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ABSTRACT

During the past decades large-scale models have been developed to simulate global and continental terrestrial

water cycles. It is an open question whether thesemodels are suitable to capture hydrological drought, in terms of

runoff, on a global scale. Amultimodel ensemble analysis was carried out to evaluate if 10 such large-scalemodels

agree on major drought events during the second half of the twentieth century. Time series of monthly pre-

cipitation,monthly total runoff from 10 global hydrologicalmodels, and their ensemblemedian have been used to

identify drought. Temporal development of area in drought for various regions across the globe was investigated.

Model spread was largest in regions with low runoff and smallest in regions with high runoff. In vast regions,

correlation between runoff drought derived from the models and meteorological drought was found to be low.

This indicated that models add information to the signal derived from precipitation and that runoff drought

cannot directly be determined from precipitation data alone in global drought analyses with a constant aggre-

gation period. However, duration and spatial extent of major drought events differed between models. Some

models showed a fast runoff response to rainfall, which led to deviations from reported drought events in slowly

responding hydrological systems. By using an ensemble of models, this fast runoff response was partly overcome

and delay in drought propagating from meteorological drought to drought in runoff was included. Finally, an

ensemble of models also allows for consideration of uncertainty associated with individual model structures.

1. Introduction

Drought is a natural hazard that occurs at the land

surface all over the world and can have large economic,

social, and environmental impacts (Wilhite 2000).

Drought is defined as a period of below-average natural

water availability caused by low precipitation and/or

high evaporation rates. It is characterized as a deviation

from normal conditions of the physical system (climate

and hydrology), which is reflected in variables such as

precipitation, soil moisture, groundwater, and stream-

flow (Tallaksen and van Lanen 2004; Wilhite 2000). Dry

areas worldwide have been expanding in recent decades

and are expected to continue to do so in the near future

(Dai 2011; Romm 2011; Fraser et al. 2013), leading to

more severe impacts of drought events. In the twenty-

first century, drought may intensify in parts of Europe,

central North America, Central America and Mexico,
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northeast Brazil, and southern Africa (Seneviratne et al.

2012). To reduce impacts of drought, thorough knowl-

edge regarding its space–time development both for the

current and future climates is essential.

Long time series of hydrometeorological variables are

needed for drought analysis. At the global scale, observed

time series are usually not available. Instead, large-scale

models can be used to simulate global and continental

terrestrial water cycles. In principle, results from large-

scale models offer possibilities for hydrological drought

analyses (drought in runoff), although certain limitations

are expected, depending on the model and data used. For

example, any given model is unlikely to be able to accu-

rately simulate runoff for all regions of the globe, the

models used in this study are typically run at 0.58 reso-
lution, and model performance/ability is somewhat con-

tingent upon the quality of the input data that are used for

calibrating, validating, or forcing the model.

To reduce the influence caused by a single-model

structure, multimodel drought analyses provide a promis-

ing way forward. Results of 11 global models were used in

the Water Model Intercomparison Project (WaterMIP).

Haddeland et al. (2011) investigated whether land surface

models and global hydrological models showed consistent

differences in their simulations of the water cycle by

looking at the hydrological regimes (e.g., mean monthly

values) compared to observations and global statistics.

They concluded that ‘‘the models gave a large range in

global and regional water flux and storage terms.’’ No clear

differences were found between the two groups of models.

Because of uncertainty caused by the differences between

model results, Haddeland et al. (2011) recommend using

multiple models instead of a single model realization when

studying climate change impacts. However, it has not yet

been determined whether multimodel analyses provide

suitable data for the analysis of global hydrological ex-

tremes, such as drought.

Sheffield et al. (2009) used a single large-scale model,

Variable Infiltration Capacity (VIC), to simulate soil

moisture globally. From simulated series, they calcu-

lated soil moisture drought characteristics and in-

vestigated the spatial extent of soil moisture droughts

over the globe. Andreadis et al. (2005) also employed

the VIC model to simulate time series of soil moisture

and runoff and studied associated drought over the

continental United States, which was extended to

a multimodel analysis by Wang et al. (2009). Wang et al.

(2011) examined large-scale soil moisture drought

events and trends for China using a similar set of models.

In a global study, Corzo Perez et al. (2011) investigated

results of hydrological drought approaches with the

global hydrological model WaterGAP. However, a spa-

tiotemporal characterization of global hydrological

drought (e.g., runoff and streamflow) from amultimodel

ensemble is lacking.

Multimodel studies have been carried out for Europe

by Prudhomme et al. (2011), Gudmundsson et al.

(2012a,b), and Stahl et al. (2012). Prudhomme et al. (2011)

assessed the ability of three global, gridded hydrological

models to simulate large-scale high- and low-flow events in

a comparison with catalogues of historical droughts and

high flows derived from discharge observations across

Europe. According to Prudhomme et al. (2011) there was

a reasonable similarity between observed and simulated

drought, while it was recommended that differences be-

tween the various model outputs and observations should

be taken into account in further studies. They also con-

cluded that ‘‘model behavior and the ability to reproduce

hydrological processes may be very different in differ-

ent climate regimes’’ (Prudhomme et al. 2011, p. 1202).

Gudmundsson et al. (2012a,b) compared an ensemble of

nine large-scale hydrologicalmodels to observed discharge

for small catchments in Europe to quantify the uncertainty

in model simulations. One of their main conclusions was

that, despite the large spread in model performance, ‘‘the

ensemble mean is a pragmatic and reliable estimator of

spatially aggregated time series of annual low, mean and

high flows across Europe’’ (Gudmundsson et al. 2012a,

p. 604). The main objective of Stahl et al. (2012) was to

assess the accuracy of a multimodel ensemble of eight

large-scale models by comparing modeled trends against

trends in observed streamflow in Europe. Results showed

that individual models disagreed regarding magnitudes

and even trend direction in several areas (Stahl et al. 2012).

They also found that variability in the simulated trendswas

high and encouraged multimodel approaches and similar

studies for other continents.

Another issue concerning the analysis of hydrological

drought at the global scale is the lack of reliable, observed

data to test model results. At the global scale, validation

against hydrological observations (river flow) is difficult,

because (i) only a limited number of measurements exist

and (ii) observed river flow at gauging stations cannot be

compared directly to gridded runoff (i.e., natural large ba-

sins and a routing approach needed). Instead, the present

study looks for agreement between an ensemble of models

as an indication that results are plausible and compares

drought in model results with meteorological drought to

identify information added by the large-scalemodels, which

is expected to occur because of the nonlinear trans-

formation of meteorological drought in the subsurface.

The aim of this study is to investigate whether large-scale

models are able to reproduce hydrological drought (run-

off), to identify the variability among models in different

climate zones, and to analyze the differences between

meteorological and hydrological drought. Thiswas done by
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a global, multimodel analysis of drought based on monthly

aggregated runoff data from 10 different models, the en-

semble median of these models, and global precipitation

data. Patterns and occurrence of drought characteristics

corresponding to the ensemble median are investigated,

while taking into account the variability among individual

models. Differences between precipitation droughts and

runoff droughts derived from the ensemble median are

identified. This study aims to contribute to our knowledge

of the potential of large-scale models to capture extreme

hydrological drought events, both in space and in time.

2. Large-scale models

Through the project Water and Global Change

(WATCH; www.eu-watch.org), results from different

large-scale models using the same forcing data were made

available. The multimodel analysis in the current paper

comprises 10models:H08,HTessel, JULES,ORCHIDEE,

MATSIRO,WaterGAP,MPI-HM,LPJml, GWAVA, and

Mac-PDM. A condensed overview with characteristics

of each model, after Haddeland et al. (2011), is pre-

sented in Table 1. The model ensemble median and

variability between the models were derived to repre-

sent the overall hydrological behavior rather than fo-

cusing on individual models. This study does not intend

to evaluate individual models.

The use of an ensemble mean is quite common when

analyzing large-scalemodel output, for both soil moisture

and runoff (e.g., Haddeland et al. 2011; Gudmundsson

et al. 2012a; Stahl et al. 2012), and is often found to be

closer to the observations than results of individual

TABLE 1. Main characteristics of the selected models (derived from Haddeland et al. 2011). The model names in the first column are

GWAVA5 Global Water Availability Assessment; HTESSEL 5 Hydrology-Tiled ECMWF Scheme for Surface Exchange over Land;

JULES 5 Joint UK Land Environment Simulator; LPJmL 5 Lund–Potsdam–Jena Managed Land Dynamic Global Vegetation and

Water Balance; Mac-PDM 5 Macro-Scale Probability-Distributed Moisture; MATSIRO 5 Minimal Advanced Treatments of Surface

Integration and Runoff; MPI-HM 5 Max Planck Institute Hydrology Model; ORCHIDEE 5 Organising Carbon and Hydrology in

Dynamic Ecosystems; WaterGAP 5 Water Global Analysis and Prognosis.

Model name

Model

time step

Meteorological

forcing variablesa
Energy

balance

Evapotranspiration

schemeb Runoff schemec
Snow

scheme Reference(s)

GWAVA Daily P, T, W, Q, LWn,

SW, SP

No Penman– Monteith Saturation

excess/beta

function

Degree day Meigh et al.

(1999)

H08 6 h R, S, T, W, Q, LW,

SW, SP

Yes Bulk formula Saturation

excess/beta

function

Energy

balance

Hanasaki et al.

(2008)

HTESSEL 1h R, S, T, W, Q, LW,

SW, SP

Yes Penman– Monteith VIC/Darcy Energy

balance

Balsamo et al.

(2009)

JULES 1 h R, S, T, W, Q, LW,

SW, SP

Yes Penman– Monteith Infiltration

excess/Darcy

Energy

balance

Best et al. (2011);

Clark et al.

(2011)

LPJmL Daily P, T, LWn, SW No Priestley– Taylor Saturation excess Degree day Bondeau et al.

(2007); Rost

et al. (2008)

Mac-PDM Daily P, T, W, Q, LWn, SW No Penman– Monteith Saturation

excess/beta

function

Degree day Arnell (1999);

Gosling and

Arnell (2011)

MATSIRO 1h R, S, T, W, Q, LW,

SW, SP

Yes Bulk formula Infiltration and

saturation excess/

groundwater

Energy

balance

Takata et al.

(2003); Koirala

(2010)

MPI-HM Daily P, T No Thornthwaite Saturation excess/

beta function

Degree day Hagemann and

Gates (2003);

Hagemann and

D€umenil (1997)

ORCHIDEE 15min R, S, T, W, Q, SW,

LW, SP

Yes Bulk formula Saturation excess Energy

balance

de Rosnay and

Polcher (1998)

WaterGAP Daily P, T, LWn, SW No Priestley– Taylor Beta function Degree day Alcamo et al.

(2003)

aR, rainfall rate; S, snowfall rate; P, precipitation (rain or snow distinguished in the model); T, air temperature;W, wind speed;Q, specific

humidity; LW, longwave radiation flux (downward); LWn, longwave radiation flux (net); SW, shortwave radiation flux (downward), SP,

surface pressure.
bBulk formula is when bulk transfer coefficients are used when calculating the turbulent heat fluxes.
c Beta function is when runoff is a nonlinear function of soil moisture.
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models (Gao and Dirmeyer 2006; Guo et al. 2007).

Tallaksen et al. (2011) found that the ensemble median

performed better in comparison against observations

than the ensemble mean. Wang et al. (2011) also use an

ensemble median to exclude the effect of outliers. In this

study, we have chosen to use the multimodel ensemble

median rather than the mean because of zero runoff pe-

riods in dry regions. In these cases, the ensemble median

gives a more robust result compared to the ensemble

mean. Aminimum threshold of 1026 kgm22 s21 was used

to avoid infinitesimally small values of runoff, which may

occur in themodel output.All values below this threshold

have been set to zero.

All models had the same simulation setup and forcing

data described in detail in Haddeland et al. (2011) and

Gudmundsson et al. (2012a), but the employed time

step, meteorological variables, and model structure

differ between the models (Table 1). They used the land

mask defined by the Climate Research Unit (CRU) at

a resolution of 0.58 3 0.58. Only land points (67 420

grid cells in total) were considered by the models.

Model forcing was provided by the WATCH forcing

data (WFD) developed by Weedon et al. (2011). The

WFD consist of gridded time series of meteorological

variables (e.g., rainfall, snowfall, temperature, and

wind speed) both on a subdaily and daily basis for

1958–2001 with a resolution of 0.58 3 0.58. The WFD

originate from modification (bias correction and

downscaling) of the 40-yr European Centre for Me-

dium-Range Weather Forecasts (ECMWF) Re-Anal-

ysis (ERA-40) data (Uppala et al. 2005). The different

weather variables were elevation- and bias-corrected

using CRU data. Precipitation data were bias cor-

rected using monthly Global Precipitation Clima-

tology Centre (GPCC) precipitation totals (Schneider

et al. 2008) and gauge-catch corrections were applied

separately for rainfall and snowfall. More information

can be found in Weedon et al. (2011). Precipitation

(rainfall and snowfall) data from the WFD were used

for identification of meteorological drought.

As our study focused on hydrological drought at the

global scale, we have used time series of natural total

runoff (sum of surface runoff and subsurface runoff, i.e.,

all water discharged from a single grid cell). Total runoff

was chosen because this is most relevant for water re-

sources. All models provide output on a daily time step

for the period 1963–2001, following five years of model

spinup. The simulated daily data are often highly fluctu-

ating, while hydrological droughts develop over months

and years. Therefore, the daily data have been aggre-

gated to monthly time scales for analysis. The ensemble

medianwas calculated from themonthly total runoff time

series of all models.

3. Drought analysis

a. Temporal drought identification

To derive drought from time series of total runoff

and precipitation for each grid cell, we follow the com-

bined drought identification method, as presented by van

Huijgevoort et al. (2012). This method combines the

characteristics of the threshold level method (TLM;

Yevjevich 1967; Hisdal et al. 2004) and the consecutive

dry period method (CDPM; Vincent and Mekis 2006;

Groisman and Knight 2008; Deni and Jemain 2009). This

combination led to a robust drought indicator for all cli-

mates (including regions with frequent periods of zero

runoff). The method allows a drought in periods with

runoff/precipitation to continue in a following period

without runoff/precipitation. For detailed information,

the reader is referred to van Huijgevoort et al. (2012).

The 20th percentile (Q20) was used as the threshold in

this study. TheQ20 is defined as the value that is equaled

or exceeded 80% of the time. This means anomalies are

identified in each grid cell regardless of themagnitude of

runoff/precipitation. The Q20 value was selected in or-

der to be consistent with other global- and large-scale

studies (e.g., Corzo Perez et al. 2011; Sheffield et al. 2009;

Andreadis et al. 2005). Since this is a rather high threshold

value, less extreme events are also identified compared to,

for example, a threshold of Q5.

Meteorological drought events have been identified

from the monthly precipitation data (1-month data) and

for time series with a backward-moving average of a dif-

ferent number ofmonths (3-, 6-, and 9-month data). From

the hydrological drought analysis, drought characteris-

tics, such as the number of droughts and their average

duration, were derived for each model and the ensemble

median at grid cell scale. Since the focus of this paper is

not to compare individual models but to assess the po-

tential of using amodel ensemble for drought analysis, we

use the following relative measure of variability between

the model results, the intermodel spread:

spread5 (C852C15)/C50 , (1)

where C is the value of a certain drought characteristic

from all models for a grid cell. By taking the 85th and

15th percentiles, the most extreme values in each grid

cell (i.e., two most extreme models) were omitted. The

spread was calculated for each identified drought

characteristic for each grid cell. The spread does not

include the absolute values of the runoff, and hence,

a complementary diagnostic is required to analyze im-

pacts on local water resources directly. The drought

characteristics and spread were visualized in a bivariate

color map with the methodology introduced by Teuling
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et al. (2011), which enables plotting of two variables on

the same map using a two-dimensional color scale.

In addition to mapping global drought characteristics,

time series of area in drought for certain regions were also

examined. The regions, which are defined by Giorgi and

Francisco (2000) and adapted by Sheffield and Wood

(2007), were used to exploremodel results inmore detail at

the regional scale (Fig. 1). An overview with full names of

the regions is given in Table 2. For these time series of the

area in drought, the model variability is shown by the

model range. The model range was calculated from all

individual model results by excluding the models with the

minimum andmaximum percentages of area in drought for

each region at each time step. Synchronicity in drought

between these regions was evaluated with a hierarchical

cluster analysis by complete linkage based on theEuclidean

distancematrix for time series of the percentages of area in

drought derived from themodel ensemblemedian (Hastie

et al. 2001). To emphasize the larger drought events in the

cluster analysis, percentages below 20%were set to zero in

the time series used for the cluster analysis.

b. Spatial drought identification

Simulated drought events generally encompass large

regions. Therefore, a flexible method is needed that is

able to allocate individual 0.58 grid cells to a given drought

cluster. Andreadis et al. (2005) applied a recursion-

based approach to link neighboring cells, which are

identified to be in drought, into a cluster. Even though

this method is easy to implement, recursion-based ap-

proaches are generally computationally inefficient and

time consuming. A more efficient approach to connect

individual cells that experience hydrological drought into

a cluster of cells is to apply a component-labeling algo-

rithm (Rosenfeld 1970; Suzuki et al. 2003; Chang et al.

2004). In the current paper, we used a contour-tracing

technique (Chang et al. 2004; Wagenknecht 2007) to

identify the outer boundaries of a given cluster. Next,

cells belonging to the inner regions of a drought cluster

are found by applying a connected component-labeling

approach (Suzuki et al. 2003; He et al. 2009; Wu et al.

2009). The combination of these two techniques results in

a double-pass segmentation algorithm, which is generally

assumed to be computationally efficient (He et al. 2009).

FIG. 1. Location of regions (see Table 2) across the globe as derived fromGiorgi and Francisco

(2000) and as adapted by Sheffield and Wood (2007).

TABLE 2. Full names and abbreviations of the regions (see Fig. 1)

used in this study (Giorgi and Francisco 2000).

Region Abbreviation

Alaska ALA

Northeastern Canada NEC

Western North America WNA

Central North America CNA

Eastern North America ENA

Central America CAM

Amazon AMZ

Southern South America SSA

Northern Europe NEU

Northern Asia NAS

Mediterranean MED

Central Asia CAS

Tibetan Plateau TIB

East Asia EAS

Southern Asia SAS

Southeast Asia SEA

Australia AUS

Western Africa WAF

Eastern Africa EAF

Southern Africa SAF
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FIG. 2. Drought characteristics and fractional spread in model results [Eq. (1)] for each

grid cell: (a) mean runoff (mm day21), (b) number of droughts, and (c) average duration

(months).
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FIG. 3. Fraction in drought for each region derived from precipitation (3-month data), fraction in drought derived from runoff for the

ensemble median, and the range of fraction in drought derived from runoff for all models.
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To focus only on major spatial drought events, an areal

threshold was implemented (Andreadis et al. 2005;

Tallaksen et al. 2009; Sheffield et al. 2009). The areal

threshold for a spatial cluster was set to 25 grid cells (ap-

proximately 77275km2 around 08 latitude, 62 500km2

around 368 latitude, and 26100km2 around 708 latitude).

4. Results

a. Global drought characteristics

For each grid cell, drought characteristics (total

number of droughts and average drought duration) have

been derived from the runoff time series over the period

FIG. 4. Correlation between runoff and precipitation (1-month data) in each grid cell for the ensemblemedian and the individualmodels

(1–10). Greenland and the Sahara region are excluded because of small runoff during the entire period in these areas. Only correlations

significantly different from zero at the 95% level using a standard two-sided test are shown, and negative significant correlation values, in

this case caused by a continuous snow cover of several months, have been set to zero.
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1963–2000. In Fig. 2 the mean runoff and values of the

drought characteristics from the ensemble median and

spread [Eq. (1)] are illustrated. Regions with the highest

spread in mean runoff were the very dry regions (e.g.,

Sahara) and Greenland (Fig. 2a). The smallest spread

occurred in tropical regions (e.g., the Amazon and

Southeast Asia), which had high mean runoff values. In

most parts of Europe, northern Asia, and the eastern

United States, the spread was small as well. Since most

models do not include a glacier scheme (Haddeland

et al. 2011), the results for Greenland were excluded

from further analysis.

Even though considerable differences in runoff values

existed (Fig. 2a), the overall patterns of the various

drought characteristics were consistent among themodels.

The largest spread between models in the number of

droughts (Fig. 2b) occurred in the (very) dry regions (e.g.,

Sahara) of the globe. In other regions, the spread was

relatively small. For example, all models agreed on a rel-

atively large number of droughts in regions with high

runoff (e.g., the Amazon) because, in these areas, runoff

exhibits a large variability and therefore often crosses the

threshold. Areas with low runoff generally tend to have

a smaller number of droughts (e.g., areas adjacent to the

Sahara). Striking is the large number of droughts in vast

parts of Australia, which was not expected, since runoff

was low in these areas as well. This may be caused by the

fast reaction of runoff to precipitation in most models in

this region. Australia received rainfall, albeit small

amounts, more regularly compared to other dry areas,

such as the Sahara and its surroundings. These small

rainfall amounts led to runoff because of the fast reaction

and thus ended hydrological drought events immediately,

which decreased drought duration and increased the

number of droughts. The same process occurred in other

semiarid regions, for example, areas in southwestern

United States.

The employed definition of drought (section 3a) implies

a negative correlation between the number of droughts

and their average duration. This leads to short durations in

areas with large runoff variability and long durations when

only a few drought events occur (Fig. 2c). Because of this

negative correlation, the pattern in themodel spread of the

average drought duration was similar to the pattern in the

spread for the number of droughts.

b. Temporal development of drought

1) RELATION BETWEEN METEOROLOGICAL AND

RUNOFF DROUGHT

In the rest of the study, the Sahara region, in addition

to Greenland, was not considered because there the

FIG. 5. Correspondence betweenmeteorological drought and runoff drought expressed as the correlation between

percentiles determined from the modeled ensemble median runoff and percentiles derived from precipitation data

with different aggregation periods (1, 3, 6, and 9 months) in each grid cell. Only correlations significantly different

from zero at the 95% level using a standard two-sided test are shown. Greenland and the Sahara region are excluded

because of small runoff during the entire period in these areas.
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models showed large differences and the drought analysis

was very difficult, even with the combined method, be-

cause of small runoff during the entire period (average

annual runoff values of less than 1mmyr21). Within

each of the remaining regions, the percentage area in

drought for each month (Fig. 3) was calculated from the

models, from the ensemble median, and from the pre-

cipitation data (3-month data). For each month, the

model range was determined by excluding the models

with the minimum and maximum percentages. The

models showed rather small differences inmany regions,

that is, a small range. Exceptions were Alaska, northern

Europe, central North America, eastern North Amer-

ica, southernAfrica, andAustralia, for which the overall

range between the models was largest. The differences

in range across the regions were consistent with the

patterns in the spread of the drought characteristics and

mean runoff (section 4a). Regions with a large runoff

variability (e.g., Southeast Asia and theAmazon region)

had a small intermodel range in drought percentage.

Droughts in these regions are very much controlled by

the fast runoff response of almost all models to pre-

cipitation. The drought events in both precipitation and

runoff occur almost simultaneously in these regions.

This fast reaction of the models to precipitation is also

shown in Fig. 4, which gives the correlation between

monthly precipitation and total runoff time series in

each grid cell for all models. Negative correlation values

occurring in cold regions, caused by a continuous snow

cover of several months, have been set to zero (Fig. 4).

Some models reacted faster than others to precipitation

in large parts of the world, especially in the Southern

Hemisphere, where we found large differences. In

general, correlations for all models were lowest in snow-

dominated regions, as would be expected. The ensemble

median showed relatively high correlations in the

Southern Hemisphere, regions around the equator, and

South Asia.

To analyze the differences between meteorological

drought and runoff drought, correlations between the

meteorological drought (time series of percentiles) and

runoff drought in the ensemble median (time series of

percentiles) were calculated for each grid cell as well

(Fig. 5). The meteorological droughts were determined

for precipitation aggregated over different periods at

1, 3, 6, and 9months (section 3a). The correlations showed

a clear spatial pattern across the globe, whichwas similar

for the different aggregation periods. Regions with high

runoff values showed high correlations, and colder and

drier regions gave low correlations. This indicates that

the large-scale models add information to the signal

derived from the precipitation and that runoff drought

cannot directly be determined from precipitation data in

global drought analyses when a constant aggregation

period is used.

2) SYNCHRONICITY OF DROUGHTS AT GLOBAL

SCALE

Since drought events often affect large areas, a single

event can occur in several regions simultaneously. Tele-

connections may exist for multiple regions, for example,

in regions influenced by theElNi~no–SouthernOscillation

(ENSO) phenomenon (Ropelewski and Halpert 1987).

ENSO has a large influence on the occurrence of drought

at large scales in both precipitation (e.g., Ropelewski and

TABLE 3. Correlation between the time series of percentage of area in drought from the ensemble median for the different regions.

ALA NEC NEU WNA CNA ENA MED CAS TIB CAM

NEC 0.05

NEU 0.03 0.15

WNA 0.03 0.11 0.04

CNA 0.01 0.18 0.13 0.33

ENA 0.01 0.06 20.08 0.04 0.44

MED 20.15 0.01 20.09 0.04 20.15 20.02

CAS 0.10 20.11 20.01 0.02 0.03 0.06 0.02

TIB 0.05 20.14 20.08 20.16 20.15 0.04 20.10 0.29

CAM 0.05 20.08 0.03 0.11 0.13 20.12 20.12 0.14 0.03

AMZ 20.01 0.16 0.00 20.14 0.00 0.10 20.12 20.22 20.09 20.02

SSA 0.06 0.09 0.02 0.09 0.13 0.03 20.02 0.00 20.06 20.02

WAF 20.16 20.02 20.09 20.11 20.33 20.11 0.24 0.04 0.09 20.07

EAF 20.11 20.07 20.07 20.03 20.19 0.00 0.24 0.22 0.15 0.08

SAF 20.06 0.05 20.08 0.01 20.15 0.02 0.17 20.06 20.05 20.09

NAS 20.16 0.12 0.25 0.14 20.04 20.01 20.02 20.07 0.00 0.03

EAS 0.10 20.06 20.08 20.05 0.01 0.01 20.21 0.03 0.20 0.02

SAS 20.05 0.03 20.10 20.09 20.08 0.08 20.15 20.02 0.02 0.06

SEA 20.16 0.08 20.04 20.19 20.15 20.08 20.07 20.27 0.05 0.00

AUS 20.01 0.06 0.06 20.04 0.07 0.05 20.11 20.09 20.06 0.00
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Halpert 1987) and streamflow (e.g., Chiew andMcMahon

2002). For the investigation of synchronicity of drought

events across the different regions caused by large-scale

climate drivers, two different measures were used. First, a

hierarchical cluster analysis was applied to identify simi-

larities between the regions. Second, the correlations

between the time series of the percentage of area in

drought for all regions have been determined (Table 3).

The median runoff results showed a larger synchronicity

between regions influenced by the ENSO phenomenon

and neighboring areas, whereas for other regions no clear

pattern was found. Neighboring regions often showed

higher correlations (Table 3), for example, central North

America with western (0.33) and eastern (0.44) North

America and western Africa with eastern Africa (0.50).

The cluster analysis also showed similarities in several

neighboring regions, for example, regions in Africa,

North America, and Asia (Fig. 6). However, there were

some unexpected positions of regions in the tree resulting

from the cluster analysis (Fig. 6), for example, thewestern

North America, Central America, and Alaska regions.

This could be caused by the choices made for the cluster

analysis, like the 20% minimum for the percentage of

area in drought per region or the use of Euclidean dis-

tance (section 3a). The relatively low correlations and

similarities between the regions could also cause diffi-

culties in determining homogeneous clusters.

Drought events linked to ENSO were most clearly

identified in strong El Ni~no years (the warm phase of

ENSO): 1966, 1972, 1983, 1992, and 1998 (e.g., Smith

and Sardeshmukh 2000; Wolter and Timlin 2011). In

these years, the regions mainly affected were Australia,

Southeast Asia, the Amazon, southern Asia, and south-

ern Africa (Fig. 3), which is consistent with the regions

influenced byENSOmentioned byVicente-Serrano et al.

(2011). These regions showed relatively high correlations

in the percentage of area in drought (Table 3), for ex-

ample Southeast Asia with the Amazon region (0.41).

Drought events in these El Ni~no years were caused by

lack of precipitation and strongly linked to the timing

of the meteorological droughts (Fig. 3). The same re-

gions, except southern Africa, also showed similarities

in the cluster analysis (Fig. 6). Regions affected by

TABLE 3. (Extended)

CAM AMZ SSA WAF EAF SAF NAS EAS SAS SEA

20.02

20.02 20.13

20.07 0.12 20.32

0.08 20.10 20.21 0.50

20.09 0.27 20.16 0.26 0.17

0.03 20.05 20.05 0.12 0.17 0.03

0.02 20.10 20.06 20.08 20.02 20.13 20.01

0.06 0.10 20.10 20.02 0.03 0.08 0.06 0.04

0.00 0.41 20.24 0.16 20.08 0.13 0.05 0.01 0.23

0.00 0.21 0.03 20.10 20.10 0.06 20.04 20.10 0.12 0.23

FIG. 6. Hierarchical cluster analysis by complete linkage of time

series percentages area in drought (minimum area taken as 20%)

derived from the modeled ensemble median runoff, using Euclid-

ean distance matrix, for all regions across the globe. Height is

a measure of the dissimilarity between the time series based on the

Euclidean distance and is expressed as percentage of area in

drought per time step.
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La Ni~na, the southern United States and northern Mexico

(central North America and western North America

region), southern Russia and eastern Europe (northern

Asia, central Asia, and northern Europe regions) and

parts of southern South America, often showed nega-

tive correlations with the regions affected by El Ni~no

(Table 3), as was expected, for example, southern

South America with Southeast Asia (20.24). Overall,

the connection between drought events and La Ni~na

and the synchronicity between the regions were not as

strong as for El Ni~no. This can be explained by the

relatively small areas that are affected by La Ni~na, as

compared to the size of the regions used in this study

(Fig. 1).

c. Spatiotemporal development of two major
historical drought events

Two examples of severe drought events have been

selected to analyze the spatiotemporal evolution of

drought in runoff and precipitation, namely, the mid-

1980s drought in Africa and the 1976 drought in Europe.

The spatial extent was investigated at continental scale,

since these droughts were observed across different re-

gions in Africa and Europe (section 4b).

1) 1980S DROUGHT EVENT IN THE SAHEL

Figures 7a–d show the spatial distributions of the

drought in Africa for three different months, derived

from the precipitation data (1- and 3-month data), from

the runoff of eachmodel and from the ensemblemedian.

The precipitation deficit causing the drought event was

clearly identified in the precipitation data both for the

1-month (Fig. 7a) and 3-month data (Fig. 7b), although

the spatial extent differed. The spatial extent of the

runoff drought event identified by the ensemble median

(Fig. 7d) largely resembled the extents found in the

precipitation, but disparities were found that indicated

the difference between meteorological and hydrological

drought caused by the models. All models identified

drought somewhere in Africa for all 3 months; however,

the spatial extent differed considerably between models

(Fig. 7c). The area where at least one model predicted

drought (61.1% of total area for October 1983) was

much larger than the area for which all models agreed

(6.1% of total area), demonstrating the difficulty of

drawing any specific conclusion based on a single global

model only (Fig. 7c). In this study, the maximum area in

drought for all of Africa during this drought event was

found at the end of 1983 and again in August 1984.

According to Sheffield et al. (2009), this event spread

over Africa and reached its maximum extent earlier,

namely, in April 1983. Although this timing is different,

the spatial extents of the drought over Africa in April

1983 and August 1984 found in the ensemble median

were similar to the extents indicated by Sheffield et al.

(2009). Differences could be caused by the use of a dif-

ferent drought identification method, which mainly af-

fects dry areas; the use of multiple models instead of

a single model; or identification of droughts in different

variables (runoff versus soil moisture).

The temporal distribution for the years 1981–86 of the

percentage of area in drought for the western Africa

region (WAF) determined from precipitation (1- and

3-month data), the ensemble median, and the individual

models is given in Figs. 7e and 7f. These time series show

the difference between drought in runoff and in pre-

cipitation regarding the timing and extent of the event

(Fig. 7f). The drought identified in 1-month pre-

cipitation data was less extreme and shorter than the

drought in 3-month precipitation data. The ensemble

median identified droughts more linked to the 3-month

precipitation data, indicating the memory and storage

included in the models. Even though the models gen-

erally showed a fast reaction to precipitation in this re-

gion (Fig. 4), a lag and lengthening of the drought event

occurred in the propagation to a runoff drought, which

indicates that themodels add information that cannot be

derived from aggregated precipitation deficits. The in-

dividual model results showed a variability in the length

of the drought event, related to the different model

structures determining the response time (Fig. 7e).

2) 1976 DROUGHT EVENT IN EUROPE

The 1976 drought event in Europe (Fig. 8) is illus-

trated in a similar way as the event in Africa. The spatial

distributions of the drought are given in Figs. 8a–d for

three different months, derived from the precipitation

data (1- and 3-month data), from the runoff of each

model, and from the ensemble median. The temporal

distribution of the percentage of area in drought for the

northern Europe region (NEU) for the years 1974–77 is

shown in Figs. 8e and 8f. The meteorological drought

determined from monthly precipitation data (Fig. 8a)

differed substantially in spatial extent with the drought

determined from the 3-month data (Fig. 8b). The latter

covered a much larger area of northern Europe in July

1976. The spatial extent of the runoff drought identified

with the ensemble median (Fig. 8d) was more in line

with the 3-month data, pointing out that themodels have

a memory of several months when translating the me-

teorological drought into a hydrological drought. Time

series of the percentage of drought for the northern

Europe area also show this difference between the

drought in precipitation and runoff (Figs. 8e,f). A

lengthening of the precipitation event was seen in 1976.
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FIG. 7. Spatial distribution of the historical drought event in Africa for (left) April 1983, (middle)

October 1983, and (right) August 1984: (a) spatial extent of drought for 1-month precipitation data, (b)

spatial extent of drought for 3-month precipitation data, (c) distribution of drought in runoff for all

models (10means allmodels identify drought, 0means none of themodels identifies drought), (d) spatial

extent of drought for ensemble median, (e) temporal development for meteorological drought based on

1- and 3-month data and runoff drought based on ensemble median and individual models (1–10) given

as a percentage of area in drought for WAF region [indicated with gray box in (a)–(d)], and (f) per-

centage of area in drought for meteorological drought based on 1-month (prec) and 3-month (prec 3)

data and runoff drought based on ensemble median for WAF region.
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The extreme meteorological drought event identified in

1974 was not as extreme in terms of the runoff values

(80%of the area in drought for precipitation and 57%of

the area in drought regarding runoff from ensemble

median). This is also an indication that models reacted

less instantaneously to precipitation in this region.

All models started with a drought in Russia and

western Europe, which moved to northwestern Europe

and ended towards the end of 1976. The spatial extent of

the drought event differed substantially among models

in all months (in extreme cases the area in drought

varied with 30% in the beginning of 1976; Fig. 8e), which

also implied that the drought duration produced by each

model will differ. Some models interrupted the drought

event with lower percentages of area in drought, while

others showed a longer continuous event with high

percentages (Fig. 8e). Compared to the literature (e.g.,

Zaidman and Rees 2000; Zaidman et al. 2002; Stahl

2001), the expectation was that all models would give

a large area in drought in July 1976. The results pre-

sented here, however, show that only for a limited area

in Europe all models agreed on July being in drought

(5.8% of the total area), although the area in drought for

one or more models was much larger (56.5% of the total

area had a value of 1 or larger for July 1976; Fig. 8c). In

addition, not all models gave the same end date of the

drought event (drought recovery). Overall, the median

of the models gave qualitatively the same development

of the drought event as results of hydrological drought

analysis presented in the literature (Zaidman and Rees

2000).

5. Discussion

In this study, we have used a multimodel ensemble to

assess whether large-scale models are suitable for

drought analysis. A large variability in model results was

found, which means the identified drought events can be

very different for individual models. The reason for this

variability is difficult to determine, since the many dif-

ferent model structures and parameter values for in-

dividual cells make it very difficult to understand the

differences between models (e.g., Gudmundsson et al.

2012b). Therefore, the focus in this study was not on the

individual models, but instead on the ensemble median

and variability. The use of multiple models has been

quite common in climate studies; however, for impact

studies, often only one single hydrological model has

been used.With the importance of usingmultiple impact

models now increasingly being appreciated, the latest

climate change impact projects, for example, the Inter-

Sectoral ImpactModel Intercomparison Project (ISI-MIP;

www.isi-mip.org), will employ multiple hydrological

models. To reduce the uncertainties between models,

performance of the models across a range of output vari-

ables, such as evaporation, soil moisture storage, ground-

water storage, and their covariance, could be investigated.

Suitability of different models for different regions in the

world could be determinedwith this kind of analysis, which

was beyond the scope of this study. By including additional

variables, propagation of drought could be studied inmore

detail and processes not represented in the models could

be identified. Van Loon et al. (2012) have performed such

an analysis for several individual grid cells with contrasting

climate and concluded that storage and evaporation pro-

cesses could be improved in the models. Until a perfect

model exists for analysis across the globe with, among

others, ideal stores and parameters included, the use of

multiple models is recommended to account for a range

of uncertainty.

The largest spread between the models was found in

the dry regions of the world. This is consistent with the

results of Haddeland et al. (2011), showing a relatively

large spread of simulated runoff in arid and semiarid

regions. This can partly be explained by the use of dif-

ferent evapotranspiration and infiltration methods in

the models. Since runoff is low in these regions, small

differences in evaporation lead to relatively large dif-

ferences in runoff (Haddeland et al. 2011). Most large-

scale models overestimate the runoff in dry regions

because of several processes not being included in

these models, for example, the transmission loss along

the river channel or infiltration and evaporation of

surface runoff (Gosling and Arnell 2011; Haddeland

et al. 2011).

With respect to the temporal development of drought,

relatively large differences among the models were

also observed in cold regions (e.g., Alaska and Tibetan

Plateau). Other studies, focusing specifically on Europe,

have found that model performance in simulating the

observed hydrological response is lower in regions with

snow influence than in regions without snow (Stahl et al.

2012; Gudmundsson et al. 2012b). This can be explained

by the different implementations of snow processes,

such as accumulation, sublimation, and melt, and dif-

ferences in the partitioning of precipitation into rainfall

and snowfall between the models (Haddeland et al.

2011).

In general, we found that the ensemble median is ca-

pable of identifying the major drought events. Because

all models have the same forcing data andmajor drought

events are climate driven, all models capture the oc-

currence of these events. This suggests that large-scale

models could be used for the simulation of major

droughts, as previously concluded by Prudhomme et al.

(2011), who compared three different large-scalemodels
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FIG. 8. As in Fig. 7, but for the historical drought event in Europe for (left) January 1976, (middle) July 1976,

and (right) November 1976 and the northern Europe region.
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for Europe and found that these models are able, to

some extent, to simulate low runoff anomalies. How-

ever, this study shows that the duration and spatial ex-

tent of simulated drought events are less consistent.

These drought characteristics depend on catchment

characteristics such as hydrogeology (Tallaksen and van

Lanen 2004). Some models showed a very fast runoff

response to precipitation, implying that simulation of

storage-related processes is limited. This leads to de-

viations in drought events in parts of the world where

stores (e.g., groundwater, lakes) play an important role in

drought propagation (Van Loon and van Lanen 2012).

These results are consistent with the conclusions of

Wang et al. (2009), Stahl et al. (2012), and Gudmundsson

et al. (2012a). Stahl et al. (2012) noted for areas with

groundwater-dominated systems that the nature and

magnitude of such complex storages cannot be replicated

by the simplified storage schemes used in the current

generation of large-scale models. This relatively fast re-

action in runoff also explains the lack of multiyear

droughts, since generally hydrological droughts ended

too soon (e.g., Van Loon et al. 2012).

Even though in this study we made a first step to de-

termine the suitability of large-scale models for hydro-

logical drought analysis, validation of the model output

remains difficult because of the lack of observations and

the limited number of independent drought studies at

the global scale for runoff or streamflow. Global ob-

servations of river flow cannot be directly compared

with gridded runoff values of the models because this

would require a proper routing procedure and because

of the scale of the models, would require relatively large

river basins (e.g., Haddeland et al. 2011), which are often

affected by dams and abstractions.

6. Conclusions

One of the main objectives of this paper was to in-

vestigatewhether large-scalemodels are able to reproduce

the spatiotemporal development of hydrological drought

at the global and continental scale. In the current study,

variability (spread and range) between 10 different large-

scale models, their ensemble median of runoff, and global

precipitation data were used for drought analysis. For all

models, a set of general runoff drought characteristics, for

example, number and duration per cell, was derived. As

expected, all models yielded many short drought events

in areas with high runoff and few long drought events in

areaswith low runoff values. The largest spreadwas found

in very dry areas and very cold areas, and the smallest

spread was in areas with high runoff. The differences

between the models were caused by the different model

structures and parameterizations. Therefore, conclusions

on global drought occurrence based on singlemodels vary

strongly depending on the model used.

Time series of percentage of area in drought for se-

lected regions across the world led to a similar conclu-

sion, with a large range in model outcomes in cold and

dry areas and a small range in high runoff areas. How-

ever, simulated drought durations differed substantially

between the models. The models showed limitations in

identification of multiyear droughts. Because of imper-

fect simulation of storage-related processes in some

models, the runoff reacted very fast to precipitation, and

long-term memory effects were lacking in some regions.

However, by using a multimodel ensemble, the impact

of this problem was alleviated, since some of the models

do have larger groundwater storages. The correlation

between meteorological drought events and runoff

drought events derived from the ensemble median

showed a distinct spatial pattern across the globe for

several aggregation periods of precipitation. This in-

dicates that at a global scale runoff drought cannot be

determined from precipitation data alone using a con-

stant aggregation period. Given the uncertainty caused

by the variability among the models, the results pre-

sented here clearly encourage the use of multiple global

hydrological models instead of one single model.

Overall, when focusing on major drought events,

a multimodel ensemble gives new insight into the de-

velopment of drought in space and time at global and

continental scales. Further improvement of large-scale

models is possible and will lead to improved ability to

simulate hydrological drought events.
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