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Abstract 
The role of ice masses within the Earth’s climate system and in landscape change is increasingly 

being recognised within regions that are either currently glaciated or were glaciated during the 

geological past. There are many different remote and field-based approaches to studying the 

products of glaciation. One approach – that of glacitectonics, focuses on the styles of deformation 

and tectonic imprint (folds, fractures, fabrics, foliations and lineations) produced as ice overrides or 

pushes into pre-existing rocks or sediment. This approach, when used in combination with other 

types of evidence, can be used to infer ice-dynamics, substrate rheology and ice-bed coupling.  Of 

equal significance is the influence of glacitectonic structure upon the applied properties of glaciated 

terranes such as ground stability, hydrogeology and fluid migration (e.g. water, gas hydrates and 

hydrocarbons). This paper provides an introduction to this Special Issue on Glacitectonics, outlining 

the significance and historical development of this field of glacial geology, before introducing and 

summarising the contributions that make up the volume. 

 

Introduction and importance of glacitectonics 
Deformation of rocks and superficial deposits by tectonic processes occur at a range of scales. The 

largest and most obvious tectonic processes relate to the development of continental-scale 

subduction and collision zones at convergent plate boundaries (Dewey and Bird, 1970). However, 

similar tectonic processes, albeit operating at far smaller spatial scales and reduced pressure-

temperature conditions, can occur at the Earth’s surface as a glacier or ice sheet pushes into or 

overrides a pre-existing sequence of sediments and/or bedrock. This phenomenon is referred to as 

glacitectonics (Banham, 1977; Croot, 1987; van der Meer, 1987; Aber et al., 1989; Aber and Ber, 

2007; Phillips and Lee, 2011) and is a process widely recognised by geologists since the mid- to late-

nineteenth century (Johnstrup, 1874; Reid, 1882). Evidence for glacitectonism can include a wide 

range of secondary structural features including folds, fractures, fabrics, foliations and lineations 

that are superimposed upon the primary structure of a rock or sediment (van der Meer, 1993; van 

der Meer et al., 2003; Evans et al., 2006; Menzies et al., 2010; Phillips et al., 2008). 

Glacitectonic processes are increasingly recognised as playing a critical role in the development of 

complex glacigenic sedimentary sequences and landforms in both modern and ancient glacial 

environments (Croot, 1988; Hart, 1990; Krüger, 1993; Hambrey and Huddart, 1995; Boulton et al., 

1996; Rocha-Campos et al., 2000; Williams et al., 2001; Larson et al., 2003; Evans and Hiemstra, 

2005; Le Guerroué et al., 2005; Le Heron et al., 2005; Evans et al., 2006; Lee and Phillips, 2008; ; 
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Phillips et al., 2008; Benediktsson et al., 2010). The study of glacitectonic processes provide valuable 

insights into the internal (e.g. substrate rheology, temperature and drainage) and external (e.g. 

climate, mass balance) controls on glacier-induced sediment deformation, and in-turn, their 

influence on ice mass dynamics (van der Wateren, 1995a; Bennett, 2001; Phillips et al., 2002; 

Boulton et al., 2004; Thomas et al., 2004; Evans and Hiemstra, 2005; Thomas and Chiverrell, 2007; 

Benediktsson et al., 2010; Waller et al., 2011; Phillips et al., 2012; Szuman et al., this volume). 

Recognising and understanding glacitectonic structures and processes is also highly relevant to 

applied geosciences. Sediment mixing and the presence of glacitectonic structures such as folds and 

faults can have major implications for ground stability and foundation strength by altering material 

properties and introducing substrate failure planes (Sauer, 1978; Kurfurst and Dallimore, 1991). For 

example, there are many documented examples of glacitectonic structures exerting a dominant 

control on the development and style of landslides (Campbell and Evans, 1990; Stauffer et al., 1990; 

Lee et al., 2011). Indeed, many large-scale infrastructure developments in areas of formerly 

glaciated terrain now carry out detailed ground investigations to determine whether or not 

glacitectonic structures are present in the shallow sub-surface. Glacitectonic structures can also act 

as fluid migration pathways or reservoir traps for water (Jørgensen and Holm, 1995; Scheytt et al., 

2001; Burschil et al., 2012), hydrocarbons (Levell et al., 1988; Huuse et al., 2012) and gas hydrates 

(Hovland, 1990) and are therefore of importance with respect to hydrogeology, civil engineering, 

hydrocarbon exploration and Carbon Capture and Storage (CCS). 

This Special Issue of Proceedings of the Geologists Association has been compiled following a highly 

successful workshop held in Sheringham (UK) during September 2011 on the topic of Glacitectonics 

which examined their glaciological and applied significance. The workshop was organised by the 

Quaternary Research Association in collaboration with the Glacial Landsystems Working Group 

(GLWG) and the International Permafrost Association and attracted geologists from Denmark, 

Iceland, Poland and the UK. The purpose of this Special Issue is to celebrate this workshop by 

presenting a selection of topical research papers under the general banner of Glacitectonics. In this 

introduction paper, we provide a historical and methodological context to this highly dynamic field 

of glacial research as well as summarising the contributions to the Special Issue.   

Evolution of Glacitectonic Theory 
The study of glacitectonics is a relatively new phenomenon but has its origins and evolution can 

ultimately be traced with major historic developments in Geology and Earth Sciences. During much 

of the eighteenth century, the majority of naturalists and scientists related the geological history of 

the Earth to the product of a biblical ‘Great Flood’ described within the Book of Genesis. This 

includes the products of what we now know to be glacial origin such as moraines, erratics and glacial 

scour features. However, the eighteenth century marks an important tipping point in scientific 

philosophy with the emergence of sciences, including Geology and Earth Science, during the so-

called ‘Age of Enlightenment’. One significant concept to evolve during this era was the realisation 

that many products of the ‘Great Flood’ (also known as the ‘Diluvial Theory’) could be explained by 

worldly processes that can be interpreted from the rocks and landscape. One of the principal 

pioneers of this movement was James Hutton who published his geological Theory of the Earth in 

1775. Hutton together with several other important naturalists of the late eighteenth and early 

nineteenth centuries, including Horace-Bénédict de Saussure, Jens Esmarck, Karl Freidrich Schimper 
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and Jean de Charpentier, speculated that glaciers had once covered far more of continental Europe 

than their current extent. Louis Agassiz took this theory a step further by suggested that glaciers and 

ice sheets had, within the recent geological past, been far more extensive throughout the northern 

hemisphere. This Swiss-born geologist also had a significant role to play in introducing the concept of 

glaciation in Britain. Alongside William Buckland, he toured the Scottish Highlands in 1840, 

examining landforms and ‘recent deposits’, concluding that highland areas of Britain and Ireland had 

acted as dispersal centres for ice masses with trains of sediment emanating away from them into 

sediment accumulation areas. 

Despite the contributions of geologists such as Louis Agassiz and William Buckland the specific 

processes of erosion and deposition by ice within the landscape remained contentious. Many 

geologists modified their ‘diluvial’ views to include the activity of floating ice (i.e. icebergs) and 

phases of landscape submergence. Arguably the most significant figure in changing this perception 

was James Geikie who developed the ‘land-ice’ theory based upon detailed observations made 

throughout Scotland. His theories and models were published within a number a landmark papers 

and monographs including three separate editions of book The Great Ice Age and its Relation to the 

Antiquity of Man published in 1874, 1877 and 1894. Geikie’s work was clearly influenced by the 

earlier studies of Ramsay (1862) who demonstrated that many of the ‘rock basins’ of Scotland (e.g. 

U-shaped valleys and fjords) were the product of glacial scouring and erosion. In-turn, the 

authoritative work of James Geikie influenced many other geologists working not just in the UK, but 

elsewhere in North America and Europe who examined the landscape and especially ‘disturbed’ 

sequences with a fresh perspective. During the late nineteenth and early twentieth century’s, 

disturbed glacial sequences were widely recognised with major studies undertaken in southern 

Sweden (Torrel, 1872), parts of North America (Gilbert, 1899; Hopkins, 1923) and the classic site of 

Møens Klint in Denmark (Johnstrup, 1874). In the UK, Clement Reid who undertook the first 

geological survey of the Cromer District of north Norfolk described in detail the glacial geology of 

many of the coastal sections and recognised that much of the sequence has been disturbed by ice. 

He called the deformed sequence the ‘Contorted Drift’, a phrase that is still used informally to this 

day, and likened their structure to the action of pushing a book over a table cloth. His findings were 

published as an Old Series geological map and an accompanying memoir entitled The Geology of the 

Country around Cromer (Reid, 1882).  

The principal pioneer of glacitectonism, however, was George Slater who was the first geologist to 

employ the phrase glacial tectonics within a landmark paper published in Proceedings of the 

Geologists Association in 1926 (Slater, 1926). Slater worked extensively in modern glacial 

environments including Spitsbergen (Slater, 1925) and Switzerland (Slater and Walker, 1929), but he 

is perhaps most widely recognised for his studies of relict glacial sequences in Canada (Slater, 

1927a), the United States (Slater, 1929) and Denmark (Slater, 1928a, b) (Figure 1).  He also published 

widely on glacially-deformed sediments in Britain. These studies include a detailed structural 

interpretation of the Bride Moraine on the Isle of Man (Slater, 1931) and the Anglian ice margin in 

the southern part of the Gipping Valley near Ipswich in southern East Anglia (Slater and Layard, 

1907; Slater, 1927b).  Slater also worked on the famous ‘Contorted Drift’ sequence of northeast 

Norfolk which had previously been examined by Charles Lyell and Clement Reid.  However, other 



Lee, J.R. and Phillips, E. 2013. Glacitectonics – a key approach to examining ice dynamics, substrate 
rheology and ice-bed coupling. Proceedings of the Geologists’ Association, 124, 731-737. ACCEPTED 
TEXT. 
 

4 
 

than a report on a field meeting in Cromer and Norwich (Boswell, 1923) this work and the stunning 

cross-sections that he drew were never formally published.   

Whilst Slater’s work was considered by many in the UK to be of only “...ephemeral interest...” 

(Howarth in Slater, 1926), research elsewhere in Europe continued to gather pace.  A particularly 

significant piece of work was published by Gripp (1929) in which he drew the comparison between 

relict glacitectonic structures in the geological record, and modern processes occurring within the 

foreland of Holmströms Glacier on Spitsbergen. Systematic surveying of glacitectonic terrains also 

began in several European countries including Denmark (Jessen, 1931, 1935, 1936; Gry, 1940; 

Jessen, 1945), Poland (Lewiński and Różycki, 1929; Czajka, 1931; Dylik, 1961) and the Netherlands 

(Crommelin and Maarleveld, 1949; Maarleveld, 1953) and has continued to the present day 

(Overgaard and Jakobsen, 2001; Jakobsen, 2003; Rattas and Kalm, 2004). Similar surveys have also 

been undertaken in North America and resulted in the publication of a national-scale glacitectonic 

map (Aber et al., 1995) and several regional-scale data sets from Saskatchewan / Alberta (Byers, 

1959; Christiansen and Division, 1961; Kupsch, 1962; Whitaker and Christiansen, 1972) and Yukon 

(Mackay, 1959; Mackay and Mathews, 1964) territories of western Canada, and North Dakota in the 

United States (Bluemle and Clayton, 1984).  

Much of our modern understanding of glacitectonism stems from the work of Peter Banham (UK) 

and Asger Berthelsen (Denmark) during the 1970s. Both geologists highlighted the structural 

similarity between glacier-induced shearing and bedrock deformation structures associated with 

continental shear zones (Berthelsen, 1973; Banham, 1975, 1977; Berthelsen, 1978). This period also 

coincides with a marked divergence in the study of glacitectonics with research focussing on the two 

principal end members: (i) subglacial and (ii) proglacial glacitectonism (Hart et al., 1990).    

Banham (1977) introduced the now widely-used phrase glacitectonite, drawing analogies between 

the products of subglacial glacitectonism and mylonitic metamorphic rocks, suggesting that 

deformation within subglacially-sheared materials was partitioned between zones where elements 

of the primary lithology and structure were preserved (exodiamict glacitectonite), and zones where 

any primary lithology or structure could not be discerned (endodiamict glacitectonite) (Figure 2). The 

importance of Banham’s (1977) observations can perhaps only be fully-rationalised within the 

context of ‘subglacial deformable beds’ which has subsequently revolutionised glaciology and glacial 

geology (Boulton and Jones, 1979; Clark and Walder, 1994; Hart, 1995; Boulton, 1996; Murray, 1997; 

Evans et al., 2006). This ‘paradigm shift’ in glaciology (Boulton, 1986) was based upon theoretical 

and field based models that demonstrated that a component of forward glacier motion was 

accommodated by deformation within the substrate or subglacial bed (Boulton, 1986; Boulton and 

Hindmarsh, 1987). Subglacial deformable beds have since been widely recognised or inferred 

beneath both modern (Alley et al., 1986; Dowdeswell et al., 2004) and ancient ice masses (Hicock et 

al., 1989; Clark and Walder, 1994; Hart, 2007; Maclachlan and Eyles, 2011). They possess a 

distinctive glacitectonic structure characterised by a vertical variation in cumulative strain reflected 

in systematic changes in the style and relative intensity of deformation (Banham, 1977; Hart and 

Boulton, 1991; Benn and Evans, 1996; Evans et al., 2006). This profile, from the base upwards, 

comprises: (a) undeformed substrate; (b) ‘type B’ glacitectonite with non-penetrative deformation 

(slightly deformed primary structure); (c) ‘type A’ glacitectonite with penetrative deformation 

(widespread shear structures); and (d) diamicton often referred to as either ‘deformation till’ 
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(Dreimanis, 1988) or ‘subglacial traction till’(Evans et al., 2006). Preservation of this idealised profile 

is dependent upon active accretion of diamicton (d) and the immobilisation of lower strain areas as 

the base of the deforming layer (a-b boundary) moves upwards (Figure 3). Subsequent studies have 

shown that the base of the deforming layer and positions of different strain zones within the 

deforming bed can vary in time and space due to variations in pore-water availability and cumulative 

strain. This can cause the subglacial bed to lock (stick) and unlock (slip) repeatedly, and has been 

recognised within the geological record as a mosaic-type partitioning of structural styles (Piotrowski 

and Tulaczyk, 1999; Piotrowski et al., 2004; Piotrowski et al., 2006; Lee and Phillips, 2008; Phillips et 

al., 2008; Menzies and Ellwanger, 2011). 

Proglacial glacitectonism refers to the large-scale displacement and deformation of either lithified or 

un-lithified proglacial or sub-marginal materials by stresses applied by active ice (Benn and Evans, 

2010). Landform features attributed to this style of glacitectonism have been long-recognised,  

including hill-hole pairs, composite ridges and thrust-block moraines, cupola hills and mega blocks 

and rafts (Milthers, 1948; Smed, 1962; Banham, 1975; Ruszczynska-Szenajch, 1987; Aber et al., 1989; 

Burke et al., 2009) and have been mapped extensively, for example, in Europe (Smed, 1962) and 

parts of North America (Aber et al., 1995). Various models have been presented to explain the 

mechanics of proglacial tectonics (Aber, 1982). However, it was Croot (1987) who drew analogues 

with foreland fold-thrust belts within continental collision zones in his development of a thin-skinned 

glacitectonic model. In this model, Croot argued that deformation was constrained above a basal 

décollement surface with lateral stresses producing a series of proglacial imbricate thrust slices and 

nappes. Whilst a fundamental step forward there were aspects of the model that could not easily be 

explained, not least the tendency of proglacial landforms to be too large to be produced by the 

shear stresses commonly observed at ice margins. This led to the conclusion that the force applied 

by an ice-mass wasn’t lateral but rotational, leading to the production of  a series of wedges 

displaced upwards and down-ice by the load of the glacier (Bucher, 1956; Dahlen et al., 1984). This 

process is now commonly referred to as the gravity spreading model (Rotnicki, 1976; van der 

Wateren, 1985; Pedersen, 1987; Aber et al., 1989). The styles of deformation produced by proglacial 

and subglacial glacitectonism are markedly different, and where superimposed, can be used to 

reconstruct structural frameworks (kinetostratigraphy) relating to different ice-marginal positions 

(van der Wateren, 1987, 1995a, b; Phillips et al., 2002; Thomas et al., 2004; van der Wateren, 2005; 

Thomas and Chiverrell, 2007; Phillips et al., 2008; Rijsdijk et al., 2010). However, differentiating 

specific glacitectonic settings that fall between these end members has proven problematic because 

at a local-scale, the processes of deformation that exist between various tectonic styles are strikingly 

similar (Phillips et al., 2007; Benn and Evans, 2010). One such historical debate surrounds whether 

different types of subglacial diamicton (e.g. melt-out till, lodgement till, subglacial traction till) can 

be recognised (van der Meer, 1993; McCarroll and Rijsdijk, 2003), or whether all subglacial tills are 

essentially subglacial traction or deforming bed tills because they are the product of subglacial 

shearing (van der Meer et al., 2003; Menzies et al., 2006). There has also been considerable research 

attempting to distinguish between massive diamictons produced by subaqueous and subglacial 

processes. This relates both to specific examples, for instance the Late Devensian glaciation of the 

Irish Sea Basin, and to the development of analytical criteria to distinguish between subglacial and 

waterlain sedimentation (Dreimanis, 1982; McCarroll and Harris, 1992; Hart and Roberts, 1994; Carr, 

2001; Lee, 2001; McCarroll, 2001). 
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Contents of the Special Issue 
The eight papers included within this Special Issue serve as an excellent illustration of the breadth of 

contemporary glacitectonic research and have been arranged thematically to reflect the different 

areas of this field. The first two papers – by Johnson et al. (this volume) and Lee et al. (this volume), 

focus on the development of glacitectonic structures and landforms associated with proglacial and 

sub-marginal glacial environments. Johnson et al. (this volume) present a detailed study on the 

geomorphology and internal architecture of a Younger Dryas-age submarine push moraine complex 

from central Sweden. They argue that the moraine complex formed during two distinctive 

deformation events with ice extending into, and tectonically remobilising, sediments deposited 

within an adjacent basin. The first advance tectonised pre-existing clays forming an ice-marginal 

apron composed of successive sub-aquatic debris flows. A subsequent re-advance of the ice-margin 

led to the detachment and thrusting of sands and the soft-sediment intrusion of clay layers, whilst 

up-ice, sands and clays were sheared subglacially. This study complements other recent published 

case studies from Greenland and Svalbard that offer a rare insight into the glacitectonic processes 

associated with the formation of submarine push moraines. The paper by Lee et al. (this volume) 

examines the landforms and structural architecture of the Middle Pleistocene-age ‘Cromer Ridge’ 

push moraine in north Norfolk, UK. Presenting data from several sites, Lee et al. reconstruct a 

complex model for the northwards retreat of the ice margin across north Norfolk from a maximum 

extent located to the south of the previously-known limit. Glacitectonic evidence is used to infer bed 

conditions – specifically temporal and spatial variability in substrate drainage and rheology, and in-

turn ice-marginal dynamics during ice-marginal retreat with several phases of rapid advance, still-

stand and mass-wastage are identified. The paper argues that the ‘Cromer Ridge’ is not a single 

landform as previously defined, but an extensive complex composed of several landform and 

structural elements created during a highly-dynamic episode of ice-marginal retreat. 

The remaining six papers within this Special Issue occur ‘up-ice’, and correspond to the development 

and glaciological significance of subglacial shear zones. The papers by Busfield and Le Heron (this 

volume) and Menzies et al. (this volume) outline evidence for subglacial glacitectonic processes 

operating during Neoproterozoic and Pliocene glaciations respectively. Busfield and Le Heron (this 

volume) examine deposits from the Otavi Mountainland, Namibia, that are of Neoproterozoic age 

and date to the ‘Snowball Earth’ glaciation of the Gondwana supercontinent. Detailed examination 

of the sedimentology, structural geology and micromorphology (thin section analysis) of the deposits 

reveal that sedimentation originally occurred subaqueously in an ice-contact setting, with the 

sediment-pile subsequently overridden as the ice margin oscillated. The authors develop a classic 

subglacial deformable bed model with strain partitioned into three ductile and brittle zones that 

display an overall upwards increase in cumulative strain towards the inferred ice-bed interface. The 

paper is important because it contributes to the wider understanding of Neoproterozoic 

palaeogeography of Gondwana and provides insights into the mechanisms of ice sheet behaviour.  

The micromorphology and glaciological significance of a Pliocene-age diamicton from Northern 

Ontario, Canada is examined by Menzies et al. (this volume).  Detailed descriptions of structures and 

textures in thin section have led the authors to interpret the diamicton as a subglacial till that 

formed within a subglacial deforming layer. Critically, quantitative measurements show that the 

number of edge-to-edge contacts is much lower than local Pleistocene-age tills.  It is suggested that 

the reduced number of grain-contacts could reflect either a high clay matrix or sediment porosity 
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combined with high porewater pressures and low strain rates and may indicate that the till was 

emplaced under surging or fast ice stream conditions. The paper provides an important insight into 

glacier dynamics of the Mid-Pliocene James Bay ice lobe, but more generically, the critical link 

between detailed geological evidence, subglacial processes and glaciodynamics. 

The papers by Phillips et al. (this volume), Szuman et al. (this volume), Fleming et al. (this volume) 

and Phillips and Lee (this volume) discuss glacitectonic evidence from subglacially sheared materials 

relating to Quaternary glaciations. Phillips et al. (this volume) describe a complex array of structures 

from western Anglesey, north Wales, attributed to periglacial and subglacial glacitectonic origins.  

Here, highly brecciated metasedimentary rocks of Cambrian age have been locally remobilised to 

form a variably thick but extensive regolith. This regolith has been further brecciated and disrupted 

by involutions, convolute folds and hydrofractures which are considered to be the product of 

periglacial and active-layer processes. Overlying this regolith is a bedrock-rich diamicton containing 

hydrofractures, bedrock rafts, brittle and ductile shearing and thrusting that were produced by Irish 

Sea prior to the deposition of a subglacial till as the island was inundated by the Irish Sea Ice Stream 

during the Late Devensian glaciation. The paper by Szuman et al. (this volume) examines geological 

evidence for subglacial processes that were active beneath the Baltic Ice Stream during the Late 

Weichselian (Devensian) glaciation of central Poland. Through the examination of subglacial 

landforms preserved within the landscape and sedimentary and structural observations, Szuman and 

colleagues demonstrate strong thermal and rheological controls on processes operating within the 

subglacial bed. Four distinctive ‘thermo-mechanical facies’ (A-D) are identified reflecting variations in 

subglacial temperature, permafrost and porewater: (A) slow ice flow, dry and cold subglacial 

conditions; (B) cold but moist subglacial bed; (C and D) represent wet and warm ice sole. Critically, 

the spatial distribution of these facies are not considered to be random, with facies A and B relating 

to slow moving, cold-based ice at the marginal and inter-stream areas, and fast-moving, warm-based 

and well-lubricated ice (C and D) forming the axial parts of the ice streams. 

Fleming et al. (this volume) utilise structural observations and quantitative fabric data to 

reconstruct the evolution of a subglacial shear zone superimposed upon a Middle Pleistocene-age 

sequence of highly-stratified waterlain diamictons in north Norfolk, UK. Fabric data was obtained 

from examining the anisotropy of magnetic susceptibility (AMS) which revealed a series of magnetic 

lineations developed parallel to sheath folds and stretching lineations. The authors concluded that 

following deposition the sequence had been overridden and deformed subglacially on two separate 

occasions relating to initial (north-to-south stretching) and subsequent (west-to-east stretching) 

glacitectonic events. Fleming et al. then examine these results within the context of regional ice-flow 

models and propose several different glaciological scenarios that could explain the evidence.  

The paper by Phillips and Lee (this volume) also examines the Middle Pleistocene glacial sequence 

of north Norfolk focussing on coastal sections between Sheringham and Weybourne. This study 

investigates several distinctive sand and gravel bodies and their relationship to adjacent till units. 

Previously, these sand and gravel bodies have been interpreted as large gravitational load 

structures. However, evidence presented by Phillips and Lee argues that these complex structures 

may actually be subglacial meltwater channels. Sedimentation within these channels occurred 

synchronously with the overriding of the sediment pile by ice with a distinctive array of glacitectonic 

structures superimposed upon both the channels and adjacent tills. Importantly, the study identifies 
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that the draining of the subglacial bed caused the subglacial bed to lock-up and deformation to 

cease, and the subglacial channel system to become abandoned. 

Conclusions 
 This volume includes a number of papers relating to different glaciological aspects of 

Glacitectonics including subglacial bed processes, proglacial morainic development and glacial 

landsystem evolution.  

 Each paper demonstrates the value of examining structural evidence from deformed glacigenic 

sequences in reconstructing the complex geological processes that occurred as glacier ice 

overrode or pushed into pre-existing sediment and / or rock. This evidence is particularly 

powerful when used in combination with other geological and geomorphological data. Not only 

is an understanding of glacier-induced deformation important from a glaciological perspective 

but also to a range of applied users interested in ground stability and fluid mobility 

(groundwater, hydrocarbons and gas hydrates). 

 Detailed studies presented within this volume highlight substrate rheology and water mobility as 

key controls of both stress and strain rates and in-turn styles of glacier-induced deformation. 

These vary temporally and spatially reflecting substrate lithology and permeability, water 

availability and its mobility, and the thermal properties of the ground. Individually and 

collectively, these variables can exert a strongly influence on ice dynamics especially around ice 

margins and areas of ice sheets susceptible to fast-flow behaviour (i.e. ice streams). 

 Currently, our understanding of stress and strain in glacier-induced deformation is largely 

relative rather than qualitative. This is partly because of the inaccessibility of the substrate 

beneath contemporary ice masses, but also because the geotechnical properties of deformed 

strata from past glaciations reflect post-depositional consolidation rather than the conditions at 

the time of formation. Attempting to quantify these variables at the time of formation has and 

will continue to be a major challenge for researchers within the field of Glacitectonics. Not only 

is this critical to understanding material properties, but they will help establish accurate baseline 

and boundary conditions which are important for ice sheet and glacier modelling. 
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Figure 1. Structural interpretation (with modifications) of the classic Møens Klint site in Denmark by 

Slater (1928b).  Unfortunately, this work attracted controversy with accusation of plagiarism and 

misrepresentation by a Danish colleague (Jessen, 1931).  

 

 

Figure 2. The development of glacitectonites within glacially-deformed materials with the descriptive 

terminology and nomenclature of Banham (1977) and Evans et al. (2006). 
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Figure 3. The ‘subglacial deforming bed’ model after Evans et al. (2006). 

 


