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Abstract 

In response to the general lack of sufficiently abundant and high quality rutile U-Pb reference 

materials for in situ geochronology, we have characterised two new potential rutile ~ 1.8 Ga 

reference materials (Sugluk-4 and PCA-S207) from granulite facies belts of the Canadian 

Shield, namely the northern Cape Smith Belt of Quebec and the Snowbird Tectonic Zone 

(Sasatchewan). Characterisation includes ID-TIMS and LA-ICP-MS U-Pb dating, imaging, 

and trace element analysis. We compare these materials with existing rutiles used already 

(R19 and R10; Luvizotto et al., 2009; Zack et al., 2011) and show that the measured U-Pb 

compositions (i.e. including any common Pb) of our rutiles are considerably more 

homogeneous. This makes possible a U-Pb normalisation procedure (not reliant upon a 

common Pb correction) that results in a significant decrease in the uncertainty contribution 

from the common Pb correction and better reproducibility of reference materials and 
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unknowns for provenance analysis and other applications. The reproducibility is 2–4% 

(2RSD) for 
206

Pb/
238

U and 
207

Pb/
206

Pb, only slightly greater than long-term data for zircon 

reference materials. We show in a rutile provenance study from young orogens (Bhutan 

Himalaya and Canadian Cordillera) that the sensitivity of our analytical set-up allows dating 

of ~90% of rutiles in a sediment using a 50 m laser ablation spotsize within samples 

containing rutile as young as 10–20 Ma, and obviates the requirement for U concentration 

pre-screening, thus reducing or eliminating rutile selection bias. Unsuccessful analyses are 

due to poor quality rutiles with predominant common Pb, 
207

Pb signal below detection, or U 

content below ~1-2 ppm. We have used the ‘
207

Pb-method’ (using the Tera-Wasserburg 

diagram) to correct for substantial common Pb in very young and/or very low-U rutiles, rather 

than developing an on-line correction. Since rutile ages reflect mainly the time of cooling, 

rutile is a sensitive recorder of metamorphic thermochronological information and therefore is 

an excellent complement to detrital zircon U-Pb data. The contrast between zircon and rutile 

signatures in Himalayan samples with rutile as young as 10 Ma is shown to be very dramatic 

(most zircons from the same sample are > 480 Ma, with only a few grains or metamorphic 

rims reflecting Miocene metamorphism); as such rutile provides complementary information 

about the thermal events within the source regions of the grains. Rutile U-Pb dating is an 

underexploited provenance method with wide applicability to sedimentary provenance 

studies. 
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1. Introduction 

Rutile, the most common polymorph of TiO2, is a widely distributed accessory mineral in 

medium- to high-grade metamorphic and some igneous, chiefly plutonic, rocks. Due to its 

chemical and physical stability during the sedimentary cycle, rutile is commonly found in the 

heavy mineral suite of sedimentary rocks and can therefore provide important information 

about provenance. Rutile typically consists of > 98 wt % TiO2, but considerable amounts of 

other elements such as Fe, Cr, Nb and Ta and other HFSE (high field strength elements) can 

enter the crystalline lattice, allowing insight into rock forming conditions and discrimination 

between different source lithologies in provenance studies (e.g., Zack et al., 2004a; Carruzzo 

et al., 2006; Triebold et al., 2007; Meinhold et al., 2008; Morton and Chenery, 2009; Ewing et 
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al., 2011; Meyer et al., 2011). The Zr content of rutile crystallised in a zircon-saturated 

environment is strongly dependent on temperature (Zack et al., 2004b; Watson et al., 2006; 

Ferry and Watson, 2007; Tomkins et al., 2007), and Zr-in-rutile is used as a geothermometer, 

commonly coupled to the Ti-in-zircon thermometer. Uranium can be easily accommodated in 

the crystalline structure of rutile due to the comparable ionic radius and charge to Ti
4+

, hence 

rutile can be dated by the U-Pb method, but it has comparatively received far less attention 

than zircon perhaps due to its usually lower U concentration (from as low as < 0.01 ppm to ~ 

100 ppm) and to the lack of rutile mineral reference materials needed for microprobe dating. 

However, rutile has been used for some years by the ID-TIMS (isotope dilution thermal 

ionisation mass spectrometry) community for high precision dating via the U-Pb system. For 

further reading on rutile properties and applications in the earth sciences the reader is referred 

to Meinhold (2010). 

The radiogenic Pb content of rutile is a function of the time since it cooled below its closure 

temperature (TC) and accumulated Pb due to the radioactive decay of U. When this TC is 

lower than the crystallisation temperature (Dodson, 1973) the measured age represents the 

time of cessation of Pb volume diffusion during cooling. TC is a function of diffusivity, 

cooling rate, and effective diffusion radius. Mezger et al. (1989) used ID-TIMS to date rutile 

grains from amphibolite to granulite facies metapelitic rocks, and compared the results to 

dates obtained for other minerals with reasonably well-known TC (zircon, garnet, sphene, 

monazite, as well as hornblende and biotite dated by the K-Ar and 
40

Ar/
39

Ar method). This 

empirical calibration resulted in TC estimates for rutile of 380 and 420 °C depending on grain 

size of crystals (respectively 70–90 and 90–210 m). These estimates were later upwards-

revised to 500 and 540 °C (for rutile with diameter 140–180 and 180–420 m; Vry and Baker, 

2006). Based on diffusion experiments over the range 700–1100 °C on natural and synthetic 

rutile with significant differences in trace element composition, Cherniak (2000) calculated 

mean TC of ~ 600 °C for rutile grains of ~ 100 m size. Observed age heterogeneity, 

determined by LA-ICP-MS (laser ablation inductively coupled plasma mass spectrometry), 

within relatively large grains (up to 280 m in size) from granulite facies Archean metapelitic 

rocks showing systematic core-to-rim decrease of several tens of millions of years (640 to 

510°C) and increase in age-gradient, lead Kooijman et al. (2010) to interpret the intragrain U-

Pb variations as cooling ages recording points in time where the system effectively closed for 

Pb, and to construct closure temperature profiles (TC(x), Dodson, 1986) across the grains. 

U-Pb dates obtained for rutile are younger than coexisting zircon and represent the time of 
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cessation of Pb volume diffusion during cooling below ~ 500 ºC; rutile can thus be used as a 

thermochronometer in studies aimed at constraining the timing of metamorphism or  the 

thermal evolution of igneous and metamorphic terranes (Schärer et al., 1986; Corfu and Muir, 

1989; Mezger et al., 1989; Flowers et al., 2005; 2006; Storey et al. 2007; Kylander-Clark et 

al., 2008; Li et al., 2011; Blackburn et al., 2011, 2012). Growing interest is also being paid to 

U-Pb chronology of detrital rutile as a provenance indicator (Allen and Campbell, 2007; Birch 

et al., 2007; Rösel et al., 2011; Meinhold et al., 2011; Okay et al., 2011). While U-Pb 

chronology of rutile by ID-TIMS is a well established technique and allows high precision 

ratios to be measured (e.g., Ludwig and Cooper, 1984; Schärer et al., 1986; Corfu and 

Andrews, 1986; Mezger et al., 1989; Davis, 1997; Cox et al., 2002; Treloar et al., 2003; 

Schmitz and Bowring, 2003), rutile can also be dated by microprobe (secondary ion mass 

spectrometry – SIMS, LA-ICP-MS) techniques (Sircombe, 1995; Clark et al., 2000; Vry and 

Baker, 2006; Harrison et al., 2007; Storey et al., 2007; Kooijman et al., 2010; Meinhold et al., 

2011; Zack et al., 2011; Schmitt and Zack, 2012; Taylor et al., 2012).  

A potential issue for U-Pb dating of rutile, especially in young, less radiogenic samples, is the 

relatively large proportion of common (non radiogenic) Pb (i.e., which can be incorporated 

into the crystal structure during crystallisation or derived from contamination) resulting in low 

ratios of radiogenic Pb to common Pb (e.g., Treloar et al., 2003 from UHP rocks). The 

problem has been variably addressed, most commonly by assessing the common Pb 

composition at the time of crystallisation using multiple analyses of rutile and mineral 

isochrons, or by assuming a model-based composition of common Pb using measured 
204

Pb in 

the same mineral, or by applying a correction for the common Pb content following the 

determination of the common Pb composition as measured in a (U-Th poor) mineral 

coexisting in the same rock, the latter method not being applicable to detrital samples. 

Alternatively, making use of the observation that rutiles contain very low Th (hence 

negligible radiogenic 
208

Pb from 
232

Th decay), the measured isotopic ratios can be corrected 

for common Pb by measuring 
208

Pb and assuming it is virtually entirely common Pb (Clark et 

al., 2000; Allen and Campbell, 2007; Kooijman et al., 2010; Zack et al., 2011). Currently, 

strategies are not available for handling reference material data with variable common-Pb to 

determine normalisation factors for LA U-Pb dating. In the absence of this, data must first be 

corrected for common-Pb using one of the above approaches. However, the routine 

application of a common Pb correction and the necessary uncertainty propagation, risks 

masking scatter in the reference material data which may or may not be relevant to the nature 
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of the sample analysis. Equally, correction and propagation of the sample datapoints may 

mask the resolution of further age scatter. In addition to the inability of some instrumental set-

ups to measure precisely some relevant isotopes (e.g. 
204

Pb, 
208

Pb), the problem of 

determining normalisation factors from data with variable common Pb and the additional 

uncertainty contribution, makes favourable the use of a reference material without significant 

common-Pb if one could be found. In this study, U-Pb dating by LA-MC-ICP-MS is applied 

to detrital rutile and two new natural rutile materials (Sugluk-4 and PCA-S207) are presented 

as primary and secondary reference materials to use during analysis, for which high precision 

ID-TIMS U-Pb and abundant LA U-Pb dates have also been determined. An approach of 

reference material and sample analysis is developed and presented that can be applied to the 

wider challenge of detrital rutile single grain U-Pb dating for provenance studies. Our 

approach benefits from the use of multi-collector ICP-MS which typically exhibit better 

detection efficiencies than single-collector sector-field or quadrupole-ICP-MS techniques as 

well as simultaneous measurement of ion beams resulting in higher precisions for equivalent 

analysis durations  (or the use of shorter acquisition times and lower ablation volumes whilst 

achieving equivalent precision). This allows accurate determination of the vast majority of 

rutiles in a sediment (> 75 and 90 % on average, using a 35–40 or 50 m spot size, 

respectively, based on 16 modern river sand samples 6 of which are shown in this study) 

without requirement for concentration pre-screening which might serve to bias the population 

distribution. We show that our reference materials are near-concordant with a low relative 

common Pb content and a long-term reproducibility only modestly worse than long-term data 

for zircon reference materials. This eliminates the necessity for a common Pb correction to be 

applied to the reference data before establishing the U/Pb normalisation value as well as the 

uncertainty propagation which would also be necessitated. Due to the lower TC of rutile 

compared to zircon, rutile has the potential to become a key tracer in sedimentary provenance, 

especially in combination with zircon, as together they provide a better defined isotopic 

fingerprint of the source region. Additionally, the availability of good quality reference 

materials will favour the application of U-Pb dating of detrital rutile in provenance studies in 

the future. 

2. Rutile reference materials   

Two rutile samples from granulite facies metasedimentary rocks, Sugluk-4 (Sugluk-4-87 of 

Parrish, 1989) and PCA-S207 (PCA-S207-90-A), were chosen as candidate reference 

materials due to their abundance, general lack of inclusions and their age and tectonic setting. 
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One of our objectives was to identify materials of sufficient quantity, quality and suitability in 

order to be able to distribute aliquots of both materials to other laboratories on request. The 

two rutile samples consist of gram-quantities that generally fall in a grain size range of 100–

500 μm. Sugluk-4 is a granulite facies quartzite from the Ungava segment of the Trans-

Hudson orogen of Canada (Sugluk-4) and PCA-S207 is a highly strained granulite facies 

paragneiss (“upper deck diatexite” of Hanmer et al., 1994) from the East Lake Athabasca 

region (Canada). The exact geographical coordinates are indicated in Table 1 and further 

details on the geological and metamorphic setting of these samples (not necessarily relevant 

to their use as reference materials) can be found in the Supplementary data file. The garnet-

bearing paragneiss PCA-S207 is a leucocratic banded rock with 0.2 to 3 mm thick ribbons of 

quartz alternating to granular layers of quartz and alkali feldspar, with minor twinned 

plagioclase. The planar fabric wraps around 1 to 5 mm garnet porphyroclasts colourless in 

thin section. Reddish brown rutile 0.1 to 0.5 mm across is a relatively abundant accessory 

phase. Sample Sugluk-4 is an isotropic quartzite made of large (up to a few cm) quartz 

domains with irregular contacts and minor interstitial sericitized feldspar domains with relics 

of crosshatched twinning. Isolated white mica flakes (~ 1 mm) are present. Rutile is rarely 

observed in thin section. Images of PCA-S207 and Sugluk-4 rutile grains are shown in Fig.1. 

The grains range in size from a few tens m to several hundreds m, are translucent and 

brown-red to dark-brown, with Sugluk-4 grains idioblastic to sub-idioblastic (Fig. 1a), while 

PCA-S207 grains are commonly xenoblastic (Fig. 1i). Colour zoning is rare. In thin section 

the grains are reddish brown (Figs. 1b, d, e, l, n, o) and can show twinning (e.g. Fig. 1c). BSE 

imaging did not reveal zonation patterns (Figs. 1f, g, h, q, r, s). 

3. Analytical methods for reference material characterisation 

Rutile grains were isolated from the samples by mineral separation techniques making use of 

standard crushing, milling, dense liquid separation and Frantz magnetic separation. In 

characterising the rutiles, typical grains were selected, mounted in epoxy resin and polished to 

expose their interiors. The characterised grains are representative of rutile grains from the 

separates and are not specially selected. 

3.1 ID-TIMS U-Pb dating 

ID-TIMS U-Pb dates of rutile were measured at the NERC Isotope Geosciences Laboratory 

(NIGL), British Geological Survey, UK. Single rutile crystals or fragments were hand-picked, 

photographed (in transmitted light) and rinsed (in ultrapure acetone) prior to being transferred 
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to 300 µl Teflon FEP microcapsules and spiked with a mixed 
233

U-
235

U-
205

Pb tracer. Rutile 

was dissolved in ~ 120 µl of 29 M HF with a trace amount of 30% HNO3 with microcapsules 

placed in Parr vessels at ~ 220°C for > 60 hours; total dissolution was checked by visual 

inspection during each dissolution batch. Solutions were dried to fluorides, and then 

converted to chlorides at ~ 180 °C overnight. U and Pb for all minerals were separated using 

standard HBr-HCl based anion-exchange chromatographic procedures.  

Isotope ratios were measured using a Thermo-Electron Triton thermal ionisation mass-

spectrometer (TIMS). Pb and U were loaded together on a single Re filament in a silica-

gel/phosphoric acid mixture (Gerstenberger and Haase, 1997). Pb was measured by peak-

hopping on a single SEM detector. U isotopic measurements were made in static Faraday 

mode. Age calculation and uncertainty estimation (including U/Th disequilibrium) was based 

upon the algorithms of Schmitz and Schoene (2007). 

3.2 LA-MC-ICP-MS U-Pb dating 

Laser ablation U-Pb data were collected using either a 193 nm or a 213 nm wavelength laser 

ablation system (UP193SS, UP193FX and UP213SS, New Wave Research) coupled to a Nu 

Plasma HR multiple-collector inductively coupled plasma mass spectrometer (MC-ICP-MS, 

Nu Instruments). The mass spectrometer used has a specially designed collector block to 

allow simultaneous detection of all masses in the range 202–207, 235 and 238. Methods 

followed those described in Thomas et al. (2010) with the data reduction and uncertainty 

propagation methodologies described in Horstwood et al. (2003). Instrument parameters used 

during analysis are detailed in Table A (Supplementary data file). Either a low-volume 

(volume ~ 3 cm
3
, Horstwood et al., 2003) or a two-volume (Large Format Cell of New Wave 

Research) ablation cell were used for sample analysis. The laser sampling protocol employed 

a 35, 40 or 50 m static spot  depending on crystal size  and a fluence of 2–3 J/cm
2
 

(independently calibrated). Analysis was performed using the Time Resolved Analysis (TRA) 

mode of the Nu Plasma software with signals integrated excluding the first 3–5 s of data and 

the data normalised and uncertainty propagated offline using an in-house Excel spreadsheet. 

After an initial 30 s instrument baseline measurement and 30 s gas blank, individual analysis 

ablation times were 40 s for a run of 10-15 ablations. Average pit depth estimates of ~ 20 m 

were confirmed by independent SEM measurements on a few grains (Fig. 2). Ion beams for 

mass 204 (Pb and Hg), 
206

Pb and 
207

Pb were collected on ETP discrete dynode electron 

multipliers with all other peaks collected on analogue (Faraday) detectors. The simultaneous 

measurement of the 
202

Hg signal allows correction for the isobaric interference of 
204

Hg on 



8 

 

204
Pb during the ablation. Detection of very small amounts of 

204
Pb is however currently 

hampered by the quantity of Hg in the gas blank, leading to a relatively high on-peak 

subtracted noise level on 
204

Pb, masking the low 
204

Pb signals typical of many rutile ablations 

and ultimately leading to poor precision on small common Pb corrections. A desolvating 

nebuliser (DSN-100, Nu Instruments) was used to simultaneously aspirate a solution 

containing Tl (with isotopes 203 and 205) and 
235

U in order to correct for mass spectrometer-

related mass bias (Pb/Pb ratios using 
205

Tl/
203

Tl, Pb/U ratios using 
205

Tl/
235

U) at the time of 

analysis. Elemental fractionation from other sources (laser- and plasma-induced) was 

corrected by comparison of laser ablation data for a primary reference material to ID-TIMS 

data. In line with best practice in laser ablation analysis, at least one secondary reference 

material is required to validate the results and assess the quality of the U-Pb data, hence both 

reference rutiles were analysed in each session, one to provide validation for the corrections 

determined from the other. Uncertainties for the 
207

Pb/
206

Pb ratios were propagated using 

quadratic addition to combine the measurement uncertainty with a reproducibility component 

modelled to reflect increasing uncertainty with decreasing signal size (see Horstwood et al., 

2003 for details). A minimum uncertainty of 0.5% (2) was assigned to the 
207

Pb/
206

Pb ratio 

by default for ablations with high 
207

Pb ion beams, to reflect the confidence in the ability of 

the multi-ion counting (MIC) set-up to accurately reproduce any one value. 
206

Pb/
238

U 

uncertainties were propagated in a similar way utilising the measurement uncertainty and the 

reproducibility of the ablation reference material used. During each analytical session both 

zircon and rutile reference materials were measured between each group of unknowns to 

determine the degree of elemental fractionation, to monitor the effect of matrix (zircon vs. 

rutile) on the degree of elemental fractionation, and to assess instrumental accuracy. GJ-1 

zircon reference material (
206

Pb/
238

U age = 600.4 ± 0.6 Ma, Jackson et al., 2004; 602.3 ± 1 Ma 

NIGL TIMS data unpublished) was used as the primary zircon reference material with Mud 

Tank (732 ± 5 Ma, Black and Gulson, 1978) and 91500 (1062.4 ± 0.4 Ma, Wiedenbeck et al., 

1995) or Plešovice (337.1 ± 0.4 Ma, Sláma et al., 2008) as secondary zircon reference 

materials. Sugluk-4 and PCA-S207 were analysed as primary and secondary rutile reference 

materials respectively. The weighted means of the 
207

Pb/
206

Pb and 
206

Pb/
238

U Sugluk-4 ratios 

obtained by ID-TIMS (without correction for common Pb) were used as the reference values 

to determine the normalisation factors relative to the average 
207

Pb/
206

Pb and 
206

Pb/
238

U (after 

mass-bias correction (mbc) using the Tl-U solution) obtained over the course of each LA-

MC-ICP-MS analytical session. These factors were used to normalise the data for the 
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validation (PCA-S207) and sample analyses. All plots and age calculations have been made 

using the Isoplot v. 4.14 (Ludwig, 2003) add-in for Microsoft Excel. 

3.3 Determination of trace element composition by LA-ICP-MS  

Laser ablation ICP-MS was used to determine the trace element content of rutile grains from 

Sugluk-4 and PCA-S207. Element concentrations were measured at the University of 

Portsmouth using an Agilent 7500cs quadrupole ICP-MS coupled to a New Wave UP213 

laser ablation sampling system. Helium was used as a carrier gas and mixed with Ar via a 

connector prior to the torch. Spots were located as close as possible to the spots used for LA 

U-Pb dating. Data were collected using a 60 s acquisition and backgrounds were measured as 

a gas blank for the first 30 s. The spot size was 40 μm with a repetition rate of 10Hz and laser 

fluence was maintained at ~ 4 J/cm
2
. NIST SRM 610 glass (Pearce et al., 1997) was used as 

the reference material for concentration determination, to correct for elemental fractionation 

and mass bias and was measured at the beginning and end of data acquisition and between 

each group of 14 unknowns. Internal standardisation was done stoichiometrically by assuming 

TiO2 = 98 wt% in rutile. Oxide formation was kept below 0.1% by monitoring Th/ThO
+
. 

Rutile R10 was monitored within each run and checked against the published values of 

Luvizotto et al. (2009). The data were reduced offline using Lamtrace (Simon Jackson, 

Geological Survey of Canada). All of the elements analyzed were reproduced to within 4 and 

9 % (1with the exception of Al and W (20 %), on the basis of long-term reproducibility. 

4. Reference materials results 

4.1 Mineral chemistry 

Selected typical Sugluk-4 and PCA-S207 rutile grains were analysed for chemical 

composition and intragrain variability, as tested by ablating different areas of individual 

grains (e.g., Figs. 1h and 1s; Table 1). A selection of elements in the mass range 27–238 was 

measured by LA-ICP-MS, with many being below the detection limit of the technique (e.g., 

Mn, Rb, Sr, Y, the Rare Earth Elements; these are not included in Table 1). The most 

abundant trace elements (in the range of hundreds to a few thousand ppm) are Zr, Cr, Nb and 

V. The concentrations of the trivalent elements Sc and Al differ in Sugluk-4 and PCA-S207 

rutiles with PCA-S207 enriched in Al and Sugluk-4 in Sc (Fig. 3a). The HFSE (High Field 

Strength Elements, such as Zr, Nb, Mo, Sn, Hf, Ta, W) of which rutile is a main carrier 

mineral phase (e.g., Rudnick et al., 2000) occur in variable amounts in the analysed grains. Zr 

and Hf show broad positive correlations, and form two distinct trends for Sugluk-4 (lower 
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Zr/Hf) and PCA-S207 (higher Zr/Hf, Table 1 and Fig. 3b). Nb occurs with concentrations up 

to ~ 2000 ppm and is more homogeneously distributed in Sugluk-4 than in PCA-S207 (Fig. 

3c). The Nb/Ta ratio of PCA-S207 and Sugluk-4 varies in the range 9–62 and 15–78, 

respectively (Table 1 and Fig. 3c). Cr and V are broadly positively correlated (Fig. 3d). 

Sugluk-4 is also characterized by less variable Cr/Nb ratios (0.5–1) than PCA-S207 (0.5–3, 

Table 1 and Fig. 3e). The measured U concentration is in the range 12–40 and 24–98 ppm in 

PCA-S207 and in Sugluk-4 respectively (Fig. 3f), while Th occurs below an average detection 

limit of ~ 0.001 ppm. For a few grains for which U-Pb isotopes had been measured by LA-

MC-ICP-MS on a corresponding spot, the Pb concentration has been calculated using the 

measured U concentration and is 5 to 9 ppm (PCA-S207) and 8 to 30 ppm (Sugluk-4), (Table 

1). The higher U and Pb content in Sugluk-4 is also confirmed by the U and Pb content 

estimated on the basis of GJ1 zircon analysed in the same LA U-Pb session, with an average 

of 7 (Pb) and 17 (U) ppm for PCA-S207, 11 (Pb) and 30 (U) ppb for Sugluk-4 (Table D, 

Supplementary data file). Overall, Sugluk-4 is a more chemically homogeneous material than 

PCA-S207. In some grains and for some elements (e.g. Nb, Ta, Zr, Hf) some intragrain 

chemical variability can be observed (e.g. Figs. 3g to 3l). Temperatures calculated applying 

the Zr-in-rutile thermometer (based on the calibration of Tomkins et al., 2007) are in the 

range of 700–760 °C (assuming a P of 6 kbar) and 710–780 °C (10 kbar) for Sugluk-4 and 

680–770 °C (6 kbar) and 700–790 °C (10 kbar) for PCA-S207, consistent with granulite 

facies conditions of the two rutiles (Table 2). 

4.2 U-Pb isotopic results 

4.2.1 ID-TIMS 

Rutile ID-TIMS U-Pb data for ten Sugluk-4 and four PCA-S207 individual grains are 

presented in Table 3, along with analyses of four fragments of the R10 monocrystalline rutile 

(Luvizotto et al., 2009). The results, both before and after correction for common Pb, are 

plotted on Wetherill concordia diagrams (Fig. 4). The data for Sugluk-4 (Table 3 and Fig. 4a) 

detail the presence of small amounts of common Pb (0.2–1.6% for 8 of 10 analyses). After 

common Pb correction (using the Stacey-Kramers (1975) model for terrestrial Pb evolution at 

1.7 Ga), the data form a co-linear array regressing to near-zero age with an upper intercept 

age of 1723.0 ± 6.8  Ma (2, including decay constant uncertainties, MSWD = 11, excluding 

one point). However the exact interpretation of rutile ages is complicated and this will be 

discussed later. Importantly, the average 
206

Pb/
238

U and 
207

Pb/
206

Pb ratios differ by <1% for 8 

of the 10 grains whether or not they are corrected for common Pb (Fig. 4a). This level of 
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potential inaccuracy is currently appropriate for LA-ICP-MS dating for a mineral with limited 

available alternative reference materials. On the scale of current laser ablation uncertainties 

(2%, 2) therefore, it makes little difference whether the ID-TIMS common Pb corrected or 

non-corrected 
206

Pb/
238

U and 
 207

Pb/
206

Pb ratios of Sugluk-4 are used as the primary reference 

values for normalising the laser ablation data. For materials with a higher relative common Pb 

content (e.g. R10, see later) this difference is important and requires like-for-like data 

normalisation if used as a primary reference material. With this in mind and the knowledge 

that age variations related to cooling are present and normal in many rutiles, the Sugluk-4 

(radiogenic plus common Pb) 
206

Pb/
238

U and 
207

Pb/
206

Pb ratios for normalisation of the LA 

data were defined as 0.3060 ± 2% and 0.1070 ± 1.4% (2RSD), respectively 

Four PCA-S207 rutile grains show higher relative common Pb contents of 2.945% compared 

to Sugluk-4, the very high relative common Pb content of one grain possibly due to an 

inclusion of another mineral. The four points do not form a co-linear common Pb array and 

after common Pb correction are not equivalent (Figs. 4b and 4c). The average PCA-S207 

206
Pb/

238
U and 

 207
Pb/

206
Pb ratios for the common Pb corrected data are 0.3303 ± 1.8% and 

0.1141 ± 0.5% (2RSD). 

Four fragments of the 1090 Ma R10 rutile (Luvizotto et al., 2009) analysed by ID-TIMS 

contained 0.24–1.6% common Pb and were concordant after correction, but only 3 of the 4 

analyses overlap at the 2 level; these data overlap with the bottom end of the data cluster 

published by Luvizotto et al (2009), (Fig. 4d). R10 was introduced and characterised by 

Luvizotto et al. (2009) and used as reference materials for U-Pb dating by Zack et al. (2011), 

therefore it is important to undertake some intercomparison of our proposed reference 

materials with that. Since we are not applying an online common Pb correction during the 

analysis, data values prior to common Pb correction need to be determined in order to use 

R10 as the main reference material. This also requires the reference material to have 

homogenous radiogenic Pb to common Pb ratios throughout. Using the published radiogenic 

ratios of fourteen R10 fragments (Table 4 of Luvizotto et al., 2009) we have back-calculated 

the 
207

Pb/
206

Pb and 
206

Pb/
238

U ratios prior to common Pb correction by adding a common Pb 

component (quantified by the 
206

Pb/
204

Pb of their Table 4) with a composition calculated at 

1090 Ma using the Stacey-Kramers (1975) model for terrestrial Pb evolution (Table B, 

Supplementary data file). These are plotted on a Wetherill concordia diagram along with the 

R10 fragments measured in this study (Fig. 4e). With 
206

Pb/
204

Pb ratios of 330 to 4000 with 

most being less than 1000, R10 is clearly not appropriate for our purposes as a reference 
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material prior to common Pb correction. In addition, based on Fig. 4e, it is possible that the 

two sets of data do not lie on the same regression trend indicating that there are variable age 

and/or common Pb components within R10. For our purposes therefore, and for others who 

do not or prefer not to measure 
204

Pb and/or 
208

Pb, R10 can not serve as a primary reference 

material. 

4.2.2 LA-MC-ICP-MS 

Rutile LA-MC-ICP-MS U-Pb data were acquired over a period of ca. two years (29 analytical 

sessions for a total of ~ 2500 single ablations, including 1800 ablations of grains from 26 

unknown detrital samples; six of these detrital samples are presented in this paper -section 5- 

to show our approach on real samples). Over the ~ 2 year period of our LA U-Pb rutile 

measurements and during the same analytical sessions we also measured three commonly-

used zircon reference materials (Table C, Supplementary data file). The long-term 

reproducibility (2RSD) of the 
207

Pb/
206

Pb and 
206

Pb/
238

U ratios for the secondary zircon 

reference materials normalised to GJ1 (Figs. 5b to 5c) over the same period was 2.0 and 3.0% 

for Mud Tank (n = 157), 1.5 and 3.3% for Plešovice (n = 25), 1.8 and 2.6% for 91500 (n = 

106). These data demonstrate that instrument performance during this period was good. 

Sugluk-4 rutile LA U-Pb data (486 spot ablations on 72 grains; Table D, Supplementary data 

file) are plotted on a Tera-Wasserburg diagram along with the ID-TIMS analyses of 

individual grains (Fig. 5a, all data not corrected for common Pb). The Sugluk-4 
207

Pb/
206

Pb 

ratios not corrected for common Pb exhibit an asymmetric probability density distribution 

with a positive skew (Fig. 6a). The same data are shown as linearised probability plot (Fig. 

7a) after the exclusion of datapoints with 
207

Pb/
206

Pb > 0.11 (14 out of 486, i.e. 3%), under the 

assumption that these higher ratios reflect the occurrence of common Pb despite this being 

below a level detectable with our analytical set-up. On the linearised probability plot the main 

set of data disperse along a linear trend with a slope of ~ 1 as a normal distribution would do. 

The 
206

Pb/
238

U distribution (of the 486 datapoints) also exhibits a skew, as shown by the 

probability density plot in Fig. 6b. Excluding the same 14 data points with higher relative 

common Pb as excluded in Fig. 7a, the residual scatter in 
206

Pb/
238

U ratio shown by the 

linearised density plot (Fig. 7b) but not evident in 
207

Pb/
206

Pb space (Fig. 7a), is caused by 13 

analyses of the remaining 472 with anomalously high 
206

Pb/
238

U. The origin of this is 

currently unknown although is likely to be real variation arising from the protracted cooling 

history of the sample. The 
207

Pb/
206

Pb average of the 472 datapoints illustrated as a linearised 

probability plot (Fig. 7a) is 0.1069 ± 0.0021 (2.0%, 2SD). The 
206

Pb/
238

U average of 459 



13 

 

datapoints illustrated as a linearised probability plot (Fig. 7c) is 0.306 ± 0.011 (3.6%, 2SD). 

This long-term reproducibility of the 
207

Pb/
206

Pb and 
206

Pb/
238

U ratios for Sugluk-4 is equal to 

or slightly worse than that of zircon reference materials analysed over the same period (1.5 to 

2.0% and 2.6 to 3.3% respectively). However, the same individual rutile grain ablated over 

different analytical sessions or different grains analysed within the same session are more 

reproducible (e.g. note the 
206

Pb/
238

U reproducibility dropping to < 3% in Figs. 7d and 7e) 

suggesting that inter-grain variation combined with session-to-session scatter are the 

controlling factors on data homogeneity. 

Allowing for natural variations induced by protracted cooling and assuming no Pb loss in 

rutile our best estimate for the age of Sugluk-4 is 1719 ± 14 Ma (the average and 2SD of 8 out 

of ten ID-TIMS data, see section 4.2.1). It is important to note, however, that slow cooling 

and related diffusion will inevitably induce some intragrain and intergrain age variation (e.g. 

Baldwin et al., 2004; Flowers et al., 2006; Kooijman et al., 2010) and that in some grains this 

would be measurable leading to a preferred age different to the one stated. With a sufficiently 

high sample quantity, this may appear in a dataset as a slight heterogeneity, consistent with 

what has been observed. In light of this natural variation, the 
207

Pb/
206

Pb and 
206

Pb/
238

U ratios 

used to represent Sugluk 4 are therefore an average based on the ID-TIMS data with an 

uncertainty assigned (2.0% and 3.6%, 2SD) which allows for this variation and provides a 

limiting uncertainty in the interpretation of the data. Data reported by Zack et al. (2011) for 

R10 cite within run reproducibility at 3.5% (2SD). Therefore, using Sugluk-4 as a primary 

reference material results in limiting uncertainties equivalent to R10. 

PCA-S207 LA U-Pb data (normalised to Sugluk-4 and not corrected for common Pb, 412 spot 

ablations on 85 grains; Table D, Supplementary data file) are shown in Fig. 8a as a Tera-

Wasserburg diagram, along with the ID-TIMS analyses of individual grains. The same LA U-

Pb data are shown as probability plots (Figs. 8b and 8c) and as linearised probability plots 

after the exclusion of datapoints with 
207

Pb/
206

Pb > 0.122 (14 out of 400, i.e. 4%), under the 

assumption that these higher ratios are due to common Pb at the limits of detection for our 

analytical set-up. Similarly to Sugluk-4, there is a residual scatter that can be explained in 

terms of either Pb loss or more likely the effects of the protracted cooling that may have 

caused some real intergrain variation. This is reflected in the data populations in Figs. 8b and 

8c being clearly non-normally distributed. Here the cooling history of PCA-S207 might be 

responsible for the larger variability of the 
207

Pb/
206

Pb and 
206

Pb/
238

U ratios compared to 

Sugluk-4. Nonetheless, the intragrain or short term (daily) variability of PCA-S207 is usually 
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below 4.0 % (2) for both ratios. Our best estimate for the age of PCA-S207 rutile is 1865.0 ± 

7.5 Ma (weighted average of 
207

Pb/
206

Pb ID-TIMS dates, based on four concordant to nearly 

concordant grains ranging from 1862.2 ± 2.8 to 1872.2 ± 2.6. 95% conf., MSWD = 13); this is 

in good agreement with 
207

Pb/
206

Pb rutile dates in the range 1850.8 ± 1.4 to 1881.6 ± 2.4 Ma 

and 1874.0 ± 1.0 to 1892.9 ± 5.8 Ma from an eclogite and the Axis mafic granulite from the 

southern domain of the East Atabasca Mylonite triangle (ID-TIMS data, 6 grains each; 

Baldwin et al., 2004; Flowers et al., 2006) from where PCA-S207 has been sampled (see 

Geological and thermochronological setting, Supplementary data file). Interestingly Baldwin 

et al. (2004) noticed an age-correlation with grain size and interpreted it as differential closure 

to diffusion, and Flowers et al. (2006) argued for intracrystal variation in age that may reflect 

diffusional gradients developed during cooling. Our conclusions are therefore similar using 

the two different methods (ID-TIMS and LA-MC-ICP-MS). 

In order to undertake some intercomparison of our proposed reference materials with R10 and 

R19 (Luvizotto et al., 2009; Zack et al., 2011), fragments of these two rutiles were ablated 

along with Sugluk 4 and PCA-S207 during some of the same analytical sessions. Due to the 

large variability in common Pb content in R10 highlighted in the Luvizotto et al (2009) ID-

TIMS data (> 50% variability in 
207

Pb/
206

Pb ratio), each individual fragment of R10 requires 

knowledge of its isotopic composition and homogeneity to be used as a primary reference 

material. In the absence of an on-line common Pb correction being applied to data, a 

homogeneous or common Pb-free material is required as a primary reference. Some of the 

data of R10 in Luvizotto et al (2009) exhibits relatively low common Pb (Table 4 of Luvizotto 

et al., 2009). The R10 data from this study demonstrate a lower relative common Pb content 

of the data than have been published so far. Using an average of these (filled ellipses of Figs. 

4d and 4e) for normalisation of R19 and PCA-S207 ablated as unknown materials (Fig. 9a 

and 9c) concordant data are achieved (excluding two R19 discordant datapoints with higher 

relative common Pb content). The weighted average 
206

Pb/
238

U date for R19 is 472.6 ± 6.5 (9 

datapoints concordant and equivalent within uncertainty, Fig. 9a), while the published 

weighted average of four TIMS 
206

Pb/
238

U dates for R19 is 489.5 ± 0.9 Ma (Zack et al., 2011). 

Using Sugluk-4 as the primary reference material, the same level of concordance results for 

R19 datapoints, and the weighted average 
206

Pb/
238

U date is 470.1 ± 4.9 Ma (Fig. 9b) within 

uncertainty of that for the R10 normalised data. Similar results are obtained for PCA-S207, 

with a weighted average 
207

Pb/
206

Pb date of 1884.0 ± 16.0 Ma (Fig. 9c, normalised to R10, 

NIGL ID-TIMS data) and 1875 ± 12.0 Ma (Fig. 9d, normalised to Sugluk-4). If R10 is 
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normalised to Sugluk-4 (Fig. 9e), the datapoints appear non-equivalent and most are 

discordant on a Tera-Wasserburg diagram, with a reproducibility of the 
207

Pb/
206

Pb and 

206
Pb/

238
U ratios (mass bias corrected only) of 3.9 and 4.1 % (2) versus 2.7 and 2.9 % for 

Sugluk-4 during the same session, reflecting the presence and variability of common Pb in 

R10. Finally, the four Sugluk-4 grains analysed over the same session are shown in Fig. 10 

normalised to R10 (using the average of NIGL ID-TIMS data from this study). All datapoints 

with the exception of one (that belongs to the positive tail of datapoints high in relative 

common Pb content in Fig. 6a) are concordant within their analytical uncertainty, and for all 

the individual grains the weighted average of the 
207

Pb/
206

Pb dates overlaps within uncertainty 

with the 
207

Pb/
206

Pb ID-TIMS date obtained for the same grain as shown in Fig. 10, although 

the laser ablation date is systematically older by 0.51.3%. This reflects both: i) the natural 

variation shown by the R10 ID-TIMS data (Luvizotto et al., 2009 and this study) and the 

difficulty in assigning absolute ratios to such a naturally heterogeneous material to be used as 

the reference for normalisation; and ii) any intragrain variation of Sugluk 4 (N.B. ID-TIMS 

values in Fig. 10 on the same grains as the laser ablation data). 

Overall, these results show that: (1) Sugluk-4 is a rutile characterized by nearly concordant 

ID-TIMS and concordant (within uncertainty) LA U-Pb analyses, with long-term 

reproducibility on the order of 2–4 %, ~ 1% more than natural zircon materials routinely used 

for U-Pb dating; (2) the intra- and inter-grain scatter in the isotopic ratios of Sugluk-4 are 

interpreted to reflect real geological rather than analytical phenomena and are most likely 

caused by cooling-related diffusion compatible with the slow cooling of many natural rutiles 

from granulite terrains; (3) PCA-S207 is characterized by a larger variability than Sugluk-4, 

usually within 4% for individual grains; (4) R10 has a large degree of intergrain heterogeneity 

with respect to common Pb and each portion needs to be characterised for homogeneity if a 

common Pb correction is not to be applied to the data; (5) we recognise some real variation 

between and within grains likely pertaining to cooling history of many rutiles as recognised 

by others (e.g. Baldwin et al. 2004; Flowers et al. 2006; Kooijman et al. 2010). 

Finally and most importantly for the implications to routine use as reference material, the 

observed total variation in 
207

Pb/
206

Pb and 
206

Pb/
238

U ratios (not corrected for common Pb) for 

>97% of all Sugluk-4 grains falls within the ±2% and ±4% range (at the 2 level) generally 

attainable using microprobe methodologies, and it is only slightly worse for PCA-S207. 

Sugluk-4 and PCA-S207 therefore appear to be suitable primary and secondary reference 

materials for U-Pb dating of rutile by LA-ICP-MS without the requirement for correction of 
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common Pb. This makes these two materials similar to zircon reference materials in their ease 

of use and applicability and eliminates the need for an on-line common Pb correction in 

measuring the primary reference material which inflates the measurement uncertainties, 

potentially introduces systematic errors if wrong assumptions are made regarding the 

common Pb composition and further masks real variations in the data. 

5. Detrital rutile geochronology applied to sedimentary provenance 

In this section we present U-Pb data measured on detrital rutile from modern rivers draining 

portions of the Canadian Cordillera (British Columbia, Canada) and the Himalayas (Bhutan), 

in order to illustrate the applicability of detrital rutile dating and to demonstrate that young 

rutile can be dated successfully by LA-MC-ICP-MS. Schematic geological maps of these 

areas with location of sand samples are shown in Fig. 11, and the exact geographical 

coordinates of the samples are indicated in Table D of the Supplementary data file. 

5.1 Detrital rutile samples from the Canadian Cordillera and Bhutan Himalayas 

Two detrital samples are from modern rivers draining the southern Omineca belt of the 

Canadian Cordillera (Parrish 1995), a large area of high-grade metamorphic rocks of the core 

of the orogen. The belt is dissected into blocks by Eocene crustal-scale faults juxtaposing 

footwall rocks of high metamorphic grade against hanging wall rocks that were much cooler 

in the Eocene (Parrish et al., 1988; Parrish 1995, and references therein). Sample BC-04g66 is 

from the Columbia River in the vicinity of Revelstoke (Fig. 11a). The Columbia River in this 

region flows southward along the Columbia fault that bounds the Monashee Complex to the 

west. The latter consists of Early Proterozoic crystalline basement composed of othogneisses 

and paragneisses and an unconformably overlying cover sequence, all significantly 

metamorphosed and deformed in latest Cretaceous-Paleogene time (Parrish 1995), with some 

variation in age as a function of structural level. U-Pb isotopic data from xenotime and 

monazite representing peak metamorphic conditions young from 64 Ma to 49 Ma with 

increasing structural depth within the complex (Crowley and Parrish, 1999). Anatexis of the 

Proterozoic basement as a result of regional prograde metamorphism is constrained by U-Pb 

dates from migmatitic leucosomes at 62 and 56–54 Ma (zircon) and 57 Ma (titanite), 

(Hinchey et al., 2006; Gervais and Brown, 2011). Sample BC-04g67 is from the Eagle River, 

40 km farther west of the first sample (Fig. 11a). The Eagle River flows westward and its 

sediments are derived almost entirely from the erosion of the Monashee complex. Rutile U-Pb 

ages, reflecting cooling below ~ 500°C, are thus expected to be in the age range of ~ 50–55 
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Ma for detritus eroded from the Monashee complex, the primary source of rutile of these two 

rivers. 

Four detrital rutile samples are from modern rivers draining an eastern portion of the 

Himalayas in Bhutan (Fig. 11b). The Himalayan orogen formed as the results of the collision 

between India and Asia that started at ~ 50 Ma and is still ongoing (Hodges, 2000; Najman et 

al., 2010 and references therein). The Himalayan tectonostratigraphic units exposed in Bhutan 

are separated by crustal scale southward-propagating thrust faults and from north to south are: 

the Tethyan sedimentary sequence (TH), a Palaeozoic-Mesozoic sedimentary succession 

deposited on the northern passive margin of India; the Proterozoic to early Paleozoic 

metasedimentary rocks and orthogneisses of the Greater Himalaya (GH), highly 

metamorphosed during the Tertiary with peak metamorphism being 25–17 Ma, accompanied 

by crustal melting and emplacement of leucogranites between 23 and 12 Ma; the Lesser 

Himalaya (LH), a thick succession of non metamorphic or low-grade Precambrian to 

Palaeozoic clastic and carbonate rocks deposited upon the northern Indian margin; the 

Tertiary foreland basin sediments of the Siwalik Group. Within the GH of Bhutan, klippen 

associated with the South Tibetan Detachment expose sedimentary rocks of greenschist facies 

and lower metamorphic grade (Late Proterozic Chekha Formation). For further reading on the 

geology of Bhutan in order to set these samples into context the reader is referred to Gansser 

(1983), Grujic et al. (2002), Hollister and Grujic (2006), and McQuarrie et al. (2008). 

Bhutan is drained by an hydrographic system broadly N-S oriented, that cuts across the main 

Himalayan geological units and their tectonic boundaries and eventually empties into the 

Brahmaputra River in the state of Assam in India. Sample BH0108 and LB09-03 are two 

modern river sands from the Mo Chu and the Puna Tsang Chu (Fig. 11b). The Mo (mother) 

Chu (river) originates in Tibet and after joining the Pho (father) Chu by Punakha becomes the 

Puna Tsang Chu. The sand sample LB09-01 is from the more eastern Mangdi Chu that flows 

in central Bhutan, while sand LB09-02 was sampled from the Mau Khola river south of the 

Main Central Thrust and close to the border with India (Fig. 11b). All of these samples drain 

variable amounts of rock of high metamorphic grade, with some containing lesser 

metamorphosed metasedimentary lithologies. Detrital rutile is likely to have been derived 

mainly from the high grade metamorphic sources which have a predominant Tertiary 

Himalayan metamorphic signature. 

5.2 Detrital rutile U-Pb data 
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LA U-Pb data of detrital rutile samples (Table D, Supplementary data file) are shown in Figs. 

12 and 13 as Wetherill concordia diagrams and 
206

Pb/
238

U age probability density plots. The 

number of ablation spots for each sample plotted on the concordia diagrams varies from 18 to 

48 as indicated, and measurement protocols were identical between samples and reference 

materials (Sugluk-4 and PCA-S207). For all samples, an originally larger number of grains 

was analysed, but some of the grains failed to produce a signal strong enough to be measured 

(due to low Pb and/or uranium content), especially when a smaller spot size was used (i.e., 5–

10% of grains failed when a 50 m spot size was used and up to 30% using a 35 or 40 m 

spot size on fine-grained 10–15 Ma old rutile). Measured intensity of the radiogenic 
207

Pb was 

low in many grains due to young age and/or low U content (Table D, Supplementary data 

file). These realities are reflected in Concordia diagrams by larger uncertainty ellipses and in 

part by arrays of data (see below). 

At times two spots were ablated from the same grain to test potential age zoning and 

reproducibility. These always resulted in two dates overlapping within uncertainty, of which 

only the one determined with the lower uncertainty was eventually included in the probability 

plot. Typically, all samples produced a U-Pb dataset characterized by a cluster of datapoints 

concordant within their uncertainty with usually one array of discordant datapoints 

intercepting the cluster of concordant points at its lower intercept (Figs. 12 and 13). These 

discordant datapoints clearly reflect a higher proportion of common Pb within these analyses. 

To calculate a model (common Pb corrected) date for such grains each analysis is individually 

anchored to common Pb with a 
207

Pb/
206

Pb ratio of 0.844 (± 2 %) representing the average 

common Pb composition for the Mesozoic and Cenozoic time interval (251 Ma to present) 

calculated using the Stacey-Kramers (1975) model. Two probability density diagrams for 

each sample are shown in Figs. 12 and 13 that illustrate the concordant and concordant plus 

the projected data, with similar conclusions drawn using either. Caution should be exercised 

when interpreting significance of single datapoints that after projection do not overlap with a 

population of originally concordant datapoints. It should also be noted that this projection of 

data relies on the fundamental assumption that the only contribution to the offset from 

concordance is common Pb and assumes concordancy in the final result. However, this is 

likely more valid as an assumption for rutile than for zircons for example, where multiple age 

components are more likely to be preserved and Pb-loss is proven to occur with significant 

effect. 
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Both samples from British Columbia (BC-04g66 and BC-04g67, Fig. 12) show a ~ Paleocene-

Eocene rutile age distribution (~ 42 to 77 Ma) with main clusters at ~ 52 and ~ 48 Ma for the 

Columbia River and the Eagle River, respectively, reflecting the documented age of the 

Cordilleran metamorphism that affected the source areas drained by the two rivers. The 

youngest detrital rutile dates at ~ 42 Ma indicate that an area of the Monashee complex was 

still cooling through ~ 500 ºC at the time. The somewhat older few ages observed are entirely 

reasonable since these grains could have come from high structural levels of the Monashee 

Complex in which late Cretaceous metamorphic events are known, or more likely from 

metamorphic sources in the Selkirk Mountains to the east of the Monashee Complex, still 

within the drainage area of the Columbia River. 

For the modern river sand samples from Bhutan (Fig. 13), the initial number of spot ablations 

was ~ 40–50 (using a 50 m spot size) and 60–70 (using a 35–40 m spot size, due to smaller 

sample grain size) per sample, resulting in a final average age distribution (after eliminating 

analyses that failed) of ~ 40 individual grains in both cases.  

The Mo Chu (sample BH0108) drains the northern highest-grade part of the GH in Bhutan 

and shows a narrow detrital age distribution clustered around 13–15 Ma. For the downstream 

Puna Tsang Chu (sample LB09-03), the age range is wider (~ 10 to 26 Ma), with the main age 

cluster slightly older than in the Mo Chu. Narrow age clusters are shown by the Mau Khola 

(sample LB09-02) at ~ 13 Ma and by the Mangdi Chu (LB09-01), the easternmost of the 

samples, at ~ 10 Ma. We emphasize that no pre-screening e.g. based on the U content of the 

samples was applied, thereby more robustly representing a genuine sampling of the rutile 

population in the samples and avoiding bias. Although the detection limit of any instrumental 

set up will inevitably bias the original population towards the higher radiogenic grains, the 

number of grains we omitted post-analysis was smaller than if a pre-screening threshold e.g. 

of 5 ppm U had been applied (Zack et al., 2011). As an example, 37 spots where originally 

ablated for sample LB09-01, and only 2 of these rejected due to 
207

Pb being below the 

detection limit, while 11 grains (30 %) with U < 5ppm were successfully analysed (Table B, 

Supplementary data file).The results show that drainages with bedrock predominantly 

comprised of high grade GH rocks yield rutile U-Pb ages of 10–20 Ma. Zircons from the 

same samples are primarily >480 Ma, with only a few grains or metamorphic rims reflecting 

the Himalayan Miocene metamorphism (Bracciali, unpublished data). The contrast between 

zircon and rutile signatures is very dramatic and as such provides important complementary 
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information about the events within the himalayan orogen affected by a complex polyphase 

history. 
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Table 1

Trace element composition of rutile (ppm; LA-quad-ICP-MS data).

Al Sc V Cr Zr Nb Mo Sn Hf Ta W U Pb Zr/Hf Nb/Ta Cr/Nb

measured 

mass
27 45 51 52 90 93 95 118 177 181 182 238 (b) - - -

(a) 20 8 5 4 6 4 8 7 7 9 21 7 10 9 10 6

Sugluk-4, granulite facies quartzite, Sugluk group, 62° 16.9' N, 75° 37.3' W

r500_a 57 24 2010 1140 783 1550 65 30 49 176 226 95 - 16 9 0.74

r500_b 76 24 2090 1200 882 1600 73 33 55 177 230 96 - 16 9 0.75

r500_c 39 24 2090 1130 869 1630 66 32 56 162 214 96 - 16 10 0.69

r500_d 39 25 2010 1100 821 1530 73 33 52 164 223 96 - 16 9 0.72

r500_f 66 24 2150 1140 658 1620 71 35 42 174 237 98 - 16 9 0.70

r6_A 29 4.9 2930 798 666 1150 67 28 36 19 5 24 10 19 62 0.69

r6_B 65 5.3 3230 804 699 1240 59 30 41 40 11 25 10 17 31 0.65

r6_C 42 5.5 3030 813 676 1300 63 31 41 57 14 24 10 16 23 0.63

r6_D 30 5.2 3070 788 602 1300 71 30 37 63 18 24 10 16 21 0.61

r7_A 89 14 1700 940 686 1760 41 30 43 151 207 81 33 16 12 0.53

r7_B 67 16 1730 899 710 1690 41 30 43 132 184 78 32 17 13 0.53

 r7_C 60 12 1680 941 797 1690 40 29 49 124 182 79 32 16 14 0.56

r7_D 31 19 1760 965 832 1690 42 30 49 117 164 78 32 17 14 0.57

r11_A 48 3.4 1880 666 882 1140 36 26 59 25 5 27 11 15 47 0.58

r11_B 44 3.5 1950 629 919 1340 38 31 58 31 6 27 11 16 43 0.47

r11_C 58 4.1 1950 590 842 1250 41 26 54 42 6 25 10 16 30 0.47

r13_A 20 5.8 2580 715 730 1250 47 28 44 82 10 25 9 17 15 0.57

r13_B 27 4.9 2490 713 721 1190 48 27 45 76 10 25 10 16 16 0.60

r13_C 42 4.9 2600 711 732 1300 51 28 44 82 11 26 10 17 16 0.55

r18_A 7 3.0 5980 1450 1020 1540 33 37 66 123 762 81 - 16 13 0.94

r18_B 12 3.0 5690 1410 1020 1480 33 33 66 125 774 82 - 16 12 0.95

r18_C 13 3.6 6150 1410 1030 1490 35 37 65 126 765 80 - 16 12 0.95

r18_D 13 3.2 5720 1400 1060 1530 32 34 67 128 789 78 - 16 12 0.92

r18_E 5 3.5 5570 1420 941 1490 37 35 60 140 803 80 - 16 11 0.95

r502_A 35 12 2460 840 657 1850 46 30 44 123 153 80 - 15 15 0.45

r502_B 43 11 2590 804 694 1740 46 30 48 149 178 78 - 14 12 0.46

r504_A 75 5.8 2960 869 1230 1260 47 31 60 63 5 29 - 20 20 0.69

r504_B 28 5.3 3190 916 1260 1300 50 32 63 75 5 29 - 20 17 0.70

PCA-S207, granulite facies garnet-bearing paragneiss, East Atabasca Mylonite triangle, 59° 21.6' N, 106 ° 1.7' W

r500_a 78 1.3 4890 1340 770 762 14 5.6 21 10 5 39 - 37 75 1.76

r500_b 73 1.5 4700 1290 799 766 15 5.0 23 14 8 38 - 35 56 1.68

r500_c 59 1.4 4750 1360 819 785 14 5.6 26 16 10 39 - 32 48 1.73

r500_d 49 1.7 4740 1370 847 789 14 5.7 26 20 14 38 - 33 40 1.74

r500_e 53 1.4 4890 1310 825 788 14 5.5 26 19 16 40 - 32 41 1.66

r500_f 111 1.4 4800 1340 823 785 15 5.0 25 15 10 40 - 33 51 1.71

r500_g 128 1.2 4580 1310 813 789 12 5.5 25 15 10 40 - 32 52 1.66

r500_h 68 1.4 4850 1300 801 752 13 5.0 24 14 8 37 - 34 53 1.73

r7_A 92 1.6 2760 961 1300 1930 44 8.1 57 69 29 17 7 23 28 0.50

r7_B 98 1.8 2780 983 1350 1960 42 7.3 60 87 39 18 7 23 22 0.50

r7_C 88 2.1 2790 887 1320 1960 38 7.4 60 123 49 17 7 22 16 0.45

r7_D 85 2.6 2850 919 1260 1960 23 9.1 57 130 54 18 7 22 15 0.47

r7_E 88 1.7 2720 899 1150 1870 42 7.7 39 24 3 17 7 29 78 0.48

r7_F 94 1.9 2680 893 1260 1900 41 7.8 49 47 15 17 7 26 41 0.47

r7_G 101 1.8 2740 915 1380 1930 40 8.1 58 73 33 18 7 24 26 0.47

r8_A 65 1.7 4030 1350 542 1510 28 4.9 22 33 5 18 9 24 46 0.89

r8_B 42 2.1 3950 1390 577 1420 25 3.5 25 31 11 20 10 24 46 0.98

r8_C 41 2.2 4100 1520 704 1450 27 3.8 31 38 19 23 10 23 39 1.05

r8_D 36 1.9 4100 1400 911 1650 27 4.2 41 75 20 23 10 22 22 0.85

r8_F 36 1.7 3920 1420 758 1590 27 4.5 36 70 21 18 8 21 23 0.89

r9_A 74 1.1 4360 1460 1180 1390 22 8.4 47 80 27 23 9 25 17 1.05

r9_B 69 1.4 4390 1590 1150 1430 22 7.7 46 82 29 23 9 25 17 1.11

r10_A 53 1.6 4790 876 663 569 12 6.9 23 30 7 20 9 29 19 1.54

r10_B 124 1.7 4800 863 627 561 10 6.7 20 20 4 19 8 32 28 1.54

r10_C 55 2.3 4690 818 645 584 12 6.7 20 16 4 19 8 32 37 1.40

r11_A 49 1.4 4390 1440 1210 1310 58 5.6 42 80 37 15 6 29 16 1.10

r11_B 180 1.4 4830 1490 1360 1280 52 7.0 49 55 24 15 6 28 23 1.16

r11_C 82 1.1 4610 1480 1390 1200 59 6.6 51 38 11 15 6 27 32 1.23

r501_A 66 1.2 4240 1420 1000 1790 49 8.1 36 40 7 14 - 28 45 0.79

r501_B 46 2.4 4410 1040 945 1600 20 6.7 31 29 7 15 - 30 55 0.65

r503_A 76 1.5 5420 1690 1040 1540 37 4.8 49 66 24 19 - 21 23 1.10

r503_B 69 1.4 5390 1740 1090 1570 30 3.8 50 81 32 20 - 22 19 1.11

r504_A 59 1.2 4310 1190 955 431 20 4.8 31 12 7 12 - 31 37 2.76

r504_B 55 1.2 4530 1250 970 433 18 5.0 30 13 8 12 - 33 35 2.89

(a) external reproducibility (1SD)

(b) Pb = 
206

Pb + 
207

Pb as measured by LA-MC-ICP-MS, ignoring 
204

Pb and 
208

Pb  (the latter b.d.l. of LA-quad-ICP-MS) which together are 

much less than 1% of total Pb



Table 2

T as a function of Zr-in-rutile at P=6kbar 

Sugluk-4 T (°C) 
(a)

PCA-S207T (°C) 
(a)

r6_D 688 r8_A 679

r502_A 696 r8_B 685

r500_f 696 r10_B 692

r6_A 697 r10_C 695

r6_C 699 r10_A 697

r7_A 700 r8_C 702

r502_B 701 r8_F 709

r6_B 702 r500_a 710

r7_B 703 r500_b 714

r13_B 704 r500_h 714

r13_A 706 r500_g 715

r13_C 706 r500_c 716

r500_a 712 r500_f 716

 r7_C 713 r500_e 717

r500_d 716 r500_d 719

r7_D 717 r8_D 726

r11_C 719 r501_B 729

r500_c 721 r504_A 730

r500_b 723 r504_B 732

r11_A 723 r501_A 735

r11_B 727 r503_A 738

r18_E 729 r503_B 743

r18_A 737 r7_E 748

r18_B 737 r9_B 748

r18_C 737 r9_A 751

r18_D 740 r11_A 753

r504_A 755 r7_D 757

r504_B 757 r7_F 757

r7_A 760

r7_C 762

r7_B 764

r11_B 765

r7_G 766

r11_C 767

(a) (based on the calibration of Tomkins et al., 

2007); T at P=10 kbar is ~20°C higher than at 

6 kbar



Table 3

ID-TIMS U-Th-Pb isotopic data.

Th
206

Pb* mol % Pb* Pbc
206

Pb
208

Pb
207

Pb
207

Pb
206

Pb corr. coef.
207

Pb
207

Pb
206

Pb
238

U
207

Pb
204

Pb corr. coef.

U x10
-13

 mol
206

Pb* Pbc (pg) 204
Pb

206
Pb

206
Pb % err 235

U % err 238
U % err 206

Pb ± 235
U ± 238

U ± 206
Pb % err 206

Pb % err 206
Pb % err

(a) (b) (c) (c) (c) (c) (d) (e) (e) (f) (e) (f) (e) (f) (g) (f) (g) (f) (g) (f) (h) (f) (h) (f) (h) (f)

Sugluk-4

rT1 0.00 184.0 99.83 149 28.1 9229 0.00 0.10531 0.087 4.4437 0.18 0.30603 0.11 0.94 1719.7 1.6 1720.5 1.5 1721.2 1.6 3.2625 0.11 0.10669 0.095 0.000101 3.6 -0.67

rT2 1.99 50.0 99.93 563 3.1 23825 0.58 0.10551 0.063 4.4680 0.16 0.30712 0.09 0.95 1723.2 1.2 1725.0 1.3 1726.6 1.4 3.2552 0.09 0.10572 0.19 0.000016 84.1 -0.59

rT3 0.00 17.3 99.77 118 3.3 7647 0.00 0.10543 0.099 4.4076 0.18 0.30321 0.09 0.93 1721.7 1.8 1713.8 1.5 1707.3 1.4 3.2952 0.11 0.10618 0.50 0.000055 69.6 -0.73

rT4 0.02 1.9 96.11 7 6.5 425 0.00 0.10518 0.24 4.2744 0.35 0.29474 0.16 0.82 1717.4 4.4 1688.5 2.9 1665.2 2.3 3.3025 0.65 0.12832 3.6 0.001693 19.7 -0.99

rT5 0.00 7.4 99.57 63 2.7 4132 0.00 0.10471 0.10 4.3388 0.18 0.30052 0.09 0.95 1709.2 1.9 1700.8 1.5 1694.0 1.4 3.3242 0.19 0.10560 1.2 0.000065 137.0 -0.91

rT6 0.00 52.2 99.71 90 13.2 5607 0.00 0.10531 0.098 4.4652 0.22 0.30753 0.16 0.92 1719.6 1.8 1724.5 1.8 1728.6 2.4 3.2439 0.16 0.10740 0.19 0.000153 8.7 -0.35

rT7 0.01 31.8 99.15 30 24.1 1871 0.00 0.10540 0.10 4.4288 0.20 0.30476 0.11 0.93 1721.2 1.8 1717.7 1.6 1714.9 1.7 3.2558 0.12 0.11214 0.27 0.000494 4.2 -0.50

rT8 0.00 23.3 99.86 196 2.71 12791 0.00 0.10557 0.085 4.4499 0.18 0.30572 0.10 0.95 1724.1 1.6 1721.7 1.5 1719.7 1.6 3.2699 0.12 0.10586 0.38 0.000022 129.9 -0.58

rT9 0.00 16.8 99.72 95 4.01 6105 0.00 0.10578 0.092 4.4558 0.17 0.30552 0.091 0.95 1727.7 1.7 1722.8 1.4 1718.7 1.4 3.2687 0.12 0.10694 0.51 0.000086 45.7 -0.73

rT10 0.00 10.9 99.63 73 3.39 4716 0.00 0.10556 0.091 4.4281 0.18 0.30425 0.089 0.97 1724.0 1.7 1717.6 1.5 1712.4 1.3 3.2821 0.14 0.10681 0.79 0.000092 66.0 -0.84

PCA-S207

rT1 0.00 6.1 97.56 10 13.6 651 0.00 0.11452 0.15 5.2120 0.23 0.33009 0.11 0.86 1872.2 2.6 1854.6 1.9 1838.9 1.7 2.9612 0.14 0.13389 0.53 0.001433 3.6 -0.79

rT2 0.00 4.1 99.22 34 2.83 2115 0.00 0.11393 0.097 5.1248 0.19 0.32624 0.10 0.95 1862.9 1.8 1840.2 1.6 1820.2 1.6 3.0500 0.18 0.11818 0.91 0.000315 25.2 -0.87

rT3 0.00 26.6 97.18 9 68.6 558 0.00 0.11389 0.16 5.2076 0.23 0.33164 0.10 0.83 1862.2 2.8 1853.9 2.0 1846.4 1.7 2.9314 0.09 0.13781 0.14 0.001769 0.7 -0.69

rT4 0.08 5.0 82.33 1 95.1 89 0.02 0.11405 0.78 5.2417 0.82 0.33333 0.38 0.31 1864.8 14.2 1859.4 7.0 1854.6 6.1 2.4748 0.16 0.26462 0.24 0.01114 0.5 -0.74

R10

r1 0.00 36.5 99.59 63 12.9 4122 0.00 0.075818 0.093 1.9136 0.17 0.18306 0.085 0.98 1090.1 1.9 1085.8 1.2 1083.73 0.85 5.4421 0.09 0.079011 0.18 0.000225 4.0 -0.58

r2 0.00 95.4 99.94 415 5.1 27415 0.00 0.075800 0.10 1.9133 0.20 0.18307 0.13 0.89 1089.6 2.0 1085.7 1.3 1083.8 1.3 5.4598 0.13 0.076221 0.061 0.000030 11.7 -0.90

r3 0.01 22.3 99.70 86 5.8 5677 0.00 0.075726 0.089 1.9086 0.17 0.18279 0.086 0.98 1087.6 1.8 1084.1 1.1 1082.31 0.86 5.4571 0.09 0.077813 0.28 0.000147 10.0 -0.54

r4 0.00 125.8 99.91 276 10.1 18148 0.00 0.075801 0.084 1.9179 0.17 0.18350 0.095 0.96 1089.6 1.7 1087.3 1.1 1086.17 0.95 5.4449 0.09 0.076510 0.095 0.000050 5.2 -0.74

(a) fractions composed of single rutile grains or fragments.

(b) Model Th/U ratio calculated from radiogenic 
208

Pb/
206

Pb ratio and 
207

Pb/
235

U age. 0.00 indicates that Th-derived 
208

Pb was below detection limit after blank and spike subtraction.

(c) Pb* and Pbc represent radiogenic and common Pb, respectively; mol % 
206

Pb* with respect to radiogenic, blank and initial common Pb.

(d) Measured ratio corrected for spike and fractionation only.  SEM analyses, based on analysis of NBS-981 and NBS-982.

(f) Errors are 2s, propagated using the algorithms of Schmitz and Schoene (2007).

(g) Calculations are based on the decay constants of Jaffey et al. (1971).

(h) Corrected for fractionation, spike, and blank Pb only.

(e) Corrected for fractionation, spike, and common Pb; up to 1 pg of common Pb was assumed to be procedural blank: 
206

Pb/
204

Pb = 18.60 ± 0.80%; 
207

Pb/
204

Pb = 15.69 ± 0.32%; 
208

Pb/
204

Pb = 38.51 ± 0.74% (all uncertainties 1s).  Excess over 

blank was assigned to initial common Pb.

Radiogenic Isotope Ratios Isotopic Ages Sample (Radiogenic + Initial Pb) Isotope Ratios

207
Pb/

235
U - 

206
Pb/

238
U

238
U/

206
Pb - 

207
Pb/

206
Pb
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Fig. 1. Images of Sugluk-4 (a to h) and PCA-S207 (i to s) rutile grains. In all images white 

scale bars are 200 m, black scale bars are 100 m. Optical microphotographs (b), (d), (e), (l), 

(n), (o): plane polarised light; (c), (m), (p): crossed polarised light. (f) to (h) and (q) to (s): 

BSE images of polished grains; note the darker inclusion in (q) and the ablation pits in (h) and 

(s) after the measurement of the chemical composition by LA-ICP-MS. 
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Fig. 2. (a) Secondary electron image of a rutile grain after laser ablation; (b) close up of the 

ablation pit (diameter 35 m, depth 20 m; grain tilted on the horizontal plane by 20º). 



28 

 

 

Fig. 3. Trace element composition of Sugluk-4 and PCA-S207 rutile grains determined by 

LA-quadrupole-ICP-MS. (a) to (f) show the chemical composition of all analysed PCA-S207 

(squares) and Sugluk-4 grains (diamonds); (g) to (l) are examples of intragrain composition 

for PCA-S207 (grain r7, squares) and Sugluk-4 (grain r6, diamonds). All element 

concentrations are in ppm. Error bars represent the analytical uncertainty % (1RSD) of each 

element as indicated in Table 1.  
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Fig. 4. Wetherill concordia diagrams of Sugluk-4, PCA-S207 and R10 rutile (U-Pb ID-TIMS 

data). (a) Sugluk-4 U-Pb data corrected (filled ellipses) and uncorrected for common Pb (open 

ellipses); PCA-S207 U-Pb data corrected (b) and uncorrected (c) for common Pb; R10 U-Pb 

data corrected (d) and uncorrected (e) for common Pb. In (d) and (e) data from this work 

(filled ellipses) are plotted along with the published data (open ellipses) of Luvizotto et al. 

(2009). The uncorrected ratios in (e) (open ellipses) are calculated from the published 

radiogenic data of Luvizotto et al., 2009 (see text for details and Table B, supplementary data 

file). 
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Fig. 5. Tera-Wasserburg diagrams of rutile and zircon reference materials. (a) Sugluk-4 rutile, 

LA U-Pb data (486 single ablation spots, open ellipses, data acquired over a period of ca. two 

years) and ID-TIMS data (individual grains, filled ellipses) uncorrected for common Pb. LA 

U-Pb Sugluk-4 data are self-normalised; the uncertainty component related to the 

normalization factor is not propagated into the individual 
238

Pb/
206

U data point uncertainty. 

(b), (c), (d) show the zircon secondary reference materials (Plešovice, Mud Tank and 91500 

normalised to GJ1) analysed along with rutile over the same period. 
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Fig. 6. Probability density plots of Sugluk-4 rutile. (a) 
207

Pb/
206

Pb and (b) 
206

Pb/
238

U ratios, 

same LA U-Pb data as in Fig. 5a (n = 486, uncorrected for common Pb). 
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Fig. 7. Linearised probability plots of rutile Sugluk-4. (a) and (b) represent the 
207

Pb/
206

Pb and 

206
Pb/

238
U (b) ratios of 472 datapoints, same data as in Fig. 6 less 14 datapoints with 

207
Pb/

206
Pb > 0.11; (c) represents the same data as in (b), less 13 datapoints with 

206
Pb/

238
U > 

0.323 (n = 459); (d) shows the 
206

Pb/
238

U ratios of one grain (r353) analysed over two 

different analytical sessions (22 spot ablations); (e) shows the 
206

Pb/
238

U ratios of four grains 

(r301, r302, r303, r304) analysed over the same session (15 spot ablations). In all diagrams 

data point error symbols are 1 
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Fig. 8. PCA-S207 U-Pb data. (a) LA U-Pb data normalised to Sugluk-4 plotted as Tera-

Wasserburg diagram (412 single spot ablations, open ellipses) and ID-TIMS data (individual 

grains, filled ellipses) uncorrected for common Pb; 
207

Pb/
206

Pb ratios (b) and 
206

Pb/
238

U (c) 

ratios plotted as probability density plot, same LA U-Pb data as in (a); (d) and (e) show the 

207
Pb/

206
Pb and 

206
Pb/

238
U ratios as linearised probability plots after the exclusion of 14 

datapoints with 
207

Pb/
206

Pb > 0.122. 
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Fig. 9. Tera-Wasserburg plots of rutiles R19 (11 datapoints), PCA-S207 (20 datapoints from 3 

grains) and R10 (17 datapoints). (a) R19 normalised to R10 (average of isotopic ratios from 

this work); (b) R19 normalised to Sugluk-4; (c) PCA-S207 normalised to R10 (average of 

isotopic ratios from this work); (d) PCA-S207 normalised to Sugluk-4; (e) R10 normalised to 

Sugluk-4. All LA U-Pb data uncorrected for common Pb and obtained during the same 

analytical session. 
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Fig. 10. Tera-Wasserburg diagrams of Sugluk-4 rutile grains analysed by both ID-TIMS 

(filled ellipses) and LA-MC-ICP-MS (open ellipses), the latter normalised to R10; the U-Pb 

ID-TIMS data are corrected for common Pb. The weighted average of the 
207

Pb/
206

Pb dates 

(LA data) is: 1741 ± 14 Ma, grain r1 (a); 1747 ± 23, grain r2 (b); 1735.0 ± 8.6, grain r3 (c); 

1732.2 ± 4.5 grain r4 (d), while the 
207

Pb/
206

Pb ID-TIMS date for each grain is 1726.6 ± 8.7 

Ma (r1), 1724.4 ± 8.5 Ma (r2), 1723.7 ± 4.9 Ma (r3) and 1723.8 ± 2.8 (r4). Grain r1 shows the 

larger scatter of ratios, and includes one of the 14 datapoints (spot H) with the highest relative 

common Pb content of the whole dataset (positive tail of the probability density distribution 

of Fig. 6). In all images the white scale bar is 50 m. 
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Fig. 11. Schematic geological maps of a portion of the Canadian Cordillera in British 

Columbia (a) and of the Bhutan Himalaya (b). Stars indicate the location of detrital rutile 

samples from modern rivers. Maps modified after Crowley and Parrish (1999) and Hollister 

and Grujic (2006). 
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Fig. 12. U-Pb data of detrital rutile samples from British Columbia. (a) and (b) are samples 

BC-04g66 (Columbia River) and BC-04g67 (Eagle River) respectively, represented as 

Concordia diagrams (i) and as probability density plots (
206

Pb/
238

U dates) of the concordant 

datapoints only (ii) and the concordant plus the originally discordant datapoints after 

projection (iii) as explained in the text. All data not corrected for common Pb and normalised 

to Sugluk-4. 
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Fig. 13. U-Pb data of detrital rutile samples from Bhutan. (a), (b), (c) and (d) are samples 

BH0108 (Mo Chu), LB09-03 (Puna Tsang Chu), LB09-02 (Mau Khola) and LB09-01 

(Mangdi Chu). The data are represented as Concordia diagrams (i) and as probability density 

plots (
206

Pb/
238

U dates) of the concordant datapoints only (ii) and the concordant plus the 

originally discordant datapoints after projection (iii) as explained in the text. All data not 

corrected for common Pb and normalised to Sugluk-4. 
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Supplementary file 

Geological and thermochronological setting of Sugluk-4 and PCA-S207 

Sugluk-4 and PCA-S207 are a granulite facies quartzite from the Ungava segment of the 

Trans-Hudson orogen of Canada (the northern Cape Smith Belt of Quebec) and a highly 

strained granulite facies paragneiss from the Snowbird Tectonic Zone (East Lake Athabasca 

region, Sasatchewan, Canada). Many of the Paleoproterozoic orogenic belts of Canada 

represent collision zones between Archean provinces that amalgamated between 2.0 and 1.8 

Ga (Hoffman, 1988). One of the main crustal-scale features of the Canadian Shield is the 

Snowbird tectonic zone, a high amplitude linear anomaly in the horizontal gradient map of the 

Canadian Shield (Fig. 1 of Martel et al., 2008), which has been interpreted either as a 

Paleoproterozoic suture reflecting the <1.9 Ga collision of the Rae and Hearne Archean 

provinces or an intracontinental Archean shear zone with only limited Paleoproterozoic 

reworking (Hoffman, 1988; Hanmer et al., 1995). Recent work in this area documented the 

importance of 1.9 Ga metamorphism and subsequent exhumation of deep-crustal rocks 

(Baldwin et al., 2004; Mahan et al., 2006; Flowers et al., 2006a; 2008; Martel et al., 2008; 

Dumond et al., 2008). The East Lake Athabasca region spans the central segment of the 

Snowbird tectonic zone, and exposes a broad area of high P granulites (1.0 to >1.5 GPa and > 

750ºC). The region has been effectively shielded from major perturbation since the 

Proterozoic. PCA-S207 is from the southern domain (Fig. 2 of Flowers et al. 2006a; cf. 

“upper deck” of Hanmer et al., 1994) of the East Atabasca Mylonite triangle, a region 

exhumed between the ~ 1.9 Ga high-pressure granulite facies metamorphism and the ~ 1.7 Ga 

unconformable deposition of Athabasca basin sediments on the exhumed rocks, as 

constrained by synkinematic monazite from shear zones dated at 1.85 Ga (Mahan et al., 2006; 

Flowers et al., 2006a). Single grain ID-TIMS U-Pb thermochronological data in the range 

1.7–1.8 Ga have been obtained for titanite, apatite and rutile from the different lithotectonic 

domains of the East Lake Athabasca region, reflecting cooling through temperatures of ~ 

650–450 ºC (Baldwin et al., 2004; Flowers et al., 2006a). 
40

Ar/
39

Ar muscovite and biotite 

dates from 1.78 ± 0.01 to 1.72 ± 0.01 Ga and (U-Th)/He zircon dates from 1.73 ± 0.01 to 1.72 

± 0.01 Ga record final cooling through 350–300 ºC and < 180 ºC, respectively (Flowers et al., 

2006a, 2006b). 

Within the Canadian Shield, the Trans-Hudson orogen is the most completely preserved 

Paleoproterozoic collisional belt formed between 2.0 and 1.8 Ga ago following the closure of 

the Manikewan Ocean that was interposed between the Rae craton and the Superior craton 
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(Hofmann, 1988; St-Onge et al., 2001; Corrigan et al., 2009). The Ungava segment of this 

orogen is a ~ 400 km long belt preserving metaplutonic and metasedimentary thrust sheets 

(the Narsajuaq arc and Cape Smith belt, Fig. 1 of St-Onge et al., 2000) accreted to the 

Archean rocks of the Superior craton to the south (Lucas et al., 1992; Machado et al., 1993). 

In the vicinity of Sugluk Inlet on the north coast of the Ungava peninsula (Fig. 1 of Parrish, 

1989) a sheared tectonic assemblage of igneous and metasedimentary rocks belonging to the 

Narsajuaq arc and Sugluk Group occurs at granulite facies conditions, with peak pressures of 

~ 7–8 kbar and at >800ºC (St-Onge et al., 2000). Turbiditic sedimentary rocks and the 

Sugluk-4 quartzite from this location yielded an assemblage of detrital zircons ranging in age 

from 1833–1840 Ma and 1832–1834 Ma respectively, as well as Archean zircons (ID-TIMS 

U-Pb data: Parrish 1989; Parrish and Noble, 2003). These zircons are interpreted as derived 

from the 1.82–1.84 Ga plutonic rocks of the Narsajuaq arc. Metamorphic overgrowths at 

1825–1829 Ma on zircon cores older than 2230 Ma in a garnet-bearing orthogneiss relate to 

the granulite facies metamorphism accompanied by strong deformation that followed the 

deposition of the sedimentary rocks. A few Sugluk-4 concordant zircon rim U-Pb dates as 

young as 1813 ± 9 Ma have also been recently obtained by LA-MC-ICP-MS (Bracciali, 

unpublished data). Monazite and xenotime from sample Sugluk-3 (a garnet-bearing 

orthogneiss) 1815–1820 Ma and 1792 Ma old suggest a protracted period of slow-cooling 

from high metamorphic grade to at least 1758 Ma, the age of igneous zircons from a granitic 

dyke cross-cutting all the elements of the orogen. 
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