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Abstract 

 

The thermal springs of Swaziland and adjacent KwaZulu Natal have, over the years, attracted attention 

from hydrogeologists, hydrochemists and structural geologists. While some of the springs in Swaziland 

are well known amenities, others are less well visited and some difficult to access. There are eleven warm 

springs in Swaziland discharging between 1 and 10 l/s from Precambrian age rocks; all are situated at or 

near valley bottoms.  The springs have surface discharge temperatures of between 25 and 52 
o
C and total 

dissolved solids concentrations less than 400 mg/l. In all cases the water is meteoric in origin.  

Geothermometry indicates that maximum temperatures up to 100 
o
C are achieved during circulation. If 

the average geothermal gradient is about 20 
o
C/km as recorded in a deep mine at Barberton, then this 

would require circulation up to a depth of several kilometres. However, it is likely that circulation 

bottoms at about 1 km, as pressure of overburden inhibits dilation of fractures at such depths and the 

excess temperature may derive from a locally enhanced geothermal gradient. The discharge water is 

young, with 
14

C ages of between 4000 and 5000 years.  

 

 

1. INTRODUCTION 

 
Swaziland straddles the eastern escarpment of the Precambrian Basement plateau with Precambrian 

granite exposed along the base of the escarpment, east of which Karoo sediments outcrop to form the 

Lowveld. Typical average borehole yield in the Precambrian Basement aquifer is 1.1 l/s with over a third 

of boreholes drilled yielding less than 0.5 l/s (UNITED NATIONS, 1989).  Prospects are better in the 

Karoo, particularly where it is disturbed by volcanic dykes, where borehole yields are sufficient to supply 

commercial irrigation schemes. Mwendera (2006) reports that modern borehole drilling is, in places, 

providing yields suitable for electric submersible pumps to supply rural water supply schemes.  Much use 

is also made of the available surface water resources. 

 

Groundwater flow systems are mostly shallow, and residence times are inferred to be in the order of tens 

of years. The cumulative groundwater discharge (cold springs and seepages) sustains some flow in the 

small streams on the plateau and the escarpment, even during extended dry seasons. Groundwater 

recharge is between 0.5 and 15% of average annual rainfall (PITEAU ASSSOCIATES, 1992). 

 

The thermal springs in Swaziland (Figure 1) have been described at eight locations, Mkoba, Ezulwini, 

Lobamba, Mawelawela, Ngwempisi, Mpopoma (sometimes referred to as Manzane, literally ‘hot spring 

in Siswati), Siphofaneni and Mbondela (Spargo, 1965; Hunter, 1968, Mazor et al., 1974).  In addition 

Madubula Thermal Spring was recorded on a 1920s mining concession map and two further springs, one 

at Fairview and the other at Mvuntshini, were located during geological field mapping in the late 1970s.  

The Ezulwini sources supply a therapeutic spa centre and the celebrated ‘Cuddle Puddle’, the springs at 

Lobamba are traditionally patronised by the Royal Family, while those at Siphofaneni are a tourist 

attraction.  Other springs are more remote and have attracted little attention. There are three additional 

springs in South Africa just south of the Swazi/South African border.  

 

This paper describes the thermal springs and their geological and topographical setting. It reviews the 

available chemical and isotopic data that have been applied as indicators of circulation temperature and 

likely circulation paths and discusses the tectonic setting for such circulation.  The objective is to assess 

the springs as a hydrochemical group and to comment on the likely circulation systems. 
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Figure 1. The Swazi thermal spring locations and adjacent Thermal 

sources in South Africa 

 

 

2. GEO-ENVIRONMENT OF THE SWAZI SPRINGS 

 
All the springs occur at or just above valley bottoms. All, therefore, offer the prospect of gravity driven 

circulation from a recharge zone at a higher elevation.  They all circulate in Precambrian crystalline rock 

and discharge comes mainly from fracture outcrop.  The last tectonic activity in the area was in Jurassic 

age and deep and dilated fracturing seems unlikely. Hartnady (1985), however, suggests that neotectonic 

activity may still be occurring and that there is a likely mantle hotspot near 30
o
S and 29

o
E. The tectonic 

origin of the lineaments at depth in the granitic terrain may relate to the continental plate riding over an 

oceanic ridge in the upper subduction zone (Kent, 1981). The major tectonic trends are north-south with a 

secondary north easterly trend best developed in the granodiorites.    

 

The spring locations, discharges and discharge temperatures are summarised in Table 1 and some sites 

offer multiple discharge points (Robins and Bath, 1979).  The spring waters range from odourless to a 

distinct sulphurous smell, some discharges have a white encrustation and some release gas bubbles.  The 

springs emanate from granite, granodiorite and gneiss, some through overburden material.  The discharge 

temperatures vary from 25 
o
C to 52 

o
C, with a mean of 41 

o
C, and the mean discharge is 2.5 l/s, the 

greatest discharge is 6 l/s at Mawelawela.  
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2.5 

Table 1. The thermal springs of Swaziland 

Spring Location Sources 
Discharge 

(l/s) 

Temperature 

(
o
C) 

Comments 

Mkoba 26
o
 03' S  31

o
 21' E north 

centre 

south 

      ) 

      ) 

1.5 

49 

48 

52 

Discharge from N-S oriented fractures in granite.  All 

three sources have sulphurous smell and occasional 

bubbles – no encrustation 

Mvuntshini 26
o
 22' S  31

o
 10' E 1 4.0 45 Migmatitic granite and gneiss, discharge through 

overburden.  Faint smell of H2S. 

Ezulwini 26
o
 24' S  31

o
 11' E upper 

spring 

seepage 

4.0 

2.0 

small 

37 

40 

40 

In granite gneiss. The upper source is a shallow well 

casing driven into a fracture containing a pump, the 

spring is 25 m away adjacent to a dolerite dyke 

Lobamba 26
o
 26' S  31

o
 12' E  

 

26
o
 27' S  31

o
 13' E 

Guest House 1 

Guest House 2 

3 (to SE) 

1.0 

2.0 

1.5 

48 

47 

43 

In weathered granodiorite. Slight sulphurous smell. 

Guest House sources 50 m apart and used for bathing. 

Mawelawela 26
o
 36' S  31

o
 10' E 1 6.0 35 Discharge from NW trending fracture in granite. 

Ngwepisi 26
o
 42' S  31

o
 12' E 1 3.5 46 Discharges beneath large granite boulder. Strong 

sulphurous smell and some encrustation 

Mpopoma 26
o
 58' S  31

o
 08' E 1 

2 

3.0 

1.0 

33 

33 

Discharge as seepages via overburden.  Strong 

sulphurous smell and slight encrustation. 

Mbondela 27
o
 03' S  31

o
 05' E 1 

2 

2.0 

0.5 

25 

28 

Issues from gneiss.  Sulphurous smell, bubbles and a thin 

encrustation on the surface 

Madubula 26
o
 42' S  31

o
 18' E north bank 

south bank 

2.0 

8.0 

52 

52 

In granite. Strong sulphurous smell, rising bubbles and 

slight encrustation 

Fairview 26
o
 11' S  31

o
 42' E 1 3.0 38 In alluvium over granodiorite into ponds 

Siphofaneni 26
o
 42' S  31

o
 41' E Men’s bath 

Women’s bath 

3.0 

3.0 

39 

39 

In overburden over granite. Slight sulphurous smell and 

bubbles rising. 
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The springs fall on two distinct lineaments (Figure 2) trending roughly north-north-east.  Springs in 

the Temperley (western) Lineament (Temperley, 1964; Kent, 1981) are from north to south: Mkoba, 

and in the Ezulwinin valley Mvuntshini, Ezulwini and Lobamba, then Mawelawela, Ngwempisis, 

Mpopoma and Mbondela.  15 km to the south south west across the border in South Africa are 

Sulphur Springs and Warm Bad but this major line of warm, springs continues into South Africa as 

far again to the south south west.   

 

The less well defined Eastern Line from north to south comprises Fairview, Siphofaneni and just 

across the border in the south south west the Onverwacht springs. The Eastern Line is parallel to the 

major swarm of intrusive dykes in the east of Swaziland. Madubula spring, however, is unique in that 

it is situated between the two spring line fracture or fault lineaments.  It is nevertheless likely that its 

location reflects fractures and faults that have allowed deep circulation.  Spargo (1965) accounts for 

the Mkoba spring discharge resulting from circulation in a north-south oriented fault.   

 

The lineaments clearly offer pathways for deep groundwater circulation.  Although the dominant 

tectonic trend is north south, there is also a subordinate, but likely deep seated, north-north-easterly 

trend particularly in the granodiorites.  

 

 
 

Figure 2. Thermal spring trend lines: the Eastern Line and the western 

Temperley Line 
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3. HYDROCHEMISTRY AND GEOTHERMOMETRY 

 
Mazor et al. (1974) show, mainly on the basis of stable isotopes, that the thermal spring waters are 

meteoric in origin. 
14

C age dating suggests a groundwater residence time of between 4000 and 5000 

years. The spring discharges are moderately mineralised with total dissolved solids <400 mg/l (Table 

2). The majority are Na-HCO3 type groundwaters while Madabula and Fairview are Na/Cl-HCO3 

type, both also slightly more mineralised than the other springs (Figure 3). The mineralisation is 

primarily due to silicate hydrolysis. The thermal sources along the Temperley Line are slightly less 

mineralised than those on the Eastern Line and less Cl dominated, possibly reflecting a slightly more 

mature circulating system than springs on the Eastern Line. Local non-thermal waters tend to be less 

mineralised than the thermal waters and are mainly Ca-HCO3 type but there is little evidence that 

mixing of shallow cold groundwaters occurs before the thermal waters emerge at the surface.  The pH 

of the spring waters ranges between 7.3 at Ezulwini to 9.7 at Mpopoma; the average pH is 8.2.  
 

 

Table 2. Major ion chemistry, measured discharge temperatures and inferred base level 

temperatures of the thermal waters (mg/l) 

Spring 
Measured 

temp. (
o
C) 

pH  Na K  Ca HCO3   SO4 Cl   F SiO2 
Chalcedony 

temp.  (
o
C) 

Temperley 

Line Mkoba 

 

52 

 

9.3 

 

37 

 

1.8 

 

1 

 

99 

 

8 

 

14 

 

7.2 

 

68.4 

 

88 

Mvuntshini 45 8.8 37 1.4 3 69 4 7 7.2 53.5 76 

Ezulwini 40 8.4 26 1.3 4 55 3 5 4.9 44.9 68 

Lobamba 48 9.0 44 1.4 3 77 5 19 8.1 59.9 82 

Mawelawela 35 8.4 41 1.4 3 95 4 9 5.4 42.8 66 

Ngwempisi 46 8.2 34 1.3 5 69 4 5 6.0 40.6 64 

Madubula 52 9.0 68 2.1 3 75 12 37 14.5 65.2 86 

Mpopoma 33 9.4 70 1.5 2 96 12 24 12.5 64.2 85 

Mbondela 27 - 40 2.2 3 77 7 9 6.0 46.0 69 

Sulphur 

Springs 

28 9.0 38 1.9 3 93 5 8 5.4 49.2 72 

Warm Bad 31 9.9 75 1.9 1 132 9 15 11.0 75.5 94 

Eastern Line 

Fairview 

 

38 

 

9.2 

 

106 

 

2.9 

 

2 

 

99 

 

17 

 

55 

 

21.0 

 

25.7 

 

45 

Siphofaneni 39 8.1 140 5.1 9 113 19 120 18.0 55.6 78 

Onverwacht 26 9.6 139 4.2 1 210 13 67 27.9 84.2 99 

 

The saturation indices with respect to calcite are close to or slightly less than zero.  The Ca
2+

 and 

HCO3
-
 levels are likely controlled by calcite equilibrium at temperatures approaching those of the 

surface discharges, assuming carbonate is available on the fracture walls.  Saturation indices with 

respect to fluorite are also close to zero which is normal for granitic terrain.  Chalcedony 

geothermometers (Amorsson, 1975) indicate base temperatures of between 60 and 100 
o
C.   

 

Spring temperature is notably consistent and indicative of a stable circulation environment.  Spargo 

(1965) recorded temperatures of 49, 53 and 53 
o
C at Mkoba whereas Robins and Bath (1979) recorded 

the same springs at temperatures of 49, 48 and 52 
o
C.  Variation in the middle spring temperature 
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results from its discharge through alluvium and likely mixing with river water, whereas the north and 

south springs emerge directly from bedrock.   

 
Figure 3. Thermal spring discharge major iron chemistry for springs  

in the Eastern trend line and in the Western or Temperley trend line 

 
 

Spring discharge is variable.  The Siphofaneni spring, for example, had changed from a recorded 

discharge of 1.9 l/s in the late 1960s (Hunter, 1968) to 6 l/s in the late 1970s (Robins and Bath, 1979) 

to only 0.6 l/s in the late 1980s (Dakin et al., 1988), the latter change possibly reflecting the onset of 

dryer conditions leading up to the drought of the early 1990s. Similar variation has been recorded at 

Mkoba, Lobamba and Mawelawela although the Ezulwini discharges have been remarkably constant. 

 

Dissolved gases in the discharge from one of the springs suggest oxygen and carbon dioxide have 

been depleted by oxidation and carbonation processes during circulation (Mazor et al., 1974).  Noble 

gases and stable isotopes show the waters to have been kept in closed circuit conditions and their 

concentrations suggest palaeotemperatures at the time of infiltration of between 21 and 31 
o
C, similar 

to contemporary summer rainy season temperatures.  

 

4. GROUNDWATER CIRCULATION 
 

Deep groundwater circulation results from gravity drainage from a high elevation recharge zone to 

discharge at valley bottom.  Once flow is established convection provides additional energy.  That all 

the spring sources occur at valley bottoms suggests association with structural lines of weakness, 

some in line with mapped features such as faults and fracture zones, others less obvious. 

 

The geothermal gradient is about 20 
o
C per km.  To achieve the observed circulation temperatures the 

spring waters need to penetrate to at least 1000 m depth, less if the geothermal gradient is enhanced 

within the thermal lineaments alluded to by Hartnady (1985).  Chalcedony geothermometry, however, 

indicates that maximum temperatures up to 100 
o
C are achieved during circulation. If the average 

geothermal gradient is only about 20 
o
C/km, as recorded in a deep mine at Barberton, then this would 
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require circulation up to a depth of several kilometres. It is, nevertheless, likely that circulation 

bottoms at about 1 km, as pressure of overburden inhibits dilation of fractures at such depths and the 

excess temperature may derive from a locally enhanced geothermal gradient caused by the fractures. 

The discharge water is young, with 
14

C ages of between 4000 and 5000 years. The flow velocity 

needed for groundwater to flow through a system of interconnected dilated fractures to a depth of 

1500 m and back in 5000 years is 0.6 m/yr.   

 

5. CONCLUSIONS 

 
The thermal springs of Swaziland and the adjacent springs in South Africa are a consistently weakly 

mineralised group of deep circulating groundwaters.  The groundwaters are NaHCO3 and Na/Cl-

HCO3 types. They fall within two distinct lineaments and there is some evidence that the Eastern Line 

may be less mature than the western Temperley Line.   

 

Assuming that the recharge element of the systems takes place at higher elevation than the discharge 

zones, a gravity driven flow system enhanced by convection allows continued circulation of 

groundwater. Circulation is likely to a depth of about 1 km although geothermometry suggests deeper 

circulation would be necessary, or a locally enhanced geothermal gradient, as base circulation 

temperatures are <100 
o
C.  The circulation period is about 5000 years. 

 

Acknowledgement: The author is grateful to Dr George Darling at BGS for calculating chalcedony 

geothermometer base temperatures and later reviewing the paper. 
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