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ABSTRACT

Land–atmosphere feedbacks play an important role in the weather and climate of many semiarid regions.

These feedbacks are strongly controlled by how the surface responds to precipitation events, which regulate

the return of heat and moisture to the atmosphere. Characteristics of the surface can result in both differing

amplitudes and rates of warming following rain. Spectral analysis is used to quantify these surface responses to

rainfall events using land surface temperature (LST) derived from Earth observations (EOs). The authors

analyzed two mesoscale regions in the Sahel and identified distinct differences in the strength of the short-

term (,5 days) spectral variance, notably, a shift toward lower-frequency variability in forest pixels relative to

nonforest areas and an increase in amplitude with decreasing vegetation cover. Consistent with these spectral

signatures, areas of forest and, to a lesser extent, grassland regions were found to warm up more slowly than

sparsely vegetated or barren pixels. The authors applied the same spectral analysis method to simulated LST

data from the Joint UK Land Environment Simulator (JULES) land surface model. A reasonable level of

agreementwas foundwith theEO spectral analysis for two contrasting land surface regions.However, JULES

shows a significant underestimate in the magnitude of the observed response to rain compared to EOs.

A sensitivity analysis of the JULES model highlights an unrealistically high level of soil water availability as

a key deficiency, which dampens the models response to rainfall events.

1. Introduction

Feedbacks between the land surface and atmosphere

play an important role in shaping the weather and cli-

mate of many regions of the world (Koster et al. 2004).

Properties of the land surface such as vegetation type

and soil moisture exert a strong influence on fluxes of

sensible and latent heat into the atmosphere. These fluxes

directly affect the temperature and humidity of the lower

atmosphere, influencing the development of moist con-

vection both locally (Taylor et al. 2012) and downstream

(Spracklen et al. 2012) and on atmospheric circulations

on scales of ten (Anthes 1984) to thousands (Charney

1975) of kilometers. In so-called land–atmosphere cou-

pling hotspots (Koster et al. 2004), predictions on daily to

centennial time scales rely on a realistic depiction of land

surface fluxes within numerical models. Given the strong

sensitivity of fluxes to surface properties, in tandem with

often substantial spatial variability and a lack of flux ob-

servations at the scale of an atmospheric model grid box,

this represents a formidable scientific challenge.
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Major initiatives in the West African hotspot of the

semiarid Sahel, such as Hydrologic Atmospheric Pilot

Experiment in the Sahel (HAPEX-Sahel; Goutorbe

et al. 1997) and the African Monsoon Multidisciplinary

Analysis (AMMA; Redelsperger et al. 2006), have

made considerable efforts to observe small-scale land–

atmosphere processes. These have demonstrated that

precipitation is the dominant control on the surface en-

ergy balance in the Sahel at a range of space and time

scales (Gash et al. 1997; Mougin et al. 2009). The region

experiences an intense wet season lasting typically from

June to September, triggering rapid growth in vegeta-

tion. For a period of hours to several days after rain, high

rates of evaporation occur directly from the bare soil

surface, at the same time suppressing sensible heat and

surface temperature (Wallace and Holwill 1997). As the

vegetation develops, the surface fluxes become less

variable from day to day because of the availability of

water in the root zone (Kohler et al. 2010). This tem-

poral flux variability is superimposed on spatial vari-

ability generated by contrasting land cover, precipitation

history, and soil properties to generate a complex and

evolving pattern of surface fluxes (Timouk et al. 2009).

Indeed, it is the spatial variability in surface fluxes that

has been shown to provide the primary land surface

feedback mechanism influencing the initiation of con-

vective storms on scales of tens of kilometers (Taylor

et al. 2011).

The ability to test the depiction of the land surface

energy balance inmodels is limited by the spatial scale of

the observations: these are typically either point esti-

mates at a few locations or gridded estimates at a coarse

scale. Numerous studies have used site-level data to

evaluate simulated surface fluxes in offline land surface

models (e.g., Kothavala et al. 2005; Teuling et al. 2006;

Sch€uttemeyer et al. 2008) and single column atmo-

spheric models (e.g., Lauwaet et al. 2008) or used these

data more explicitly to constrain model parameters

(Saux-Picart et al. 2009). In the absence of observational

benchmarks for regional surface energy fluxes across

the Sahel, the potential reliability of model estimates is

assessed through exercises such as the AMMA Land

Model Intercomparison Project (ALMIP; Boone et al.

2009). The offline land surfacemodels (LSMs) inALMIP

exhibit relatively low intermodel variation in 0.58-scale
surface flux estimates, suggesting that there is some skill

in the modeling of surface processes. The ALMIP mul-

timodel mean has been used alongside model reanalyses

as a pseudo-observation when evaluating regional at-

mospheric models (Boone et al. 2010; Guichard et al.

2010; Xue et al. 2010). Boone et al. (2010) show that

coupled models differ from the ALMIP estimate of the

seasonal evolution of the surface energy partition even

though all models exhibit similar surface net radiation.

They note that this highlights problems with the West

African monsoon simulated by atmospheric models,

but it does not indicate the relative contributions from

errors in land–atmosphere coupling and atmospheric

processes.

Indirect evaluations of ALMIP estimates of the sur-

face energy budget come from several studies. For ex-

ample, de Rosnay et al. (2009) use ALMIP outputs to

force a model of top-of-atmosphere (TOA) microwave

brightness temperature for comparison with AMSR-E

observations. They find that LSMs with finer vertical soil

levels compare more favorably with the AMSR-E ob-

servations, suggesting that those LSMs also have better

simulations of surface temperature and soil moisture.

Similarly, Grippa et al. (2011) compared Gravity Re-

covery and Climate Experiment (GRACE) water stor-

age anomalies with the ALMIP models and showed

reasonable agreement between satellite estimates and

the multimodel mean. However, both of these studies

highlight how assumptions in the radiative forward

model or surface retrieval can produce uncertainty in

the observations that is as great as the intermodel

variability.

Observations and model intercomparisons such as

these are particularly useful for assessing seasonal var-

iation at the regional atmospheric model scale but are of

limited use in studying land surface behavior on the finer

space and time scales where feedbacks on weather have

been shown to be important (Taylor et al. 2011). With

typical spatial resolution of 1–5 km and daily to sub-

hourly sampling, satellite-derived land surface temper-

ature (LST) data are potentially valuable for bridging

this scale gap. These data provide an important in-

dication of land surface state on subdaily time scales.

Following rainfall, water is readily available for evapo-

transpiration and the LST stays close to the air tem-

perature. Subsequently, as the surface dries, the LST

increases. LST data have been used successfully in the

Sahel to map mesoscale soil moisture variability (Taylor

et al. 2007) and have been assimilated within a land

surface scheme across the whole of Africa (Ghent et al.

2010).

This paper considers whether the spatial and temporal

dynamics of LST, a proxy for surface fluxes, can provide

useful information about land surface state. In particu-

lar, we assess whether it is possible to detect different

responses. In this paper we implement power spectral

analysis to quantify the surface response to rainfall

events, using LST data derived from geostationary sat-

ellite data. This same analysis technique is used to ex-

amine how a typical LSM simulates these same responses.

A sensitivity experiment is used to assess differences
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simulated by this LSM compared to what is observed

from space.

2. Method

a. Study area

In this paper we examine time series of LST under

a range of land cover and climate conditions within the

Sahel (Fig. 1). This study focuses on two mesoscale re-

gions of West Africa, the first in Mali and a second,

larger region at the southern fringes of the Sahel, which

intersects Burkina Faso, Niamey, and Benin. These

areas have contrasting rainfall conditions, 350mmyr21

rain at Hombori (Timouk et al. 2009) and 817mmyr21

at Gaya (Le Barbe and Lebel 1997). These two regions

have been selected as previous studies have indicated

contrasting surface characteristics (i.e., bare soils versus

grassland for Mali and forest versus grass and croplands

for the southerly region).

In Mali, we study the Hombori mesoscale site defined

within the AMMA project (further details in Mougin

et al. 2009). This is 513 48km2 in extent (15.618–15.158N,

1.748–1.328W). Two further local sites (3 km2) were also

selected from within the Hombori window, specifi-

cally, Hedgerit (15.508N, 1.408W)andAgoufou (15.348N,

1.488W), which are classified by the Global Land Cover

2000 (GLC2000) land cover map (Bartholome and

Belward 2006) as stony desert and grassland, respec-

tively. The Hombori region is predominately charac-

terized by grassland (74%), with a smaller proportion of

stony desert (26%) in the northern section according to

GLC2000. Based on eddy correlation flux data, Timouk

et al. (2009) examined the sensitivity of the surface en-

ergy and water budget to land cover within theHombori

region. They found strong contrasts in behavior be-

tween the stony desert (Hedgerit) and nearby grassland

(Agoufou) sites. At the grassland site, rainfall drained

tens of centimeters down through the profile of sandy

soil, with evapotranspiration and evaporation from near

the soil surface the dominant soil water loss terms. At

Hedgerit, the evaporative response to rainfall was short

(a few hours), withmuch of the rain running off the areas

of hard pan.

The second larger study area, 324 3 225 km2, is cen-

tered on the Parc W at the border of Benin, Niger, and

Burkina Faso and is referred to herein as ParcW (13.58–
10.498N, 3.528–1.488E). This region is located farther

south and can be described by three major vegetation

types: croplands (44%), forest (38%), and grasslands

(17%). Around Parc W itself there is a sharp contrast

between the protected forest land and cropped areas. This

situation formed the basis of study by Garcia-Carreras

et al. (2010), who identified an organized atmospheric

FIG. 1. Mean annual rainfall (mmday21) shown as shaded contours for the period 2000–09 according to the TRMM

3B42 product. Location of the study areas, Hombori (H) and Parc W (W) are shown within the dashed square.
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response to the strong (weak) sensible heat fluxes from

the crop (forest) during the wet season.

b. Land surface temperature data

LST data were obtained from the Land Surface

Analysis Satellite Applications Facility (LandSAF) and

were recorded by the geostationary Meteosat Second

Generation (MSG) satellite, which carries the Spinning

EnhancedVisible and Infrared Imager (SEVIRI) sensor

onboard (Sobrino and Romaguera 2004). LST is derived

from TOA brightness temperatures recorded by in-

frared channels at 10.8 and 12.0mm, using the split-

window method (Wan and Dozier 1996). LST errors

have been shown to be less than 1.5K (Sobrino and

Romaguera 2004). Data are acquired at 15-min time

intervals from cloud-free pixels, with a spatial resolution

of approximately 3 km. Further cloud and dust screening

was applied to the LST time series following Taylor et al.

(2011). The focus of this study is on variability on time

scales of days rather than hours. To produce a daily

signal based on incomplete daytime data, a seasonal

mean diurnal cycle was constructed for every pixel, and

then a mean LST anomaly (LSTA) is computed from all

cloud-free data between 0700 and 1700 UTC on a par-

ticular day. We use LST data acquired for the years

2006–09 covering the wet season period from 22 May to

10 October. After screening the datasets for cloud and

dust contaminated pixels, the number of samples lost

was not greater than 30% on average, from a possible

142 observations for both mesoscale regions. In 2007,

31% of the northern section of the Hombori window is

missing because of lack of emissivity information.

Consequently, these missing data in 2007 were omitted

from all calculations.

c. Spectral analysis

A range of approaches exist that test for the presence

of periodic components within a time series, though

many require that the data are sampled at regular in-

tervals without gaps. In contrast, time series derived

from Earth observation (EO) data tend to be irregularly

sampled because of data loss resulting from instrument

failure or screening for pixel contamination by cloud

and/or dust. One solution might be to gap-fill the time

series using an interpolation technique; however, this

can result in bias because of the suppression of high-

frequency components (Schulz and Mudelsee 2002).

Alternatively, a model may be used to estimate missing

data points, using a sequential filtering algorithm such as

a Kalman filter to update model forecasts when obser-

vations are available. However, this solution requires

the necessary model meteorological forcing data and

suitable model calibration. For scenarios where data are

acquired at irregular intervals, the Lomb–Scargle (LS)

method, which only evaluates the data at the sampled

intervals, has been suggested as an appropriate solution

(Scargle 1989; Lomb 1976) and will be adopted in this

study because of gaps in the LST time series.

The LS method estimates the periodogram ‘‘power’’

(P; i.e., the squared average amplitude or equivalently

the variance) that occurs at each frequency (v) via the

Lomb–Scargle transform. The occurrence of peaks in

the periodogram indicates frequencies of significant

periodicity. The LS periodogram is described in Press

et al. (1992) for a given time series y(ti) for i 5 1, . . . , N

for time intervals:

P(v)5
1

2s2

8><
>:

�
i
(yi 2 y) cosv(ti2 t)

� �2

�
i
cos2v(ti 2 t)

1
�
i
(yi 2 y) sinv(ti2 t)

� �2

�
i
sin2v(ti 2 t)

9>=
>; , (1)

where t is an offset and s2 is the variance in y(ti).

When perfectly regularly spaced data are analyzed by

the LS transform, the result is identical to a discrete

Fourier transform. The spectral estimates (i.e., the values

of the power spectrum) are obtained from the sine and

cosine amplitudes of the periodogram (derived from the

LS transform) by using the discrete Hanning spectral

window (yielding eight degrees of freedom; Priestley

1979). Unfortunately, the LS transform introduces bias

in the periodogram power values that relates to the

exact spacing of the data (Schulz and Mudelsee 2002).

In this work we adopt the correction algorithm of

Schulz and Mudelsee (2002) to evaluate and correct

the spectral bias caused by the irregular data spacing.

This approach uses the average spectra of hundreds of

realizations of first-order autoregressive (AR1) pro-

cesses, which are obtained at a matching time step to

the observed data.

d. Land surface model

In this study we assessed the ability of a land surface

model, the Joint UK Land Environment Simulator

(JULES; Best et al. 2011; Clark et al. 2011; Essery et al.

2003; Cox et al. 1999), to simulate realistic variations in

LST and, hence, land–atmosphere fluxes. In particular,

we focused on day-to-day variations associated with

surface drying after rainfall. JULES (version 2.0) is the

land surface scheme in theUKMetOfficeUnifiedModel

and uses a tiled approach (broadleaf tree, needleleaf tree,

C3 grass, C4 grass, shrub, urban, inland water, bare soil,
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and ice) to represent subgrid heterogeneity in the surface

state and fluxes. When used offline from the Unified

Model, JULES is forced with time-varying boundary

conditions of surface downward longwave and shortwave

radiation and near-surface air temperature, humidity,

pressure, wind speed, and precipitation.

Simulation runs in this study used forcing fromALMIP

(Boone et al. 2009), specifically, the so-called ALMIP

Experiment 3 forcing conditions for the single year of

2006. These comprise wind speed, air temperature,

humidity, and pressure from the European Centre for

Medium-Range Weather Forecasts (ECMWF) forecast

model, downward longwave and shortwave radiation

from the LandSAF, and precipitation from the Tropical

Rainfall Measuring Mission (TRMM). Precipitation

data at the coarser ALMIP scale were replaced by the

0.18 Estimation of Precipitation by Satellite, second

generation (EPSAT-SG) product (Chopin et al. 2005)

during the months that EPSAT-EG data were available

(June–September). Meteorological forcing data, with

the exception of precipitation rate, were interpolated

from a 3-h to a 30-min time step using the mean pre-

serving method of Sheng and Zwiers (1998). The forcing

data were then linearly interpolated in space from the

ALMIP grid (0.58; ;50 km in this region) onto the finer

(;3 km) SEVIRI grid for model runs. The model was

spun up over 10 iterations of the complete 2001–08

ALMIP period, that is, 80 years of model integration in

total. Each experimental simulationwas initialized using

the mean of the final ten 1 January states of that in-

tegration, following Rodell et al. (2005).

The tile fractions used in JULES were derived from

the ECOCLIMAP surface cover product (Masson et al.

2003) and aggregated to the ;3 km SEVIRI pixel scale.

Seasonally varying phenology is represented by tem-

poral interpolation of leaf area index (LAI) and canopy

height from 10-day values to the 30-minmodel time step.

Soil albedo was derived from 5-km Moderate Resolu-

tion Imaging Spectroradiometer (MODIS) observations

(Houldcroft et al. 2009). Soil thermal and hydraulic

parameters were derived from the Food andAgriculture

Organization (FAO) database of texture classes (FAO

2003) using the pedotransfer functions of Cosby et al.

(1984).

EO-derived LST will contain differing assumptions

to those of the JULES-estimated LST, predominantly

related to assumed vegetation cover and surface emis-

sivity; consequently, modeled LSTs will show some di-

vergence from satellite-derived LSTs in terms of the

absolute magnitude of the values. To match the tem-

poral variability of the EO LST with the modeled LST,

modeled LST was screened such that 1) the mean di-

urnal cycle was removed, leaving a daily anomaly and

2) if a data point in the EO data was identified as being

contaminated by dust and/or cloud, the matching tem-

poral data point in the modeled LST time series was also

removed.

3. Capturing the surface response to rain at the site
level

The aim of this analysis is to explore how the surface

energy balance over different land covers responds to

rainfall focusing specifically at two mesoscale regions

ofWestAfrica. The details of this response are critical as

it influences space–time variability in the planetary

boundary layer (PBL) and thereby the initiation and

propagation of mesoscale convective systems (e.g., Taylor

et al. 2011). Observations have also shown that once

a grass layer has developed in response to early rains,

daily fluctuations in the partition of surface fluxes be-

come suppressed, in turn affecting the buildup of con-

vective instability over the course of the diurnal cycle

(Kohler et al. 2010).

Figure 2 illustrates the seasonal evolution of the LST

and rainfall over the summer months across the Sahel

region for two years, based on 16-day data averaged

between 108Wand 108E.High values of LST duringMay

and early June give way to cooler conditions in July and

August as the rainband advances northward. The

change in LST is driven by the availability of soil water

for evapotranspiration and the associated development

of the vegetation. When the rains cease the LST rises

again. The sensitivity of LST to rainfall on these spatial

scales is evident when comparing Figs. 2a and 2b. The

monsoon rains penetrate approximately 28 farther north-
ward in July andAugust 2007 compared to 2008, inducing

lower LSTs in July and August 2007. When the 2007

rainy season ended rather abruptly, Sahelian LSTs rose

sharply, in contrast to 2008.

We have computed the sensitivity of LST to ante-

cedent rainfall at different latitudes using estimates from

the TRMM 3B42 precipitation product, available at

a resolution of 0.258. The LSTA data were averaged

onto the same grid and linear correlations between

LSTA and rainfall on the previous day performed for

each day of the season, exploiting all eighty 0.258 grid
boxes in each latitude band and each of the four years.

The sensitivity of the LST to rainfall for two longitudinal

bands centered on the two mesoscale study areas, as

shown in Fig. 3a. Both longitudinal bands demonstrate

a statistically significant lagged correlation with rainfall

(r520.24 and r520.18, p, 0.05, for 15.48 and 11.48N,

respectively); that is, it rains and the following day there

is a cooling in the surface temperature. The regions show

similar patterns of behavior whereby early seasonal LST
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is highly sensitive to rainfall events. As the season

progresses and vegetation cover increases (Fig. 3b), this

sensitivity is reduced, consistent with field observations

(Kohler et al. 2010). The more southerly region loses its

LST sensitivity earlier in the seasons and is subsequently

at least 0.38Cmm21 less sensitive than at 15.48N. This

response can be attributed first to increased vegetation

greenup in the southern band and second to an increased

frequency of rainfall events. The low correlation co-

efficients quoted above are likely to be due to a combi-

nation of factors. At the space and time scale analyzed,

the rainfall amounts are subject to large errors, while

the choice of a single 24-h averaging period is an

oversimplification—events outside of this period will also

influence surface fluxes. Further variability in LSTA is

likely due to day-to-day variations in wind speed and

surface radiation (affected by misdiagnosed cloud and

dust), as well as random errors in the LST product.

We now examine the LST variability in detail at the

most northerly site. Outside of the rainy season little

or no green vegetation growth takes place across the

Hombori mesoscale region. The impact of the short

rainy season on vegetation growth for the two sites is

shown in Fig. 4a for a single year using the satellite-

derived normalized difference vegetation index (NDVI).

Both sites show similar magnitudes in NDVI until the

FIG. 2. Time–latitude diagram depicting the evolution of the African monsoon for the years

(a) 2007 and (b) 2008.Data are averaged from108Wto 108Eon a 16-day time step, where shading

indicates LST (8C) and the contours show rainfall (mmday21) from the TRMM 3B42 product.
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onset of the rains (days of year. 150), when theAgoufou

grassland site shows a rapid greenup (;0.3 NDVI units)

and dieback. In contrast, the Hedgerit site (stony desert)

shows only a minor indication of a vegetation response

to rainfall (i.e., greenup). Figure 4b shows the LST ob-

served for the two sites and the TRMM rainfall from the

corresponding 0.258 pixel. Both sites show a similar

seasonal transition in LST, but with notable differences

in the magnitude of the LST values; this coincides with

the period of greenup (days of year 150–270). Agoufou

has a smoother response to rainfall events and remains

0.78C cooler throughout the rainy season, whereas the

Hedgerit site has a noisier profile. The increased LST

variability on a daily time scale at Hedgerit is consistent

FIG. 3. Sensitivity of the LST to rainfall at 11.48 and 15.48N based on data between 108W and

108E for the years (a) 2006–09 and (b) 9-yr mean MODIS NDVI.

FIG. 4. Comparison of the observed (a)MODISNDVI, (b)MSGLSTAand TRMMrainfall, and their associated

spectra of (c) TRMM rainfall and (d) LST for two sites in the Hombori mesoscale window for the year 2006. Note

that the frequency axis of the spectra plots in (c) and (d) have been truncated to show short time scale responses,

that is, from 20 days to the Nyquist frequency.
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with in situ observations (Timouk et al. 2009), which

indicate a rapid drying of the surface after rain because

of runoff and minor infiltration, and, hence, large vari-

ations in surface temperature. The rapid greenup of the

grassland (Agoufou) site changes the vegetation struc-

ture and therefore the aerodynamic resistance with

the effect of decreasing LST there. Once established, the

grasses can access water in the root zone, allowing the

plants to transpire during dry spells of a few days. In

contrast, the stony desert site (Hedgerit) without such

a water regulation mechanism and impediments to tur-

bulence, will freely evaporate surface water and, once

dry, warm up more rapidly after rainfall.

Figures 4c and 4d show the spectral analysis for the

TRMM rainfall and the MSG LST time series. The

dominant periodicities in the rainfall data (Fig. 4c) occur

on time scales of less than 5 days, consistent with the

passage of mesoscale convective systems, which are

weakly associated with African easterly waves. Statisti-

cally significant periodicities occur at 2.2 and 3.1 days,

with another significant peak also found at 24.9 days (not

shown). Likewise, the spectra for the LST data (Fig. 4d),

have a similar shape (peaks at similar intervals), with

greatest variability at shorter periodicities (,10 days).

Statistically significant peaks for the Agoufou site occur

at 2.7, 2.9, and 4.9 days and 2.9, 4.9, and 7.1 days at the

Hedgerit site.

One might expect that sites with such contrasting land

covers and associated water balances as Hedgerit and

Agoufou (Timouk et al. 2009) would exhibit different

periodicities in the LST time series. However, the dif-

ferences in periodicity between the sites Agoufou and

Hedgerit are negligible in our analysis, and there is not

a single dominant periodicity (Fig. 4d). It appears that

what dominates the periodicity of spectral peaks is the

sequencing of rain events. Spatial variability in rain is

very marked in the Sahel, even at this scale of 15 km

(Taylor et al. 1997), and may obscure more subtle dif-

ferences in periodicity imposed by the land surface. In

addition, missing data (due to cloud and dust) and the

quality (e.g., coarseness of the data, ;3 km) of the LST

data presents problems with this spectral approach. On

the other hand, while we are unable to distinguish dif-

ferences in the occurrence of statistically significant pe-

riodicities, there is a clear difference between the two

sites in terms of total variance in the 2–5-day band. Figure

4d indicates the response to the rain is 59% stronger at

the Hedgerit site compared to the Agoufou site, consis-

tent with the physical mechanisms outlined above.

4. Quantifying the response to rainfall at the
mesocale

Detailed spectral analysis results at the individual

pixel scale suggested we could not detect peaks at dif-

ferent frequencies for different land covers. However,

by examining an increased number of pixels within the

Hombori mesoscale domain, we seek to extract a stron-

ger spatially averaged signal, in particular, illustrating

the different LST responses to rainfall between land

cover types. The land cover map (GLC2000) illustrates

two broad cover types, stony desert and grassland

(Fig. 5b). Figure 5a shows the corresponding average

2–5-day variance (squared average amplitude) for the

same area depicted in the land cover map. Visual in-

spection suggests areas of stony desert across the northern

regions are associated with higher variance, consistent

with analysis of the two field sites (Fig. 4). Within this

domain, the difference in mean power between these two

land cover classes is 1006.

Figure 6 examines the periodicity and power of sta-

tistically significant peaks as a function of land cover

FIG. 5. Spectral comparison of the 2–5-day variance of the EOLST for the (a) Hombori mesoscale and the (b) corresponding land cover map.
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within the Hombori domain. For each pixel, we recorded

every statistically significant peak and its associated

power and then grouped these data by land cover type.

For this analysis it is assumed all the grass and crop

classes are a single grass land cover. Our previous

analysis (Fig. 4) has indicated the period of response to

rainfall is dominated by a short-term response, and so

here we focus on time intervals ,10 days. We used

Cohen’s d to quantify the difference between the mean

of two groups divided by the pooled standard deviation

of the data. Differences between groups aremeasured in

terms of the number of standard deviations: it is typically

assumed that d of 0.2 shows a small, 0.5 a medium, and

0.8 a large effect size. Figure 6a indicates that ;75%

(bare) and ;85% (grass) of statistical significant spec-

tral peaks match the dominant response interval of the

rainfall signal, that is, ,5 days. However, there is no

clear difference in periodicity of the statistical significant

peaks [bare pixels (days) mean (m) 5 3.83, standard

deviation (s)5 1.55 versus grass pixels (days), m5 3.98,

s 5 1.77, and d 5 0.09]. As with our earlier analysis at

the single pixel scale, the spectral approach for the

Hombori mesoscale area cannot distinguish distinct

periodicities between surface types. However, as Fig. 6b

shows, there are clear differences in terms of a higher

power response for bare areas compared to grassland

areas (d 5 0.87).

Here we try an alternative, more empirical approach

to analyzing the time series. To get a better under-

standing of LST variability on these short time scales,

and its sensitivity to land cover, we have composited the

time series for individual pixels based on a drop in LST

from one day to the next exceeding a certain threshold

(38, 58, or 78C). We assume this drop in LST occurs in

association with a local rain event. For individual events

we cannot rule out other causes for the drop in LST (e.g.,

aerosol contamination), but by averaging over many such

events we hope to suppress the impact of misdiagnosis

FIG. 6. Boxplot of the median (vertical line) and mean (star) (a) periodicity and (b) power of statistically significant

spectral peaks from the EOLST data over the period of 2006–09, classified by land cover type (grass and bare). The ends

of the box show the lower (25th) and upper (75th) quartiles. The horizontal whiskers show the full range of the data.

FIG. 7. Composite of the 4-yr (2006–09) drying cycles following rainfall (threshold5 58C; time5 0), classified by land

cover type for the (left) Hombori and (right) Parc W mesoscale windows.
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of rain. Figure 7 (left) shows a 4-yr composite of the

drying cycle following rain for the Hombori region.

The desert pixels warm more quickly and are approx-

imately 0.38C warmer than the grassland site the day

after rainfall (d5 0.11), and they are 18Cwarmer by the

second day (d 5 0.22). The differences in warming

patterns between land cover types in the days after

rainfall were found to be consistent irrespective of

chosen threshold: 38, 58, or 78C (not shown). The differ-

ences in the composite time series between land cover

types can be interpreted in terms of processes described

from in situ observations in this region (Timouk et al.

2009). The stony desert exhibits a strong LST decrease

and more rapid warming on the first day following

a rainfall event, consistent with a short (hours) period of

high evaporation. Over the sandy soils of the grassland

site, there is a slower drying cycle. Evidently, the more

empirical approach is able to detect clear differences

between surface types, in both the amplitude and the

recovery rate after rainfall.

We now perform a similar set of analyses exploring

the sensitivity of LST variability to land cover in a wet-

ter, more densely vegetated region of West Africa. The

influence of land cover on spectral amplitude of vari-

ability (,5 days) is readily apparent for the Parc W me-

soscale region shown in Fig. 8. The 4-yr average, 2–5-day

variance signal can largely be categorized into three

classes, which correspond with the grassland, crop, and

forest areas, shown in Fig. 8b. Forested pixels produced

the weakest 4-yr-average, ,5-day variance response

(hPi) of 928.9 6 431.1 (m 6 s), followed by the area of

cropland (hPi 5 1756.9 6 892.7), whereas the strongest

response was recorded from the grassland region (hPi5
3481.2 6 1289.8).

Figure 9a indicates the majority of statistically sig-

nificant spectral peaks for all land cover types occur

FIG. 8. Spectral comparison of the 2–5-day variance of the EO LST for (a) the Parc W mesoscale and (b) the

corresponding land cover map.

FIG. 9. As in Fig. 6, but for grass, crop, and forest.
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between 3 and 5 days. For periodicities of less than

10 days, there is a small shift toward longer time scale

periodicities in forested pixels (m 5 4.66, s 5 1.45)

compared to both grassland (m5 4.0, s5 1.31, d5 0.46)

and croplands (m 5 4.30, s 5 1.34, d 5 0.26). Following

Cohen (1988), these values indicate that ;33% and

;18% of the statistical significant periodicities do not

overlap with grassland and cropland pixels, respectively.

Here, unlike Hombori, we are able to discern differ-

ences in terms of the statistical significant periodicities.

While these overall differences, .0.5 days, might not

appear large, this is the mean difference and variability

in this periodicity spatially within and between surface

types will result in different feedbacks to the PBL.

Similar to the analysis of the Hombori region, there are

distinct differences between the power of the responses

(magnitude) for different land cover types (Fig. 9b). The

magnitude of responses for forested pixels in the ParcW

region do not overlap grassland and cropland distribu-

tions for;75% (d5 1.78) and;38%, respectively (d5
0.65). This confirms the sizeable differences in the power

responses between land cover types. Similar results from

repeated analysis over smaller regions showed that dif-

ferences in the frequency of spectral peaks between land

cover classes were not due to the relatively large domain

size (and associated within domain meteorological

forcing). Instead, we interpret the differences as having

a biophysical basis. Forests have stronger controls on

water transfer to the atmosphere, through their leaf

stomatal opening as well as deeper rooting systems.

Differences in the periodicity for forested regions, that

is, a greater number at longer periodicities, indicate that

the forest areas are better able to maintain evapo-

transpiration during dry spells. This interpretation is

supported by the Parc W composited drying curves

(Fig. 7, right), where the forest sites remains 0.58–0.98C
and 0.38–0.78C cooler than the other land cover types for

the first and second days following rainfall, respectively.

Through analysis of the LST data, we are able to es-

tablish differing responses of the land surface to rainfall;

furthermore, this can be attributed directly to land sur-

face variability.

5. Land surface model analysis

We now apply the methodology of spectral analysis

used with the EO data to output from the JULES LSM

as forced with high-resolution meteorological data. This

is done for 2006, the only year of overlap between the

forcing and LST data. Figure 10 shows maps of 2–5-day

variance for a single year, 2006 (when we had over-

lapping forcing andEOdata), from JULES forHombori

and Parc W. For the Hombori region, shown in Fig. 10a,

the spatial structure is similar in model and observation

for 2006 (not shown) with a correlation of 0.71 between

the two patterns. Furthermore, the LST variability re-

sembles the land cover classes in Fig. 5b, with increased

variability over stony desert. The prescribed JULES

vegetation cover in this region is similar to the GLC2000

map, and it appears to be the dominant cause of the good

model–observation agreement.

Analysis of the simulated LST variability for 2006

for the Parc W domain (Fig. 10b) shows good model–

observation agreement with the observed 2006 variance

FIG. 10. Spectral 2–5-day variance of the JULES LST for (a) the Hombori region and (b) the Parc W mesoscale

window. All data shown are from 2006 and have been screened so that identical time periods have been analyzed to

the EOdata, therefore accounting for the influence of cloud and/or dust. Data shown in (b) has been clipped, with the

maximum range extending to 2198.5. This affects 1.2% of the data.

OCTOBER 2013 DE KAUWE ET AL . 1615



(r 5 0.61). The impression of three broad land cover

types is still discernible from a single-years EO analysis,

if not an exact mapping (not shown). However, the

JULES output does not appear to show any spatial

organization relating to the GLC2000 land cover classes

(Fig. 8b). This may be linked to the simplified pre-

scription of land cover in the JULES simulation, with

largely forest in the south and grasses in the north

(JULES has no crop class).

For both regions, the total power of the JULES

spectral analysis is noticeably lower, the maximum

power values are 2.3 and 5.4 times smaller for Hombori

and Parc W, respectively, than the EO analysis. By

adding random Gaussian noise to the JULES LST data,

it was determined that at least part of this difference

(;7%) can be attributed to noise in the observations

derived from EO, where errors may reach 1.5K (Sobrino

and Romaguera 2004). Another potentially important

contribution to lack of variability in the model is the

meteorological forcing. In particular, compared to a

time series of observations at the scale of an MSG pixel

(;10 km2), the rainfall forcing at a resolution;800 km2

will tend to smear out rain in space and time. This

low power, however, is also consistent with a previous

analysis of 0.58 ALMIP simulations (de Rosnay et al.

2009) over a wider West Africa domain. In that analysis,

JULES exhibited only 67% of the observed variance in

C-band brightness temperature, the weakest of the eight

models compared, although this was sensitive to as-

sumptions in the microwave forward model. Analysis

of intraseasonal LST biases in the simulations sheds

some light on the origins of the low variability in JULES.

During the first 50 days of the time series, the JULES

LST has a warm bias of 5.38 and 4.48C on average for the

first 50 days of the time series compared to the EO LST

for the Hombori and Parc W regions, respectively

(Fig. 11). It is evident in Fig. 11 that this coincides with

relatively weak day-to-day variability in simulated LST

compared to the EO data. This suggests that the mod-

eled LST is not sufficiently sensitive to any early season

(May, June) rainfall events, when the drop in temper-

ature induced by rainfall is large (Fig. 3a). This may be

linked to the use in JULES of soil moisture in a 10-cm-

thick layer to determine evaporation direct from the

soil.

To gain a better understanding of the likely origins

of our model–observation differences in LST vari-

ability over the two domains, we performed a series

of sensitivity simulations. The first objective was to

identify the relative roles of vegetation and soil prop-

erties in generating spatial variability in the simula-

tions. These runs were done in separate simulations

where, rather than use the standard soil and vegetation

maps, uniform soil properties and/or vegetation cover

were prescribed. We then examined the impact of key

vegetation parameters (roughness length for heat and

root depth) on the LST variance. These simulations

are summarized in Table 1.

a. Hombori

We first tested the sensitivity of modeled LST vari-

ance to the prescription of the vegetation cover and soil.

Imposing a uniform grass (bare soil) surface decreased

the variance by 41%, while imposing uniform bare soil

increased the variance by 39%. On the other hand, im-

posing uniform soil properties had onlyminor additional

impacts on the variance. The lack of sensitivity to soil

properties implies that the model is able to capture

well the mesoscale structure in LST variance because of

the land cover map rather than the soil map. In reality,

the highly contrasting behaviors of the Agoufou and

Hedgerit sites are primarily due to soil characteristics

(freely draining at the grassland site, lateral flows dom-

inant at the stony desert site), which determine what

vegetation can develop there. Evidently, soil parame-

ters derived from the FAO global soil map are unable

to capture this behavior. We then assessed the relative

importance of two key vegetation properties in deter-

mining LST variance, the roughness length and the root

depth. Reducing the vegetation roughness by an order

of magnitude has a large impact on the 2–5-day vari-

ance (131%) and improves the agreement with the LST

map derived from EO data (r2 5 0.91). This increased

variance stems from the increased aerodynamic re-

sistance that raises the LST when the surface is dry.

Reducing the rooting depth that JULES grass has ac-

cess to from 0.5 to 0.01m (scenario 4) also has a sig-

nificant effect and increases the mean variance by 91%

compared to the control. Given the observed–modeled

mismatch in variance, these results suggest that the

FIG. 11. LST bias between JULES modeled data and satellite

derived for the Hedgerit site.
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model is not sensitive enough to temporal variations

in root zone soil moisture, possibly linked to an overly

large soil reservoir. In addition, the aerodynamic

conductance (derived from the roughness length) may

be too large.

b. Parc W

The LST variance for the ParcW simulation (Fig. 10b)

does not capture the mesoscale structure evident in the

observations, or indeed in theGLC2000 land cover map.

From sensitivity runs we can infer only a limited in-

fluence of soil type on the simulated LST variability, as

also found at Hombori. Varying the soil parameters has

a negligible impact (3% change) if the surface is covered

in a uniform forest cover (difference between scenario 3

and 1). As for the Hombori domain, it is the vegetation

that has a bigger impact on LST variance than soil.

Imposing uniform grassland cover raises the variance by

51%, whereas a uniform forest cover raises the variance

by 34% (scenario 1a). Again, we tested the sensitivity of

the variance to individual vegetation parameters. De-

creasing the root zone water access for broadleaf tress

from 3 to 0.5m (scenario 4) increases the 2–5-day

spectral variance (56%) and improves the correspon-

dence with the EO map (r2 5 0.88). However, the

greatest change in spectral variance (107%) is produced

by reducing the roughness length of both grasses and

forest pixels by an order of magnitude (scenario 2). This

analysis confirms that the suppressed LST variance in

JULES is likely linked to an overly large soil moisture

reservoir and/or excessive roughness length for heat.

However, neither of these adjustments increases the

realism of the simulation when compared to the EO

spectral map (visual inspection, not shown); rather, they

highlight that the specification of vegetation fractions

for this area are erroneous.

6. Discussion and conclusions

Understanding how the surface responds to rainfall

in semiarid regions is a prerequisite for predicting how

land cover change or soil moisture anomalies feed back

on regional climate. We have demonstrated that LST

data derived from EO, when combined with spectral

analysis, are useful for quantifying the variability in

the land surface response to meteorological forcing.

We identified a negative correlation between LST and

antecedent precipitation across the Sahelian region,

highlighting that LST is most sensitive early in the

growing season (Fig. 3). Focusing on two mesoscale

regions, each containing contrasting surface properties,

our analysis does not distinguish a single dominant

periodicity in LST, but rather, a window of response

(,5 days) in which the surface temperature indicates

a strong response to rainfall forcing (Figs. 4, 6). Based

on 4 years of data, the influence of contrasting land

surface properties is discernible. This is most clearly

shown in Fig. 8, where the forest and grassland bound-

aries around Parc W are evident. Our analysis indicates

that the variance of this rainfall signal (2–5 days), or

strength of the response, varies strongly with land

cover types. More densely vegetated areas, for ex-

ample, forests, have the weakest response to rainfall,

in contrast to bare regions, which show very high

variance. These differences in response relate to both

the amount of the initial surface cooling and the sub-

sequent rate of the drying process following rainfall

(Fig. 7). The physical characteristics of the surface

TABLE 1. A summary of the sensitivities of the 2–5-day variance in the modeled LST spectral analysis. Mean percent change is cal-

culated as the mean of all the percentage changes for every pixel (control vs sensitivity experiment). All model runs have varying

meteorology forcing. Model simulations with varying soil and/or vegetation indicate simulations with spatial varying properties between

pixels; r2 is the coefficient of determination between the control run and the various scenarios.

Range m 6 s

Mean % change

in 2–5-day variance r2

Hombori: Control run 600–3370 1660 6 613 N/A N/A

Scenario 1a: Uniform grass land cover, varying soil properties 363–1935 906 6 266 241% 0.42

Scenario 1b: Uniform bare land cover, varying soil properties 1260–3338 2106 6 401 39% 0.49

Scenario 2: Varying vegetation, reduced vegetation roughness 1590–6910 3752 6 1277 131% 0.91

Scenario 3a: Uniform grass land cover, fixed soil properties 346–1732 782 6 258 249% 0.52

Scenario 3b: Uniform bare land cover, fixed soil properties 1260–3338 2106 6 401 39% 0.49

Scenario 4: Varying vegetation, small rooting depth 1594–4255 2834 6 470 91% 0.33

Parc W: Control run 0–2198 464 6 260 N/A N/A

Scenario 1a: Uniform forest land cover, varying soil properties 60–1413 494 6 182 34% 0.66

Scenario 1b: Uniform grass land cover, varying soil properties 58–1894 610 6 290 51% 0.83

Scenario 2: Varying vegetation, reduced vegetation roughness 77–3872 903 6 575 107% 0.88

Scenario 3: Uniform forest land cover, fixed soil properties 56–1399 482 6 175 31% 0.91

Scenario 4: Varying vegetation, reduced root depth for forest PFT 48–2936 694 6 457 56% 0.88
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govern these responses through the effects of stomatal

control on the return of moisture to the atmosphere,

aerodynamic resistance on evapotranspiration rates,

runoff, drainage of the soil, and the depth of vegeta-

tion roots.

We found some evidence of different periodicities in

the LST data stemming from the underlying land cover.

We have shown through spectral analysis and a more

empirical approach that there are longer periodicities in

the forest area for the Parc W region (Fig. 6). For the

Hombori region, no significant differences in time scales

were detected using spectral analysis. However, the

empirical approach identified that grassland pixels typ-

ically warm at a slower rate than desert pixels following

rainfall (Fig. 7). As the number of days since a rainfall

event increases (.2 days), the bare soil has warmed by

as much as 18C more than the grassland. Furthermore,

the mean amplitude of the response is 1.6 times greater

in the bare regions compared to the grassland cover

pixels. In the Parc W mesoscale region, grasslands have

a response that is nearly 3 times larger than that of

nearby forested areas. Dickinson et al. (1991) notes that

short grasslands would characteristically have an order

of magnitude lower aerodynamic resistance compared

to that of a forest. These differences are critical, affect-

ing water return to the atmosphere and, therefore, PBL

development. Taken together, these results are consis-

tent with in situ studies that show that areas of low

vegetation cover increase the temporal variability in

fluxes with potential impacts on atmosphere (Bagayoko

et al. 2007; Mougin et al. 2009; Timouk et al. 2009).

The difference in variance between land cover types

is a significant result and is certainly one that JULES

has trouble replicating in our simulations. We found

that JULES matched the observed spatial structure

well for Hombori (Fig. 10a) because of the specifica-

tion of vegetation cover. In contrast, for the Parc W

region the model had poor discrimination between the

vegetation cover present (Fig. 10b). Interestingly, we

found that spatial variability in soil had a negligible

impact on the modeled LST signal, even across an area

where soil type is known to be a key driver in the

surface energy balance (Mougin et al. 2009; Timouk

et al. 2009). These results indicate that JULES LST

day-to-day variability is too weak. Likely causes of this

include unrealistically deep surface and root zone soil

moisture reservoirs and an excessively large roughness

length for heat. For both mesoscale regions, correctly

determining the fractional cover of vegetation, the as-

sociated vegetation surface roughness, and the rooting

depth is critical. Our results suggest that modeled re-

sponses to rainfall by JULES are particularly sensitive

to these parameters.
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