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Abstract9

This paper derives an algebraic solution (the Geometric Series Solution; GSS) to replace

iterative runs of soil organic matter (SOM) models for initialisation of SOM pools. The

method requires steady-state / long-term-average series of plant input and soil climate driving

data. It calculates the values of SOM pools as if SOM models are iterated for a large number

of cycles. The method has a high computational efficiency because it is an explicit solution

to the calculations used to initialise the model and so requires a single iteration of the SOM

model. Under the premise that the iterative pool inputs can be derived analytically, the GSS

equations are applicable for other first-order-based SOM models. To illustrate applicability

the method is applied to the coupled JULES-ECOSSE model.

Keywords: Algebraic method, Model initialisation, Soil organic matter (SOM), Spin-up,10

the ECOSSE model, the JULES model11

∗Corresponding author at: Centre for Ecology & Hydrology, Maclean Building, Benson Lane, Crowmarsh
Gifford, Wallingford, Oxfordshire, OX10 8BB, U.K.; tel.:+44 1491 838800; fax: +44 1491 692424.

Email address: honman.wong.09@aberdeen.ac.uk ( H. Wong )

Preprint submitted to Ecological Modelling July 9, 2013



1. Introduction12

Process-oriented, multi-compartment models of soil organic matter (SOM) are useful tools

for studying the impact of global change on SOM. The majority of SOM models, including

the CENTURY (Parton et al., 1988), ECOSSE (Smith et al., 2010a), RothC (Jenkinson,

1990) and Yasso (Liski et al., 2005) models, are based on model compartments (pools) with

first-order decomposition kinetics. The defining characteristic of these is that the rate of

decomposition of each SOM pool is described as a first order reaction:

dS/dt = −kS (1)

in which S represents the amount of organic matter in the pool (kg m−2) and k is a de-

composition rate constant (s−1). Integrating over a time-step of length ∆t, the pool size is

updated as:

S(t+∆t) = [I + S(t)] exp(−k0 ∆t
∏

i

fi(Xi)) (2)

in which I is the material input to the pool over the time-step (kg m−2) and the rate constant13

is expressed as a standard value k0 which is adjusted by dimensionless functions fi of time-14

or space-varying environmental variables Xi (e.g. soil temperature and moisture).15

16

Initialisation of the SOM pools is an important step in any modelling study and is a17

non-trivial process. Incorrect initialisation can result in spurious trends when the model18

is run forward from the initial state. Early papers describing SOM models (Liski et al.19

(2005), Jenkinson (1990), Parton et al. (1988)) did not focus on spin-up techniques. Only20

recently have studies suggested numerical methods to address the issue (e.g. Thornton and21

Rosenbloom (2005), Lardy et al. (2011), Xia et al. (2012)). There are two important issues22

that users of SOM models need to be aware of. Firstly, the pools in most SOM models23

are conceptual. Although it is possible to relate the initial states of the pools to physical24
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measurements, as illustrated by Zimmermann et al. (2007), such data are often not available,25

particularly for large-scale studies (Yeluripati et al., 2009). Secondly, first-order based SOM26

models have an in-built tendency to establish an equilibrium state in which inputs to each27

pool balance losses. When the pools are not at equilibrium they will tend to move towards28

equilibrium despite constant driving data (e.g. climate). Such transient changes can be dif-29

ficult to interpret and may obscure the underlying behaviour in studies of the response of30

SOM to environmental change and so the assumption that the initial state is in equilibrium31

is commonly used. Despite this, the steady-state assumption can be challenged (e.g. Wutzler32

and Reichstein (2007)) since soils experience legacy effects for decades or even centuries after33

an external change.34

35

In practical terms, the most common approaches used to bring C and N pools to steady36

state are to use a long run of the model so as to allow the pools to approach equilibrium37

(Lardy et al., 2011) or to fit the model pool sizes iteratively. The first approach requires a38

model simulation of hundreds to thousands of years for recalcitrant SOM pools (Wutzler and39

Reichstein, 2007) due to the slow rate constant. Because reliable driving data (e.g. meteorol-40

ogy) are rarely if ever available for hundreds of years, modelers commonly cycle repeatedly41

through a shorter time series of driving data (e.g. a single year of long-term average climate42

data). Increasingly, SOM models are being coupled with climate and land surface models43

to explore environmental changes in the coupled land-atmosphere system. These models44

are often run on high temporal resolutions (e.g. sub-daily time-steps) and, for land surface45

models, high spatial resolution (e.g. 1km2). This is computationally demanding, even with46

modern computer technology, making it all the more important to identify computationally47

efficient methods for model initialisation.48

49

To reduce the demand for computational resources, Thornton and Rosenbloom (2005)50

suggest the Accelerated Decomposition method in which decomposition rate constants can51
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be linearly scaled to allow a faster turnover of SOM pools. Lardy et al. (2011) and Xia et al.52

(2012) analytically derive a set of equations and apply matrix-based formulation to accelerate53

iteration of SOM models. It is reported that these methods can reduce the computational54

time to 63%-96% dependent on the model set-ups and levels of acceptable errors. Despite55

the reduction in computational time, there is still a demand for continuing research because56

(1) the published methods are mainly approximation schemes that either require extra er-57

ror analysis or require some more iterations to close the difference between the approximate58

results and the exact steady-state; (2) the published methods are implicit methods and the59

form of relationship between the inputs (e.g. plant inputs, soil climate data) and the out-60

puts (i.e. steady-state SOM pool sizes) is not revealed. To derive an explicit solution to61

initialisation, this paper uses two assumptions (listed below) and applies algebra to derive62

the Geometric Series Solution (GSS) method. The GSS method has a high computational63

efficiency because it requires only a single iteration of the SOM models to solve the steady-64

state pool sizes without approximation. To illustrate the application of the method, results65

from a particular model are provided, but we emphasise that the method can be more widely66

applicable. The two assumptions are:67

68

Assumption 1 Other parts of the model (e.g. plant inputs to the soil) are prescribed as69

fixed series so as to avoid the extra complications introduced if those inputs are themselves70

a function of SOM. This assumption implies that the GSS method is not yet applicable for71

studies of combined initialisation of SOM and vegetation (see Hashimoto et al. (2011)).72

73

Assumption 2 When SOM models achieve steady-state (i.e. flows between pools become a74

fixed series), the model architecture allows derivation of input series to each pool from plant75

inputs.76

77
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2. Methods78

2.1. Model description and analytical derivation of pool inputs79

In this paper we develop and illustrate the method using the JULES-ECOSSE model,80

which couples a land surface model (JULES) with a model of SOM (ECOSSE). The land81

surface model simulates the temperature and water state of the soil and vegetation and pro-82

vides the SOM model with estimates of the inputs of C and N to the soil. The SOM model83

then simulates the turnover of C and N in the soil, and the emissions of greenhouse gases84

(including carbon dioxide, nitrous oxide and methane) from the soil. Brief details of both85

models are provided here.86

87

The Joint UK Land Environment Simulator [JULES, Best et al. (2011), Clark et al.88

(2011)] is a process-based model that simulates the fluxes of carbon, water and energy be-89

tween the land surface and the atmosphere, and also describes subsurface fluxes of heat and90

moisture in the soil. JULES represents the land surface as nine land cover types, including91

five plant functional types, and applies a multi-layer canopy scheme for light interception, a92

coupled scheme of leaf photosynthesis and stomatal conductance, and growth and population93

dynamics among the plant functional types. The process-based descriptions of key ecological94

processes provide the key inputs required by the SOM models.95

96

The Estimation of Carbon in Organic Soils - Sequestration and Emissions model (ECOSSE)97

is based on the four-pool scheme of the RothC model (Jenkinson, 1990) and adds nitrogen98

components, simulation of methane, dissolved organic carbon (DOC) and dissolved organic99

nitrogen (DON), and more detailed representations of SOM dynamics in organic soils. De-100

tailed descriptions of ECOSSE can be found in Smith et al. (2010a,b).101

102

The four-pool scheme includes pools of decomposable and resistant plant materials (DPM103

and RPM), biomass (BIO) and humus (HUM). Each pool has both carbon and nitrogen com-104
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ponents which are linked by parameterized carbon-nitrogen ratios. The defining characteristic105

of each pool is its specific decomposition rate constant in Table 1. The decomposition at106

each time-step is a first-order process (Equations (1) and (2)) with the amount of decom-107

position depending on the decomposition rate constant and environmental rate-modifying108

factors including soil temperature, soil moisture, soil oxygen level and soil pH. All decompos-109

ing fractions of the pools become decomposing materials (D). For carbon components, the110

decomposing materials are partitioned into respired soil CO2 and CH4 fluxes, leached DOC111

or immobilized to BIO and HUM pools. The simplified four-pool scheme are illustrated in112

Fig. 1. As the organic carbon and nitrogen components of each SOM pool are linked by113

parameterized carbon-nitrogen ratios in the model, the nitrogen pools can be initialised from114

the initial carbon pools.115

116

Table 1: Default values of pool-specific decomposition rate constants of SOM pools. The
pools are decomposable and resistant plant material (DPM, RPM), biomass(BIO) and hu-
mus(HUM).

DPM RPM BIO HUM
pool-specific decomposition rate constant (year −1) (k0) 10.00 0.30 0.67 0.02

Plant litter (P)

RPMDPM

Pool inputs

Decomposition

CH4

CO2
BIO

HUM

Decomposing 

materials (D)
DOC

Closs

X pClossEq. 4, 5

117

Figure 1: The simplified four-pool scheme118

In a steady state, the inputs to each pool can be derived analytically from the (steady-119
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state) inputs of plant material. The DPM and RPM pools are augmented directly by the120

incoming plant materials (P ). The partition of P between the DPM and RPM pools is de-121

scribed by a constant parameter which only depends on plant functional type (and hence is122

constant for steady-state plants).123

124

It takes more analytical steps to find the steady-state inputs to BIO and HUM pools125

because, as well as been augmented by decomposition of DPM and RPM, decaying BIO126

and HUM creates fresh BIO and HUM. More SOM in the BIO and HUM pools results127

in greater amounts of decomposing materials, which in turn cause higher inputs to these128

pools. To derive the final steady-state inputs to these pools we note that the ECOSSE129

model is structured so as to partition decomposing materials into carbon lost (Closs) to the130

environment as CO2, CH4 or DOC and carbon immobilized (Cimmobilized) to the BIO and131

HUM pools. The partition ratio (E) between Closs and Cimmobilized is a function of soil clay132

percentage (clay) which is an input to the model and generally is assumed to be constant in133

time.134

E =
Closs

Cimmobilized

= 1.67× (1.85 + 1.6× e−0.000786×clay) (3)

We define the ratios of Closs and Cimmobilized with respect to decomposing materials (D) as135

pCloss =
Closs

D
=

E

1 + E
(4)

pCimmobilized
=

Cimmobilized

D
= 1.0− pCloss = 1.0−

E

1 + E
(5)
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Based on empirical work, a constant ratio (X) is used to partition the immobilized carbon136

that goes into the BIO (CimmobilizedBIO
) and HUM pools (CimmobilizedHUM

):137

X =
CimmobilizedBIO

CimmobilizedHUM

= 0.85 (6)

We now make use of the definition of a steady state, namely that the input of plant ma-138

terials (P ) balances Closs, so that Eq. 4 can be rearranged to find D in terms of the known139

P and pCloss. The time series of Cimmobilized can then be calculated by rearranging Eq. 5 and140

finally the time series of inputs to the BIO and HUM pools can be derived by partitioning141

Cimmobilized using X.142

143

In summary, the structure of the JULES-ECOSSE model allows steady-state series of144

pool inputs analytically derived from plant inputs. This allows the derivation of the GSS145

method in Section 2.2.146

147

2.2. The Geometric Series Solution Method148

As discussed previously, the iterative method for initialisation requires the SOM model149

to be run for a large number of cycles with a given set of input data. This procedure is150

illustrated on the left of Fig. 2. The proposed GSS method (on the right of Fig. 2) replaces151

the iteration by first calculating the steady-state pool inputs and then applying the GSS152

equations (described below).153
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Run land surface models to equilibrium 

for physics and vegetation

Output simulated data (e.g. soil climate, plant 

inputs) of one spin-up cycle to drive SOM models

Run SOM model for one cycle

to calculate decomposition terms

Iterative method: The GSS method:

Iterate SOM models  for 

a large number of spin-up cycles (m)

to calculate decomposition terms

Analytically calculate pool inputs 

from plant inputs

Implement the GSS equations 

(Eq.8,9)

Spun-up SOM pools
154

Figure 2: The comparison of steps between the iterative method and the GSS method155

As the aim of the GSS method is to reproduce the results of the iterative method with less156

computational expense, the derivation of the GSS equation takes the results of an iterative157

run as the starting point. The derivation below is for any one pool and we will consider m158

cycles each of n time-steps. A value for time-step j in cycle i is indicated by subscripts i,j .159

Considering the fate of the incoming material that is input during the first time-step of the160

first cycle (I1,1), the part of the inputs that remains undecomposed after the first time-step is161

I1,1 exp(−k1,1), where k1,1 is the decay coefficient given the environmental conditions for that162

time-step. Each time-step adds a further exponential term, so that by the end of the first cy-163

cle (after n time-steps) the part of I1,1 that remains undecomposed is I1,1e
−k1,1e−k1,2 . . . e−k1,n .164

165

At the end of the first cycle, the inputs from any time-step j which have not decomposed166

are I1,je
−k1,je−k1,j+1 . . . e−k1,n . Table 2 illustrates the terms across m cycles.167

168
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Table 2: Undecomposed pool inputs at the completion of an iterative run. Rows denote the
spin-up cycles i = 1,m while columns describe the time-steps j = 1, n within a cycle. Further
details are in the text.

j
1 2 . . . n

1

I11e
−k11e−k12 . . . e−k1n

e−k21e−k22 . . . e−k2n

...
e−km1e−km2 . . . e−kmn

I12e
−k12 . . . e−k1n

e−k21e−k22 . . . e−k2n

...
e−km1e−km2 . . . e−kmn . . .

I1ne
−k1n

e−k21e−k22 . . . e−k2n

...
e−km1e−km2 . . . e−kmn

i

2

I21e
−k21e−k22 . . . e−k2n

...
e−km1e−km2 . . . e−kmn

I22e
−k22 . . . e−k2n

...
e−km1e−km2 . . . e−kmn . . .

I2ne
−k2n

...
e−km1e−km2 . . . e−kmn

...
...

...
...

m Im1e
−km1e−km2 . . . e−kmn Im2e

−km2 . . . e−kmn . . . Imne
−kmn

In Table 2, rows (and the first subscript on terms) represent the ith spin-up cycle, while169

columns (and the second subscript) represent time-steps within a cycle. Each entry can be170

broken down into a head and a tail. The head (Ii,j) represents the input to the pool during171

a given time-step, while the tail (e−ki,je−ki,j+1 . . . e−kmn) represents the decomposition terms172

associated with the input from its entry until the end of the spin-up run.173

174

For any time-step j, when the spin-up run is complete after m cycles the contribution175

to the remaining SOM is found by summing the terms in column j. Because the inputs176

and the environmental conditions that affect decomposition are the same for every cycle (i.e.177

Ii,j = Il,j and ki,j = kl,j ∀ i and l ), the subscript i can be dropped.178

179

For any time-step (i.e. column in Table 2), the sum of the column (Cj) is

Cj = Ij(e
−kje−k(j+1) . . . e−kn)(1 + e−ka + e−2ka + · · ·+ e−(m−1)ka) (7)
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where e−ka = e−k1e−k2 . . . e−kn represents the decomposition across a full cycle.180

181

The sum of exponential terms in the final bracketed term in Eq. 7 is an exponential series182

e−ka + e−2ka + · · ·+ e−(m−1)ka =
(1− e−mka)

(1− e−ka)
− 1 (8)

, as proved in Appendix A. Substituting into Eq. 7 gives183

Cj = Ij(e
−kje−k(j+1) . . . e−kn)(1− e−mka)/(1− e−ka) (9)

To recap, Cj is the amount of material input during the jth time-step of each spin-up184

cycle that remains in the pool after m cycles.185

186

The sum of all columns represents the SOM in the pool at the end of the spin-up run:

Sfinal =
n∑

j=1

Cj (10)

In summary, to calculate the final SOM in a pool the GSS method requires an array187

of the inputs to the pool at each time-step in a cycle (I1, I2 . . . , In) and the associated de-188

composition terms (ek1 , ek2 . . . , ekn). For each time-step j = 1, n, Eq. 9 is used to sum all189

undecomposed pool inputs across all spin-up cycles, then Eq. 10 gives the final value of the190

pool at the end of the spin up run. The m cycles each of n time-steps required by the ‘brute191

force’ iterative method is replaced in the GSS method by a single cycle from which the input192

and decomposition terms are saved and then used in Eq. 10.193

194
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3. Applications and illustrative results195

3.1. Data196

To illustrate the application of the GSS method this paper uses a simulation by the197

JULES-ECOSSE model forced by an updated version of the WATCH Forcing Data (Weedon198

et al., 2011) which provides the meteorological data required by JULES. A single year of199

meteorological data averaged over all cells in the United Kingdom is used. For present200

purposes JULES and ECOSSE are run with one-way coupling, i.e. JULES calculates the201

state of the ‘physical’ environment and passes this information to ECOSSE, with no feedback202

from ECOSSE. The steps of the process are:203

1 Spin up the physics and vegetation of JULES to steady state. This defines the time204

series of steady-state plant inputs (P ) to the soil, one value for every timestep in the205

year.206

2 Calculate the time series of steady-state inputs to each pool (I). For the DPM and207

RPM pools these are simple fraction of P . For the BIO and HUM pools the inputs are208

calculated using Equations (4) to (6).209

3 Calculate the exponential terms for each timestep, describing how environmental con-210

ditions modify the decomposition rate (see Eq. (2))211

4 Apply Equations (9) and (10) to calculate the SOM in each pool at steady state.212

3.2. Results213

The fast reaction rate constants allow the DPM and BIO pools to spin up quickly, even in214

the iterative run, meaning that relatively little time is saved for those pools by using the GSS215

method. The real advantage of the GSS method is for the more slowly-evolving RPM and,216

particularly, HUM pools. The HUM pool takes more than 200 years to reach equilibrium, so217

the GSS method saves at least 200 repetitions of the model when compared to the iterative218

method in this example. The spin-up results by the iterative method and the GSS method219
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are compared for RPM and HUM pools in Fig. 3. Both pools are assumed to be zero at the220

beginning of the spin-up process.221

222

In this examples JULES was driven by repeating the single year of meteorological data223

until the vegetation and soil physical state had reached equilibrium. The data from JULES224

were then fed into ECOSSE which was spun up using both the iterative and GSS methods.225

The resulting estimates of the pools are shown in Fig. 3 in which the solid lines represent226

the amounts of SOM after different numbers of spin-up cycles (each one year long) from the227

iterative run, while the triangles represent discrete results of the GSS method (with the value228

of m increasing with time).229

230

For the RPM pool, the results between the two methods match at any point of spin-up231

cycle (including both equilibrium and non-equilibrium stages). For the HUM pool, the re-232

sults converge when the number of spin-up cycle increases. The underlying reasons are that233

the steady-state pool inputs to RPM are simply a part of the constant plant inputs whereas234

the inputs to the HUM pool need to run for a number of cycles (approximately 250 cycles235

in this example) to become stable (see Section 2.1). As the GSS method is used to find the236

equilibrium values of SOM pools, the divergence between the methods at the earlier cycles237

does not affect the equilibrium results. However, users should be aware of this characteristic238

and set m to suitably large values (e.g. m = 1000 cycles) when the GSS method is applied.239

240
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Figure 3: Values of SOM pools (kgC/Nm−2) modeled by the iterative method (solid line)
and the GSS method (triangle). Left: RPM pool; Right: HUM pool.242
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As a further test the pools calculated by the GSS method for m=1000 were used to ini-243

tialise a further run of the model, which was then analysed using the additive time series244

model xt = mt + st + zt in which m, s and z represent trend, seasonal and random error245

components respectively and Subscript t is time-step. The seasonal component was found to246

account for all of the variation of SOM, while there was no trend even for the HUM pool,247

confirming that the GSS method had correctly spun up the pools to equilibrium.248

249

4. Discussion & Conclusion250

Many papers describing SOM models (e.g. Liski et al. (2005); Jenkinson (1990); Parton251

et al. (1988)) do not describe initialisation methods in detail. Different methods have been252

used to initialise the SOM pools and, without explicit proof of the methods and their suitabil-253

ity, errors introduced from the initialisation can eventually interfere with the interpretation of254

model results. It is only relatively recently that studies have appeared that explicitly address255

the issue of spin up (e.g. Thornton and Rosenbloom (2005); Lardy et al. (2011); Xia et al.256

(2012)). Different modelling teams use different techniques because model structures differ257

and the models are executed under different assumptions and for different purposes. With258

this background, there is an ongoing need to explore and expand the available methods, and259

possibly to seek a small set of methods that are generally applicable.260

261

The main characteristics of the GSS method is the application of the explicit equations262

(Equations (9) and (10)). This reveals the form of relationship between the values of the263

spun-up pools and the driving determinants (i.e. series of pool inputs and soil climate). The264

explicit equations allow high computational efficiency: (1) it does not require alteration of265

the science encoded in a model; (2) it does not involve complicated numerical methods; (3)266

it requires only that Equations (9) and (10) are implemented, which can be done in around267

50 lines of code; (4) the reduction in computational resource use is probably maximal as268

14



the method requires a single iteration of the SOM model; (5) as the GSS method is not an269

approximation scheme of the types suggested by Lardy et al. (2011) and Xia et al. (2012), it270

does not require error analysis. The derivation of the equations (Equations (9) and (10)) is271

not model-specific and the equations are applicable to first-order-based (Equation (1)) SOM272

models. The general applicability of this method depends on whether a model structure273

allows iterative pool inputs to be derived from other known values. In Section 2.1 it is shown274

that the JULES-ECOSSE model satisfies this requirement. This is mainly a consequence of275

the use of non-time-varying ratios to partition plant inputs and decomposing SOM in the276

model, which might also hold for other SOM models.277

278

As described, the GSS method only describes the spin up of SOM pools and assumes279

that the vegetation (and hence plant inputs) are in a steady state. The simultaneous initial-280

isation of both SOM and vegetation is complicated by the close two-way coupling between281

those components. The assumption of steady-state plant inputs might not hold in modelling282

studies that consider the influence of nitrogen limitation on plant growth during the spin-up283

stage. We recommend further research into how to relax the requirement for steady-state284

plant inputs and the combined initialisation of SOM and vegetation (see Hashimoto et al.285

(2011)).286

287

Of course no method for model initialisation can guarantee that the SOM amounts in288

the spun-up state will closely match those measured at any given site. Amongst other pos-289

sible sources of error, simplified model representation of the science and the quality of the290

input data can both affect results. Aside from those, care is also required to ensure that the291

environmental conditions (e.g. meteorology) assumed during the spin-up are representative292

of a long term average. For example, if a hotter-than-average year is chosen for the spin-up293

data this will tend to result in faster SOM turnover and under-estimated values of SOM294

pools. In most cases a multi-year average of meteorological data should be used to improve295

15



representativeness.296

297

The large reduction of computational time required for spin up allows the resources to be298

spent instead on research that might otherwise have been too computationally demanding,299

given that for many studies of SOM evolution over timescales of 10s to 100 years the spin300

up phase can consume the majority of the computational time. For example, high spatial301

resolution, ensemble runs and sensitivity analysis using multiple sets of parameters are easier302

given an efficient initialisation method, such as the GSS method.303

304

5. Reference305

Best, M., Pryor, M., Clark, D., Rooney, G., Essery, R., Menard, C., Edwards, J., Hendry,306

M., Gedney, N., Mercado, L., Sitch, S., Blyth, E., Boucher, O., Cox, P., Grimmond, C.,307

Harding, R., 2011. The JULES, Model description - Part. 1: Energy and water fluxes.308

Geoscientific Model Development Discussions 4, 595–640.309

Clark, D., Mercado, L., Sitch, S., Jones, C., Gedney, N., Best, M., Pryor, M., Rooney,310

G., Essery, R., Blyth, E., Boucher, O., Harding, R., Cox, P., 2011. The JULES, Model311

description - Part. 2: Carbon fluxes and vegetation. Geoscientific Model Development312

Discussions 4, 641–688.313

Hashimoto, S., Wattenbach, M., Smith, P., 2011. A new scheme for initializing process-based314

ecosystem models by scaling soil carbon pools. Ecological Modelling 222, 3598 – 3602.315

Jenkinson, D. S., 1990. The Turnover of Organic-Carbon and Nitrogen in Soil. Philosophical316

Transactions of the Royal Society of London Series B-Biological Sciences 329, 361–368.317

Lardy, R., Bellocchi, G., Soussana, J.-F., 2011. A new method to determine soil organic318

carbon equilibrium. Environmental Modelling and Software 26, 1759–1763.319

16



Liski, J., Palosuo, T., Peltoniemi, M., Sievanen, R., 2005. Carbon and decomposition model320

YASSO for forest soils. Ecological Modelling 189, 168–182.321

Parton, W., Stewart, J. W. B., Cole, C. V., 1988. Dynamics of C, N, P and S in Grassland322

Soils – a Model. Biogeochemistry 5, 109–131.323

Smith, J., Gottschalk, P., Bellarby, J., Chapman, S., Lilly, A., Towers, W., Bell, J., Coleman,324

K., Nayak, D., Richards, M., Hillier, J., Flynn, H., Wattenbach, M., Aitkenhead, M.,325

Yeluripati, J., Farmer, J., Milne, R., Thomson, A., Evans, C., Whitmore, A., Falloon,326

P., Smith, P., 2010a. Estimating changes in Scottish soil carbon stocks using ECOSSE. I.327

Model description and uncertainties. Climate Research 45, 179–192.328

Smith, J., Gottschalk, P., Bellarby, J., Chapman, S., Lilly, A., Towers, W., Bell, J., Coleman,329

K., Nayak, D., Richards, M., Hillier, J., Flynn, H., Wattenbach, M., Aitkenhead, M.,330

Yeluripati, J., Farmer, J., Milne, R., Thomson, A., Evans, C., Whitmore, A., Falloon, P.,331

Smith, P., 2010b. Estimating changes in Scottish soil carbon stocks using ECOSSE. II.332

Application. Climate Research 45, 193–205.333

Thornton, P., Rosenbloom, N., 2005. Ecosystem model spin-up: Estimating steady state334

conditions in a coupled terrestrial carbon and nitrogen cycle model. Ecological Modelling335

189, 25–48.336

Weedon, G., Gomes, S., Viterbo, P., Shuttleworth, W., Blyth, E., Osterle, H., Adam, J.,337

Bellouin, N., Boucher, O., Best, M., 2011. Creation of the WATCH Forcing data and its338

use to assess global and regional reference crop evaporation over land during the twentieth339

century. J. Hydrometerol. 12, 823–848.340

Wutzler, T., Reichstein, M., 2007. Soils apart from equilibrium consequences for soil carbon341

balance modelling. Biogeosciences 4, 125–136.342

Xia, J., Luo, Y., Weng, E., Hararuk, O., 2012. A semi-analytical solution to accelerate343

17



spin-up of a coupled carbon and nitrogen land model to steady state. Geoscientific Model344

Development Discussions 5, 803–836.345

Yeluripati, J., van Oijen, M., Wattenbach, M., Neftel, A., Ammann, A., Parton, W., Smith,346

P., 2009. Bayesian calibration as a tool for initialising the carbon pools of dynamic soil347

models. Soil Biology and Biochemistry 41, 2579–2583.348

Zimmermann, M., Leifeld, J., Schmidt, W., Smith, P., Fuhrer, J., 2007. Measured soil organic349

matter fractions can be related to pools in the RothC model. European Journal of Soil350

Science 58, 658–667.351

6. Acknowledgement352

P. Smith is a Royal Society-Wolfson Research Merit Award holder.353

18



7. Appendix A – Algebraic proof of Eq. (8)354

Proof of exponential series for Eq. (8):355

356

Let S be Eq. (11), then exS be Eq. (12).

S =
N−1∑

n=0

enx = e0 + ex + e2x + · · ·+ e(n−1)x (11)

exS =ex(e0 + ex + e2x + · · ·+ e(n−1)x) (12)

=ex + e2x + · · ·+ enx

exS − S results in Eq. (13)357

exS − S = ex + e2x + · · ·+ enx

− (e0 + ex + e2x + · · ·+ e(n−1)x)

= −e0 + enx

= enx − 1

(13)

Eq. (14) can then be derived from Eq. (13):

exS − S = enx − 1

S(ex − 1) = enx − 1

S =
enx − 1

ex − 1

S =
−(1− enx)

−(1− ex)

S =
(1− enx)

(1− ex)
=

N−1∑

n=0

enx = e0 + ex + e2x + · · ·+ e(n−1)x

(14)
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Starting from n = 1 instead of n = 0, e0 is removed from S in Eq. (14). It results in

Eq. (15):

N−1∑

n=1

enx = S − e0 =
(1− enx)

(1− ex)
− e0 =

(1− enx)

(1− ex)
− 1 (15)
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