signatures across the Visible, Near Infra-Red (VNIR) and Short Wave Infrared (SWIR) 

range, properly correlated with chemical field data (Kemper and Sommer, 2003; Ben-Dor et al., 2009). 

The project “Assessing and Monitoring the Environmental Impact of Mining Activities in Europe Using Advanced Earth Observation 
Techniques” (MINEO) also added a contribution to the environmental assessment and monitoring of mining areas, covering a diversity of 

mining environments and respective types of contamination (Chévrel et al., 2003, 2004). Specifically concerning the AMD environment, 

contamination mapping based on IS has been achieved using spectral data either of waste mining field materials (Quental et al., 2002a; 2003; 

2011) or from mineralogical spectral libraries as developed by Clark et al. (1993) (Bourguignon, 2002; Bourguignon et al., 2003; Quental et 

al., 2003), and focused on their acid generating potential (Swayze et al., 1996; 2000; Montero et al., 2005). Thus, hot spot targets were 

highlighted for remediation purposes, and consequently, to minimise their impact on the surrounding environment. 

These studies all take advantage of the fact that the occurrence of certain minerals indicates specific ranges of pH values at the time of their 

formation. Waste mining materials with high sulphide content are considered a primary source of AMD (Singer and Stumm, 1970; Nordstrom 

and Alpers, 1999; Espãna et al., 2005). When in contact with water and oxygen the sulphides react to oxidize and generate an acidic leachate 

which contains dissolved trace elements and sulphate. This acidic leachate is partly neutralised by hydrolysis reactions with the surrounding 

materials as the solution flows away from the active oxidation points leading to the accumulation of iron sulphates, oxyhydroxides and oxides 

in a spatial and temporal sequence that represents the buffering of the acidic solution as it moves away from its source (Swayze et al., 2000; 

Montero et al., 2005). In the pathway of the solution, it is then possible to identify mineralogical sequences, e.g. copiapite-jarosite-goethite-

hematite, with an increasing pH ranging from <3 to >6 or equivalent mineral`s pH indicators depending of the chemical composition of 

leacheates (Bigham et al., 1996; Nordstrom and Alpers, 1999; Swayze et al., 2000; Montero et al., 2005; Smith et al., 2006). Using IS 

principles it is possible to identify the unique spectral absorption characteristics of such secondary iron minerals (Clark, 1999). Further details 
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on the basis for spectral interpretation and mineral identification particularly related to AMD are given in Montero et al. (2005) and Crowley 

et al. (2003). Thus, the mineralogical mapping of an area based on specific minerals can indicate pH values at the time of their generation and 

subsequently the acid generating potential, providing valuable information for the prioritization of remediation procedures. Alternatively, as 

aforementioned, field spectral measurements can indicate AMD if properly correlated with chemical field data (Kemper and Sommer, 2003). 

According to the nature of the problem considered and specifically concerning IS contamination mapping, both input spectral datasets, i.e. 

mineralogical and field measurements, may however present various drawbacks and advantages.  

When using mineralogical libraries to classify IS data, the spectra are measured in the laboratory in pure samples. Mineral´s laboratory 

spectral measurements can be compared with known and well established reference data (Clark et al., 1993; 2007). However, this approach 

does not take into account the highly complex mixtures of minerals under evolution in the natural environment. In fact, this procedure is 

suitable when pure materials, contained in the library, are on the ground, but in most real-world situations, since materials are both spatially 

and intimately mixed, only the strongest features are matched. Even if a few sites in a scene expose pure materials, many others are mixtures 

of materials (Plaza et al., 2004; 2009; 2012; Chang, 2007). These mixtures of materials within a pixel can complicate the analysis of IS 

information, often masking the diagnostic spectral features of materials of interest and hampering their identification (Zhang et al., 2005). 

Although field spectroradiometric measurements depict the local reality of the target at a given time, if this is not properly matched with 

mineralogical and geochemical analysis the derived classification may lack readily identifiable spectral information and not take full 

advantage of IS’s capabilities. Moreover, the spatial view provided by IS data and extraction of spectral information through adequate 

algorithms that occur in a scene, can give further information about local spectral signatures that is only occasionally detected by the other two 

types of spectra. In fact, taking into account the real-world situations where materials are spatially or intimately mixed, the most widely used 
technique analyzing IS data is to determine endmember spectra directly from the image (Plaza et al., 2004). The extraction of endmembers 

from an image has benefits over the use of spectra measured in the field or laboratory. Mineralogical libraries and field spectra are rarely 

acquired under the same conditions as airborne or satellite data and they may not adequately represent all important image retrieved 

endmembers. On the other hand, field spectra are usually collected from surfaces one wants to map, and thus, they have direct physical 

meaning for mapping purposes working as site reference data. They can provide important information that may not be depicted in an image at 

different scale. Imagery may provide similarly meaningful endmembers that can be considered “pure”, or relatively “pure”, spectra (Rogge et 

al., 2007). Additionally, when using image retrieved endmembers, from atmospherically corrected images this already takes into account the 

spectral pattern as modeled by the corrections. Thus, information from image retrieved endmembers is provided in the similar spectral and 

spatial scale and resolution as the area to be mapped. In order to extract the maximum spectral information for the environmental assessment 

of AMD using IS data, a new, hybrid methodology is applied to identify materials according to their AMD potential. It relies on the use of 

multi-source spectra, exploiting the contributions of all the different input spectra, i.e. mineralogical libraries, field and image retrieved 
endmembers. These spectra, at a multi-scale level, are correlated using the similar wavelength values. In this case, the mineralogical spectral 

library of United States Geological Survey (USGS, Clark et al., 1993, contained also in Clark et al., 2007), was selected. 

 

Through this methodology both of the following are emphasized: i) local field spectroradiometric measurements assigned to known 

mineralogical content provide readily identifiable information on reference data; and ii) identification of meaningful hyperspectral image 

retrieved endmembers. The spectra with correlation ≥0.8 are then input to a similarity measure of full pixel classifier (Spectral Angle Mapper, 

SAM, Kruse et al., 1993) generating two maps, one from image retrieved endmembers and another one from field spectra. The final map of 

mineralogical correlation of AMD, is the intersection of the two initial maps. The methodology is tested here on the open pit area of the S. 

Domingos Mine located in the Iberian Pyrite Belt.  

2. Methodology  

The methodological approach exploits the spectral characteristics of multi-source data with distinct origins at multi-scale level: i) 

mineralogical library; ii) local field spectroradiometric measurements; and iii) endmembers retrieved from high spectral resolution images. As 
a measure of the linear dependence of these data, the Pearson correlation coefficient was selected from among different similarity measures, 

e.g. RMSE (Roberts et al., 1998), SAM (Kruse et al., 1993), due to its being independent of scale and condensing the comparison of different 

data sets down to a single scalar. Contrary to the SAM, the former does not have a physical meaning. The correlation values among the three 

types of spectral data, serves as a means to select spectra for contamination mapping of the IS data (Figure 1). Figure 1. 

For dataset i) the spectra of minerals selected according to their characteristics related to AMD, i.e. indicators of pH at the time of their 

formation, as well as other minerals existing at the study site, are taken from the USGS mineralogical spectral library as developed by Clark et 

al. (1993), contained also in Clark et al. (2007), and implemented in ENVI 4.8 software (ITT, 2010). These spectra were measured on a 

custom-modified, computer-controlled Beckman spectrometer at the USGS Denver Spectroscopy Lab. Wavelength accuracy is in the order of 

0.5 nm in the near-IR and 0.2 nm in the visible. The samples measured were of variable particles size and supported by combination of 

different analytical methods, including X-ray diffraction, bulk chemistry from X-ray fluorescence and electron microprobe analysis. The 

USGS library corresponds to the most commonly used spectra in the geological community (Rivard et al., 2008).For dataset ii) field spectra 

collected in the study area with a spectrometer contribute ground reference information. In this case the ASD FieldSpecPro spectrometer was 

used with spectral sampling varying from 1.4 nm to 2 nm and spectral resolution from 3 nm to 12 nm and wavelength accuracy of 1 nm. 

For dataset iii), among the different types of algorithms used to extract endmembers from images, e.g. as referred in Plaza et al. (2012),  a 

sequence of a Minimum Noise Fraction (MNF) transform (Boardman et al., 1994) as modified from Green et al. (1988), Pixel Purity Index 

(PPI) (Boardman et al., 1995) and n-D visualiser were selected. These algorithms were implemented in ENVI software (ITT, 2010) and follow 

a protocol designated as Automated Spectral Hourglass, where the prediction of endmembers can be done in an automatic manner. 

From the image retrieved endmembers spectra, those not related to the mapping target, i.e. indicators of AMD based on iron sulphates, 

oxyhydroxides and oxides, are excluded which encompasses vegetation patterns or errors in the image. Jointly with field spectra and the 

mineral spectral library, they are correlated through the Pearson correlation matrix according to the similar wavelength values of spectral 

bands. For data where differences exist, the wavelength value is resampled to the smallest near value. In this case the ANDAD software 

(Sousa and Sousa, 2000) was used to do this. Establishing the correlation among these multi-source spectral data, i.e. i), ii) and iii), two 



features are highlighted: a) potentially relevant endmembers provided by a wide spatial and spectral view and scale, based on the IS images, 

and b) the relationship of field spectra of a specific target and their acid generating potential, based on mineralogical assemblages derived 

from individual minerals of spectral libraries. 

In order to improve the next steps of classification, a threshold of correlation value ≥0.80 is applied to both the field and image retrieved 

endmember spectra. These are also focused on AMD mineral indicators, as derived from their correlation with the USGS mineralogical 

spectral library. This approach is used to select spectra for the spatial mapping of AMD in the IS image using the Spectral Angle Mapper 

(SAM) algorithm (Kruse et al., 1993). 

The SAM is an algorithm which is a physically-based spectral classification to match pixel spectra to reference spectra. The algorithm 

determines the spectral similarity between two spectra by calculating the angle between the spectra, treating them as vectors in a space with 

dimensionality equal to the number of bands. In this case, the angle between IS image and multi-source spectra are compared.  

Two maps result from SAM, one from field spectral data and the other from endmembers, both being interpreted in terms of correlations with 

the USGS mineralogical spectral library (Clark et al., 1993). Thus, each pixel of both maps is assigned to the minerals with correlation values 

≥0.80, i.e. they are converted to the mineral correlation values established.  

Performance is improved by eliminating pixels mapped only for one type of input spectra, so that the final map is the intersection of the two 

previous maps. For each input map, respectively derived from field spectra and from image retrieved endmembers, the pixels containing the 

same assigned minerals are spatially merged above the correlation threshold ≥0.80 and then intersected. This intersection is executed by 

combining spatial pixels with identical mineral assemblages above the threshold correlation value mentioned. In this way, the dispersion 

pattern of the most relevant minerals for the area, in particular the ones which indicate a low pH value and thus environmental hot spot targets, 

are highlighted.  

3.  Test Site and Data sets  

3.1. Characteristics of the test site: S.Domingos Mine 

The now abandoned S. Domingos Mine (SD) is located within the Iberian Pyrite Belt, known worldwide as the Metallogenic Province for 
Volcanogenic Massive Sulphides (VMS) deposits within the Iberian Peninsula. The former mine, in southeastern Portugal close to the border 

with Spain, is approximately sixty kilometers SE of Beja. The mining activity started in pre-Roman and Roman times with the exploitation of 

Ag, Au and Cu in the gossan and afterwards in modern times, in the middle 19th century for Cu and S, secondarily for Au, Pb and Zn both in 

the gossan and VMS. Mining ceased in 1966 due to the exhaustion of the ore and production has been estimated at more than 25Mt (Carvalho, 

1979), while waste mining materials are themselves estimated to be in the range of several million tons.  

Compatible with the volume of the ore extracted and processed, the AMD was intensive with effects that endure until today. The development 

of several mining infrastructures for exploitation, processing and transportation of the ore, including sulphur plants, facilitated the dispersion 

of mine waste materials and related pollutants over an area of 50 km2 (Quental et al., 2002a;b) (Figure 2a). 

Figure 2. 

No remediation measures have been applied to the area, allowing for a complex geochemical evolution under semiarid conditions. According 

to the Thornthwaite classification, the climate of the region is semiarid mesothermic, with no excess water and small thermal efficiency in the 

hot season, and it can be divided in two distinct seasons, a wet period from November to March and a dry period from May to September. The 

annual average air temperature is 17.6 ºC, and annual precipitation is 559 mm (Abreu et al., 2008). 

3.2. Airborne hyperspectral data from HyMap
TM 

The HyMapTM sensor owned by Hyvista Corporation (HVC), covers the spectral range 450 to-2500 nm, with a spectral bandwidth varying 

between 10-20 nm and a signal to noise ratio better than 500/1 (Cocks et al.,1998). HVC used a Dornier 228 aircraft operated by the 
Deutsches Zentrum für Luft und Raumfahrt (DLR) to acquire HyMap data over the S. Domingos mining area on 21 of August 2000. The 

ground instantaneous field of view for these data is 4.3 m. The dataset was provided as radiance by HVC, as well as calibrated to reflectance 

using HyCorr software, which is a modified version of the ATmospheric REMoval (ATREM) software (Gao et al., 1999). An Empirical Flat 

Field Optimal Reflectance TransformationTM (EFFORT) polishing was implemented in the ENVI software (Quental et al., 2011). The 

EFFORT as described by Goetz (1997) and Boardman (1998) is an analytical process that bootstraps a linear adjustment to apparent 

reflectance spectra to improve the accuracy of spectra following calibration with ATREM. This improves the comparison with library-based 

spectra, the basis of many of the image interpretation methods.  

The fligthlines were geocoded in UTM, WGS84 datum using DGPS flight data. An overview of the area is given by the mosaiced fligthlines 

in Figure 2a, while the fligthline encompassing the open pit tested in this work is depicted in Figure 2b. 

3.3. Field data 

3.3.1. Spectroradiometric measurements 

Field spectra were collected across the area with an ASD FieldSpec@Pro spectrometer, with wavelengths between 350-2500 nm, in August 

2001. The collection was focused on selected targets depicted in Figure 2a) and named S. Domingos (SD), Tapada (TA); Achada do Gamo 
(AC); Telheiro (TE); Pomarão North (PN) and Pomarão South (PS). These subareas were selected inside of the main area of the airborne 

hyperspectral dataset capture, taking into account the diversity of geological features, mining aspects and environmental issues (Quental et al., 



2002 a and b). Particular emphasis was given to supposedly contaminated targets, respectively SD, AC, TE and PS, while TA and PN are 

considered to be background areas. Based on the geochemical concentration of some of the targets, their field descriptions and spectral 

characteristics, 92 spectra were selected for this work. 

 

3.3.2. Soils and mine waste materials  

Soil and mine waste material samples collected (Figure 2) for the contaminated subareas of SD presented high anomalies of several chemical 
elements such as As, Cu, Pb and S (Quental et. 2002a; b; Abreu et al., 2004). The other two contaminated subareas (AC and TE), presented 

high values mainly in As, Hg, Pb and Sb (Tavares et al., 2008; 2009). 

X-Ray Diffraction analysis of the soil clay fraction (<2 µm) for the non-contaminated subareas of TA and PN (Figure 2a) shows that the soils 

are mainly composed of mica, kaolinite, quartz, interstratified mica-vermiculite, berthierine, halloysite, hematite and vermiculite. In the 
contaminated subareas of SD, AC and TE the soil clay fraction contained mica, kaolinite, hydroxy-interlayer Al/Fe vermiculite, quartz, 

goethite, hematite, and halloysite. 

Jarosite, natrojarosite, anglesite and plumbogummite salts were identified in the materials of SD, TE and AC (the contaminated subareas). Salt 

efflorescence, only recognised in AC and SD sub-areas, showed a mixture of complex hydrated sulphates of Pb, Cu, Zn, K, Al, As, Fe and Ca. 

A mixture of copiapite and rumerite has been recognised in AC. Alunite was also identified in SD. 

Jarosite only occurred in soil samples with pH <4.2, whereas the hydroxy-interlayer Al/Fe vermiculite occurs in soil samples where pH lies 

between 3.5 and 6. This clay mineral does not occur in soils developed on dumps, which were not leached by acid waters (SD), even if the pH 

lies in the same range (Quental et al., 2002a). 

 

4. Results  

4.1. Correlation matrix of spectral data  

The ASD field spectra collected in the sub-areas were visually analysed, with the vegetation excluded. Selected minerals from the USGS 
spectral mineralogical library (Clark et al., 1993; 2007), taking into account global mineralogical field results for the area and AMD 

indicators, and extracted endmembers from HymapTM also excluding vegetation and image errors, were correlated in the ANDAD software 

(Sousa and Sousa, 2000) based on similar wavelength values, resampled when necessary. Excluding also noisy bands such as strong water 

vapour bands and a few others either from ASDFieldSpecPro or in HymapTM, the wavelength values used were the ranges 449-1337 nm, 

1434-1782 nm and 1989-2470 nm corresponding to 118 bands. 

Table I presents the characteristics of the USGS spectral library minerals that have correlation ≥0.80 with the other two types of data, namely 

field spectral data and image endmembers (Table II).  

Table I 

Table II 

Examples in spectral space of the spectra most highly correlated with low pH minerals are given in Figure 3. 

Figure 3. 

It is clear that relevant spectra related to AMD may present a relatively flat pattern and not sharp absorption features that can be easily 

identified, particularly in the field spectra (Figure 3b). Some of the minerals spectra themselves are rather flat or with broad absorption 

features, e.g. copiapite, as well as the signatures of most mixed materials either from image or from field spectra, which determined the use of 

the entire above mentioned wavelength range. 

From the 92 ASD field spectral measurements selected, 23 present high correlations with the USGS library. From the 96 image endmembers 

extracted from HymapTM image, 20 spectra also present a high correlation with the USGS library. However, 10 of them are related solely to 

minerals not relevant for the objective of the work (e.g. quartz, and a-smectite) that do not indicate acid generating potential or buffering 

capacity and were excluded from further analysis. Two more were excluded due to the fact that copiapite and alunite were below 0.80 

correlation values. Thus, only 8 image-derived spectra directly related to the acid generating potential remain for further processing. 

 

4.2. Spectral Angle Mapper (SAM)  

 
The SAM inputs the field and image retrieved endmember spectra that have correlations ≥0.80 with USGS library expressed in Table II, using 

a 0.1 radians angle1.  

                                                        
1
 Referred to as the cosine in ENVI (ITT, 2010) and not as the inverse, as formally defined (Chang, 2007). Although different angles have 

been tested the option was to maintain a standard value, equal for all the spectra, and rely on a correlation value indicator of the input spectra 

to improve the classification.       



 

This algorithm produces the two intermediate maps (Figure 1) of spatial distribution of spectra, which each have high correlations with the 
USGS spectral library minerals (Table II): Figure 4 depicts the pattern of highly correlated field spectra, while Figure 5 shows the pattern of 

the correlated endmembers retrieved  from the HyMapTM image. 

Further details are given in both about % of classified classes and also the statistical parameter coefficient2 of variation (CV), in order to 

compare the homogeneity of the classes. The intersection of the two maps is done by assigning each pixel to classes, according to the value of 
correlation of mineralogical assemblages after Table II, and then spatially merging the identical spectral pixels. The final map is depicted in 

Figure 6. In this, each of the minerals discriminated in the subtypes in Table II, e.g. J1 (jarosite 1) or J2 (jarosite 2) is summarised in just one 

type (jarosite). This is done to facilitate the comprehension of the spatial dispersion pattern of minerals over the area. For the intersection, not 

all ≥0.80 correlations mapped are considered due to the focus on AMD, but rather the minerals that are connected to the acid producing 

capabilities (red-yellow classes) or not (orange-brownish classes). Also, the classes that contain several minerals of distinct pH were not 

considered, as they are not clear indicators of a specific pH. The classes resulting from spatially merged pixels are depicted in Figure 6. The 

minerals in brackets refer to non-acid generating minerals present in the correlation matrix in field and image endmember spectra. An 

exception to this is the quartz and illite in the jarosite class, due to the fact that it reports only to their occurrence in the image endmember 

class. This has been maintained, as neither of the two minerals are as clearly environmental indicators as the different iron secondary minerals. 

The spectra below in Figure 6 correspond to the averages of the classes of the merged pixels.   

Figure 4 

Figure 5 

Figure 6 

Details of the three maps are given in Table III, considering the area occupied and the CV. 

Table III 

 

  

5. Discussion 

 

5.1. Correlation Matrix  

 

Values from Table II show that correlations ≥0.80 are achieved, indicating the strength of the linear relationship among the input spectra 

despite the multiple scales.  

 

It is also observed that the correlation of the USGS spectral library minerals with field spectral measurements indicate a much higher global 

correlation, namely ≥0.90, when compared with the global correlation of endmembers derived from the hyperspectral image (Table II), and 

also show a much greater variability of minerals. In contrast, only two correlations ≥0.90, can be detected on the correlation of the USGS 

spectral library minerals and image endmembers and the mineralogical diversity is much lower. This is thought to be explained by the large 

pixel dimensions, when compared to the much more localised point measurement of field spectra, and also by the effect of the atmospheric 

corrections undertaken in smoothing the signal with the EFFORT polishing (Section 3.2). It must also be stressed that the higher variability 

expressed in the X-Ray Diffraction results (Section 3.3.2) without equivalent available data on spectral libraries, implies a higher mineral 

complexity in the target analysed. 

These mineralogical assemblages provide indications about pH values at the time of the minerals’ formation. The accumulation of specific 

types of minerals is a function of the pH values and the chemical content of leachates. Copiapite [Fe2+Fe3+4(SO4)6(OH)2·20(H2O)] and jarosite 

[KFe3(SO4)2(OH)6] form at pH values <3, and precipitate near sources of acidity that are also sources of iron and trace elements (Nordstrom 
and Alpers, 1999; Smith et al., 2006). However, jarosite may also precipitate at higher pH values of waters, i.e. 3.8 as referred to in Bigham et 

al. (1996). Goethite [α-FeOOH] forms at pH values generally less than 6 from the dissolution of previous minerals, including early-formed 

goethite, and so precipitates farther from contaminant sources. Hematite [α-Fe2O3] accumulates even farther from the sources of acidity, after 

forming in a pH dependent process that may involve the dehydration and transformation of earlier precipitates, such as those of goethite and 

ferrihydrite (Montero et al., 2005). The latter usually occurs at pH 6.5 or higher (Bigham et al., 1996). 

The mineralogical correlations obtained highlight the mineralogical assemblage of copiapite and types of alunite, whether with the presence of 

a-smectite, illite or kaolinite (Table II), and the exclusion of any other iron secondary minerals, in particular of jarosite. 

Although copiapite and jarosite appear as the minerals with the lowest pH values in the sulphide oxidation pathway (Nordstrom and Alpers, 
1999; Smith et al., 2006), this split appears to confirm a higher pH precipitation value for jarosite, suggesting a threshold of pH values 

detectable in the spectral data. The correlation values (Table II) are only above ≥0.90 for the endmembers for this specific copiapite-alunite 

                                                        
2
 Coefficient of variation (CV) = σ/aver, whereas σ = standard deviation and aver = average of data distribution. 



assemblage, depicting a strong isolated relationship. This assemblage equates in the previously reported field spectra mapping (Quental et al., 

2002a; 2011) to the class defined as mixed sulphur materials, corresponding to high acid producing material.  

Using detailed information about the type of mineralogical spectral library allows further environmental knowledge of the minerals present to 

be extracted, e.g. the specific type of goethites or jarosites. This information can serve as environmental indicators, based on the mineral´s 

capabilities to sequester hazardous elements, as in the case of jarosite and lead. Once such elements are in the form of stable minerals it 

significantly reduces their dispersion in soils and rivers (Figueiredo and Silva, 2011). As an example, the correlation with USGS “Jarosite 

WS368 Pb” contains Pb. However, in this test fligthline, this was only verified at point spectra level, i.e. at field measurements and 

endmembers, but is not seen in the image scale final map. 

5.2. HyMap
Tm

 mapping 

Comparing the maps derived from field spectra (Figure 4) with the map derived from image endmembers (Figure 5), the spatial pattern is 

quite distinct. The field spectra map a smaller area than the image endmembers, even if the number of ASD spectra is higher (23) than the 

endmembers input spectra (8). Although both maps have a low coefficient of variation (CV<1), implying low variability data and probably 

absence of anomalous data, this value tends to be lower in most of the endmember classes. The variability already detected at a mineralogical 

level in the Pearson correlation matrix for field and endmember spectra is translated to the image mapping. While the field spectra map depicts 

as a major pattern several secondary iron mineral assemblages,  implying a high but unclear pH value (FGHIJL class, Table III), the 

endmembers map shows the major areas connected to environmental indicators such as jarosite. In fact, in the ASD field map the mapped 

areas increase from low to higher pH classes, i.e. copiapite-alunite to jarosite and mixed secondary Fe minerals classes, while in the 

endmembers map the major areas are covered by jarosite. The final AMD correlation map follows the same distribution pattern as the ASD 
field map except that, in the case of the jarosite class, the CV is higher than from both input maps (CV=0.399), possibly due to a very small 

intersection area with wider variability.  

The final mapped areas (Table III) decrease when compared to the initial maps. It´s worth noticing that in previous works (Bourguignon, 
2002, Bourguignon et al., 2003, Quental et al., 2002a), the spatial intersection of two mineralogical maps, each using different mapping 

algorithms and solely USGS libraries as input data, also decrease the final mapped areas. The final AMD mineralogical correlation map shows 

the copiapite-alunite dispersion surrounding acidic water dams, i.e. the inundated open pit, following the railway path and the southern dams. 

A few other pixels from this class were detected west of the north end of Tapada Pequena, in connection with the jarosite class, as well as in 

the border of the Tapada Grande and Tapada Pequena dams (Figure 2b). To the south of the open pit, waste piles also contain a few pixels of 

copiapite-alunite. 

The jarosite (illite, quartz) class is concentrated to the west in the waste materials of the open pit, to the west, and to the northwest, in a more 

acidic area connected with the geological background materials. This class also depicts a more dispersed pattern in the village, where part of 

the ground is composed of waste materials, and also following the railway path. This shows that the dispersion of hazardous materials is not 

limited to the areas of exploitation but has been spread out by a variety of human activities undertaken over long periods of time, including the 

use of these materials for construction purposes, as is the case for the Tapada Pequena and Tapada Grande water dams. Alternatively, the red 

brick roofs may present a similar spectral pattern due to the presence of Fe3+ and phyllosilicates and may also contribute for this pattern in the 

village. 

The occurrence of a large area, i.e. 21,855m2 (Table III), with only jarosite as a secondary iron mineral is very significant because it seems to 

extend the pH threshold to limits higher than 3.5, as previously suggested by Montero et al. (2005), if applied to this test site. This is supported 

by field data, where jarosite occurs in soil samples with pH values up to 4.2. Also, work by Hammerstrom et al. (2005) seems to imply a 

precipitation of jarosite not under very low pH waters, but driven instead by potassium availability.   

From the spectral point of view, the average values do not display significant changes among the three types of classes (Figure 6), slightly 

improving when a continuum removal is applied. In fact, many of the minerals of the three classes have a broad spectral absorption feature 

associated with Fe2+ or Fe3+ (Crowley et al., 2003), so a continuum removal facilitates their comparison. All three AMD correlation classes 

depict strong absorption features at 492, 692 and 2206 nm. Shared smaller features are present at 2326 and 2391 nm, while a small feature at 

1168 nm is depicted for both copiapite-alunite and jarosite classes. The feature at 2358 nm is absent from the jarosite class. 

Amongst these, the copiapite-alunite class displays sharper absorption features, exclusively occurring at 859, 875, 902 and 953 nm 

wavelengths. These values differ from the copiapite absorption features (434, 547, 883, 914, 2205, 2295, 2400, 2440 nm) as well as from the 

alunites in USGS libraries of Clark et al. (1993). 

The reasons for the absence of, or shifts in, the standard library absorption features may be primarily related to the fact that the classes 

obtained are mixtures, rather than pure materials as depicted in the USGS spectral libraries. The grain size may also contribute to this variation 

in spectral absorption features.  

 (Figure 6).  

5.3. Advantages of the method employed 

Classical validation techniques may not be appropriate when applied to Imaging Spectroscopy, as the imagery is at times able to map the 

environment with greater accuracy than can be obtained by field crews or maps produced by various methods other than remote sensing 

(Jacquez et al., 2002; Aspinall et al., 2002; Foody, 2008). This is particularly relevant when the objective is mineralogical or chemical 

mapping, when ground reference data collection must deal with significant scaling from field ground reference points to pixel sized image 

samples, most often with mixed pixels. The multi-source methodology tested makes a contribution to resolving this issue by using spectral 

data sources that address these different spatial and sampling scales but are still highly correlated spectrally. Each source contributes with a 

different component to the final mapping. The field spectral data provides validation by ground reference data, while the endmembers from 



the image provide a spatial overview with contiguous spectral data and the USGS spectral library ties the results to known mineralogy. The 

extraction of endmembers, as detailed in Section 2, has benefits over the use of spectra measured in the field or laboratory. 

The Pearson Correlation matrix using multi-source spectral data, i.e. image retrieved endmembers, field spectra and mineralogical  libraries 

has two major benefits: i) it provides mineralogical information to unknown spectra, and ii) it selects information from amongst a huge 

amount of spectral data, focusing on the subject of interest (in this case AMD) by using only the most relevant mineral assemblages. Thus, the 

required input spectra for mapping are minimized and correspond only to highly correlated spectra.  

In i), a lot of information is retrieved concerning the mineralogical content, which is coherent with field descriptions and with chemical 

analysis. Using detailed information about the type of mineralogical spectral library allows the extraction of further environmental knowledge 

of the minerals present, e.g. the type of goethites or jarosites.  

The fact that two types of maps are produced, i.e. field spectra and endmembers, and the final map is expressed in terms of the mineralogical 

assemblages’ intersection, also contributes to a better result, as contributions to the final result have come from two types of mapping.  

Finally, this methodology overcomes some of the difficulties encountered in previous studies, whereby image results are difficult to reconcile 

with field data, or have obscure mineralogical meaning, by minimising the gap among different spectral data, i.e., field (ASD FielsSpecPro), 

laboratory measurements (USGS  libraries) and airborne images (HyMapTM) data.  

6. Conclusions and final remarks 

The methodology applied provides a simple way of taking advantage of multi-source, multi-scale spectral data, highlighting and focusing 

immediately on the target of interest, whether for environmental or for exploration purposes. The USGS mineralogical spectral library (Clark 

et al., 1993; 2007) provides the link depicting the mineralogical assemblages contained in field spectra and image endmembers. This allows 

the target of interest to be focused on, by selecting only the high correlations of specific, relevant mineral assemblages. The quantitative 
correlation established to link these distinct spectral sources minimises the errors related to anomalous data. It is also a way of using ground 

reference data to improve the results of IS mapping, by creating two different types of maps, and using solely the identically classified pixels 

in both mapping outputs, i.e. image retrieved endmember and field spectra.  

In this specific test site, by detailing the mineralogical and spectral content of the data it has been possible to detect the exclusivity of an AMD 

signature based on mineralogical assemblages of copiapite with alunites, whether accompanied with a-smectite, illite or kaolinite, whereas 

jarosite was completely split into another class. This suggests that a significant pH threshold has been detected spectrally, extending the range 

of potential applications for IS data.    
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Figures 

Legends 

 

Figure 1. Methodological approach. 

 

Figure 2. a) General view of the area related to mining activities and main subareas for data collection overlayed on geocoded and mosaiced 

fligthlines of the HyMapTM sensor. b) Fligthline of detailed study area, black rectangle of 2a), with subset area and soil and spectra samples 

location (white squares, SD-S. Domingos). 

 

Figure 3. Examples of low pH minerals spectra from laboratory measurements (a), the field spectra (b) and image retrieved endmembers (c). 
Reflectance values are given in % in two digit numbers of the nearest spectrum. 

 

Figure 4. Spectral Angle Mapper algorithm of field spectra of Table II, and details of % and coefficient of variation (CV) of each class. Red-

yellow-brown colors show increase of pH values based on minerals associations. 

 

Figure 5. Spectral Angle Mapper algorithm of endmembers retrieved from the HyMapTM image. Legend key for minerals correlations in Table 

II, and details of % and coefficient of variation of each class. Red-yellow-brown colours show increase of pH values based on mineral 

associations. 

 

Figure 6. Mineralogical correlation (≥0.80) map of AMD with increasing pH from red through yellow to brown classes and average spectra 

below (normal-left,  and right-continuum removal- right) of the classes mapped. Two digit numbers in graphs correspond to reflectance values 

of the nearest spectrum. 
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Tables 

 

Table I. Minerals from the USGS spectral library (Clark et al., 1993) presenting high correlations and with Correlation Matrix Name (CMN) 
adopted.  

 

 

Table II. Correlation coefficients of field spectra (subareas of Figure 2. a) and endmembers expressed in USGS spectral library minerals 

following CMN nomenclature of Table I. 

 

Table III. Detail of input spectra, areas and coefficients of variation (CV) of the intermediate and final maps.  
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Figure 3. Examples of low pH minerals spectra from laboratory measurements (a), the high correlated field 
spectra (b) and image retrieved endmembers (c). Reflectance values are given in % in two digit numbers 

corresponding to the nearest spectrum. 

 

 



 

Figure 4. Spectral Angle Mapper algorithm of field spectra of Table II, and details of % and coefficient of 

variation (CV) of each class. Red-yellow-brown colors show increase of pH values based on minerals 

associations. 

 

 

 

 

Figure 5. Spectral Angle Mapper algorithm of endmembers retrieved from the HyMapTM image. Legend key for 

minerals correlations in Table II, and details of % and coefficient of variation of each class. Red-yellow-brown 

colours show increase of pH values based on mineral associations. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Mineralogical correlation (≥0.80) map of AMD with increasing pH from red through yellow to brown 

classes and average spectra below (normal-left and continuum removal- right) of the classes mapped. Two digit 

numbers in graphs correspond to reflectance values of the nearest spectrum. 

 

 

 

 

 

 

 

 

 

  



Table I. Minerals from the USGS spectral library (Clark et al., 1993) presenting high correlations and with 

Correlation Matrix Name (CMN) adopted.  

 

 

 

 

USGS Spectral library filename CMN USGS Spectral library filename CMN 

a-alunit 

a-jarosi 

a-smecti  

alunite1 

alunite2 

alunite3 

alunite4 

alunite5 

Copiapit 

chlorit4 

chlorit5 

chlorit6 

Ferrihyd 

goethit1 

goethit2  

goethit3 

goethit4 

Hematit1 

Hematit2 

Hematit3 

Hematit4 

Hematit5 

Hematit6 

Hematit7 

Hematit8 

Hematit9 

Hematite 

Hematitb 

Hematitc 

Jarosit1 

Jarosit2 

Ammonioalunite NMNH145596 

Ammonio-jarosite SCR-NHJ  

Ammonio-Smectite GDS86  

Alunite GDS84 Na03  

Alunite GDS83 Na63  

Alunite GDS82 Na82  

Alunite AL706 Na  

Alunite HS295.3B  

Copiapite GDS21  

Chlorite SMR-13.c 45-60um 

Chlorite SMR-13.d 30-45um  

Chlorite SMR-13.e <30um 

Ferrihydrite GDS75 

Goethite WS222 

Goethite HS36.3 

Goethite WS219  

Goethite WS220 

Hematite 2%+98%Qtz GDS76 

Hematite GDS27 

Hematite GDS69.a 150-250u 

Hematite GDS69.b 104-150u 

Hematite GDS69.c 60-104um 

Hematite GDS69.d 30-45um 

Hematite GDS69.e 20-30um 

Hematite GDS69.f 10-20um 

Hematite GDS69.g <10um 

Hematite HS45.3 

Hematite WS161 

Hematite FE2602 

Jarosite GDS99 K-y 200C 

Jarosite GDS98 K-Sy 90C 

aA 

aJ  

aS  

A1  

A2 

A3 

A4  

A5  

Co  

C4 

C5 

C6 

F  

G1  

G2  

G3 

G4 

H1  

H2 

H3 

H4 

H5 

H6 

H7 

H8 

H9 

Ha 

Hb 

Hc 

J1  

J2 

jarosit3  

jarosit4 

jarosit5 

jarosit6 

jarosit7 

jarosit8  

jarosit9 

kaolini1  

kaolini2 

kaolini3 

kaolini4 

kaolini5 

kaolini6 

kaolini7 

kaolini8 

illite1  

illite2 

illite3 

illite4 

illite5 

Lepidocr 

pyrite1 

pyrite2 

pyrite3 

pyrite4 

pyrite5 

quartz2 

quartz3 

quartz4 

Sulfur 

 

Jarosite GDS100 Na-Sy 90C  

Jarosite GDS101 Na-Sy 200 

Jarosite GDS24 Na 

Jarosite JR2501 K 

Jarosite NMNH95074-1 Na  

Jarosite WS368 Pb 

Jarosite SJ-1 H3O - 10-20% 

Kaolinite CM9  

Kaolinite KGa-1 (wxyl) 

Kaolinite KGa-2 (pxyl) 

Kaolinite KL502 (pxyl) 

Kaolinite GDS11 <63um 

Kaolinite CM3 

Kaolinite CM5 

Kaolinite CM7 

Illite GDS4 

Illite IMt-1.a 

Illite IMt-1.b <2um 

Illite IL101 (2M2) 

Illite IL105 (1Md) 

Lepidocrosite GDS80 (Sy) 

Pyrite HS35.3 

Pyrite S142-1 

Pyrite S26-8 

Pyrite S29-4 

Pyrite S30 

GDS31 0-74um fr 

Quartz HS32.4B 

Quartz GDS74 Sand Ottawa 

Sulfur GDS94 

 

J3  

J4 

J5  

J6 

J7  

J8 

J9 

K  

K2 

K3 

K4 

K5 

K6 

K7 

K8 

I1 

I2 

I3 

I4 

I5 

L 

Py1 

Py2 

Py3 

Py4 

Py5 

Q2 

Q3 

Q4 

S 



 

Table II. Correlation coefficients of field spectra (subareas of Figure 2. a) and endmembers expressed 

in USGS spectral library minerals following CMN nomenclature of Table I.  
 

FIELD SPECTRA ≥0.90 0.80≤N<0.90 

TE-73 

TE-90 

TE-92 

PN-103 

PN-103-6 

PS-137 

PS-138 

PS-149 

PS-151 

PS-152 

PS-154 

PS-155 

PS-157 

PS-158 

PS-163 

PN-175 

PN-176  

AC-203  

SD-210 

SD-212 

SD-225  

SD-246 

SD-248 

J(3,8) 

L,G3,J(2,3,6,7,8,9) 

J(2,3,6,8,9)L 

G(1,3,4),I5,J8,H(1,2),Q4,L,F 

G(1,3,4),H(1,2)J8 

L,G(1,3,4,H(1,2),Q4,J(6,7,8),I5 

J(2,3,9) 

Co,A3 

Co,A3 

A(1,3,5,),Co,aI 

A(1,3,5),Co,aI 

A(1,3,5),Co,Ai 

J(2,3,9) 

J(2,3,4,6,8) 

L 

F,G(1,3,4),I(1,5),J(6,7,8),L 

F,G(1,3,4),H(1,2),I5,J8,L,Q(3,4) 

 

F,G(1,3,4),H(b,c,1,2,9),I5,J8,L,Py2,Q4 

F,G(1,3,4),H(1,2),I5,J8,L,Q4 

 

F,G(1,3,4),H(1,2),I5,J(6,7,8),L 

F,G(1,3,4),G(3,4),H(c,1,2),I5,J(7,8),L,Q4 

J(2,4,5,6,7,9),Q(3,4), G(3,4),H1,L 

G(1,4),I(1,5).J(1,4,5),F,H1 

G(1,3,4),J(1,4,5,7),I1,F,H1 

J(3,4,5,6,7),H(a,b,c,8,9),Q(2,3),I1,C(5,6),Py2 

F,J(3,5,6,7),I1,Q(2,3),H(a,b,c,9),C6 

F,J(2,3,4,5,9),Q(2,3),I1,H(a,b,c,9),C6,Py2 

aJ,J(1,6) 

A(1,2,4,5,6)aA,aI,aS,I4,K(3,4) 

A(a,1,2,4,5,6),aI aS,I4,K(3,4,6) 

I4,A(a,2,4,6),S,K(1,2,3,4,5,6,7) 

I4,A(a,2,4,6),S,K(1,2,3,4,5,6,7) 

A(a,2,4,6),I4,aS,K(1,2,3,4,5,6,7) 

J(a,1,4,6,5,7,8),L,G3 

J(1,5,7,9),L,H1,G(1,3,4),I1,Q4 

J(2,3,4,5,6,7,8,9)G(1,3,4),H(1,2),I1,F,Q4 

C(4,5,6),H(1,2),J(2,3,4,5),Py2,Q(2,3,4) 

C6,H(a,b,c,8,9),I1,J(6,7),Py2,Q2 

A(a,1,3),aS,Co,I, K(2,3,6,7) 

C6,H(a,3,4,6,7,8),J(3,4,5,6,7),Q(2,3),Py5 

C6,H(a,b,c,8,9),I1, J(2,3,4,5,6,7,9), Py2,Q(2,3) 

Co,A(a,1,3) 

C6,H(b,c,3,8,9),I1,  J(2,3,4,5,9),Py2, Q(2,3,4) 

C6,H(b,3,7,8,9),I1, J(2,3,4,5,6,9),Py2, Q(2,3) 

ENDMEMBERS >=0.90 0.80=<N<0.90 

# A 

# B 

# C 

# D 

# E 

# F 

# G 

# H 

 

 

A(1,3),Co 

 

A(1,3,5,6),Co, aI 

 

aS,Co,aA,A3 

J(2,3,9),I1 

A(a,2,4,5,6),aI,as,I4,K(3,4,6,7)  

J(2,9) 

A(a,2,4),aS,I4, K(1,2,3,4,5,6,7) 

aJ,J(2,3,9),Q1 

F,G(3,4),H1,I1,J(2,3,6,7,8,9),L,Q4 

J(2,3,9),  Aj 




