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Many bird species have advanced their seasonal timing in response to global warming, but 

we still know little about the causal effect of temperature. We carried out experiments in 

climate-controlled aviaries to investigate how temperature affects luteinizing hormone, 

prolactin, gonadal development, timing of egg laying and onset of moult in male and 

female great tits. We used both natural and artificial temperature patterns to identify the 

temperature characteristics that matter for birds. Our results show that temperature has a 

direct, causal effect on onset of egg-laying, and in particular, that it is the pattern of 

increase rather than the absolute temperature that birds use. Surprisingly, the pre-breeding 

increases in plasma LH, prolactin and in gonadal size are not affected by increasing 

temperature, nor do they correlate with the onset of laying. This suggests that the decision 

to start breeding and its regulatory mechanisms are fine-tuned by different factors. We also 

found similarities between siblings in the timing of both the onset of reproduction and 

associated changes in plasma LH, prolactin and gonadal development. In conclusion, while 

temperature affects the timing of egg laying, the neuroendocrine system does not seem to 

be regulated by moderate temperature changes. This lack of responsiveness may restrain 

the advance in the timing of breeding in response to climate change. But as there is 

heritable genetic variation on which natural selection can act, microevolution can take 

place, and may represent the only way to adapt to a warming world.  51 

52 
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Matching the timing of breeding with the local peak of food abundance is of critical 

importance for many animals such as insectivorous birds that rely on external food sources 

for feeding their nestlings [1,28,66]. Any deviation from this favorable period has dramatic 

consequences in terms of energy expenditure, reproductive success and for the survival of 

both the parents and the offspring [55,58,68]. Because the time at which the local food 

peak occurs varies from year to year, and because the decision to start breeding is taken 

weeks in advance of the period of maximal food demand from the offspring, birds must use 

predictive environmental cues to try to match the annual optimal breeding period. These 

cues include photoperiod, temperature, vegetation development and/or social interactions 

(e.g. opposite-sex behaviors have been shown to enhance gonadal development and/or 

advance laying in a variety of species [2,29,35,75]). While photoperiod plays an important 

role in seasonal timing [17,22], it cannot account for the year to year variation in optimal 

timing. As a consequence, in most geographic zones of the world, birds have to use 

additional cues that allow fine-tuning the best moment to start breeding within the broad 

time-window opened by the stimulatory effect of increasing photoperiod on the 

reproductive system. In the temperate zone ambient temperature is the environmental 

variable that generally best correlates with this variation in seasonal timing: many 

observational field studies have shown robust correlations between mean population timing 

of reproduction and ambient temperature [15,18].  73 

74 

In recent years, the observation that the world's climate is changing at an unprecedented 75 

rate has induced a clear upsurge of interest in the influence of temperature on ecological 76 

mechanisms. One of the best-documented impacts of global warming on living organisms 77 

is on phenology (i.e. seasonal timing). Clear phenological shifts have been observed in all 78 

taxonomic groups in terrestrial, aquatic and marine environments over time [14,38,43,54]. 79 

However, the rate at which different species change their phenology is highly variable, 80 

causing phenological mismatches in food chains [42,62,64]. These mismatches can 81 

influence population viability and can lead to natural selection on the mechanisms 82 

underlying timing, especially on the intensity with which ambient temperature affects 83 

timing. Establishing the causal effect of temperature on phenology is thus critical if we 84 

want to predict the maximum rate of temperature increase organisms can cope with, or 85 

adapt to in the coming decades [26]. At present, this causal effect of temperature on 86 
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seasonal timing and the underlying physiological basis of temperature integration in birds 87 

and mammals is still poorly understood.  88 

89 

The first experiments investigating the effect of temperature on birds' reproduction date 90 

back to 1937 [53] and since then many more studies have addressed this question 91 

[16,19,20,30,39,49,50,69,70,72-74]. Very few studies have looked at the effect of 92 

temperature on timing of reproduction directly, by obtaining laying dates under controlled 93 

conditions [34,44]. Most experiments used temporal patterns of hormone concentration or 94 

gonadal growth, generally in males [6], as proxies for timing of reproduction. No clear 95 

pattern emerges from these studies: there is variation both among species and between 96 

populations of the same species on how temperatures affect the timing of reproductive 97 

development. There are moreover potential problems with using proxies for timing of 98 

breeding as their relationship with laying dates is not always straightforward (see below) 99 

[46]. 100 

101 

Temperature can affect seasonal timing of reproduction in two ways. Particularly low or 102 

high ambient temperatures can lead to an unfavorable energy balance and thus no energy 103 

can be allocated to breeding. In these cases temperature may constrain reproduction 104 

[40,52,60]. Alternatively, temperature may be a source of information. In that case, the 105 

effect of temperature on timing is that temperature acts as a cue predicting future 106 

environmental conditions, i.e. the optimal period for breeding to take place, and by using 107 

this predictive value of temperature, animals increase their fitness [75]. It should be noted 108 

that this predictive character of temperature may sometimes only be indirect, via a third 109 

variable such as vegetation phenology or food abundance. If temperature acts as a 110 

constraint or as an indirect predictive cue, birds would not need to directly sense and 111 

interpret temperature information to adapt to a changing climate. In addition, we would not 112 

only need to incorporate the relationship between temperature and timing in the models 113 

predicting the future consequences of global warming, but we would also need to take the 114 

effects of temperature on the third variable into account. As a consequence, one critical 115 

question for understanding and predicting the consequences of climate change is whether 116 

temperature has a direct signaling effect on seasonal timing of reproduction in birds.  117 

118 

Temperature has a direct effect on timing of breeding in great tits 119 

120 
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Demonstrating a direct effect of ambient temperature on timing requires experiments under 

controlled conditions in the laboratory [48]. In 1999 we started a research program that 

aims at deciphering the possible causal relationships between temperature and breeding 

phenology in great tits (Parus major). This research program makes use of 36 climate-

controlled aviaries, in which single pairs of great tits are housed. During the first 6 years, 

birds were exposed to a slowly increasing photoperiod and to temperature patterns 

mimicking the actual temperature variation of a year when great tits bred respectively very 

early (1998, the "warm" treatment) and very late (1986, the "cold" treatment) in the wild 

[65] (Fig. 1A). In this set-up, the two temperature profiles to which birds were exposed 

varied in many different aspects, but the average temperature difference between the 

treatments was only 4°C. Although there was large between-year variation in the effect of 

temperature on the onset of laying in aviaries, on average birds exposed to the warm 

treatment did start laying earlier than birds exposed to the cold treatment. Temperatures 

over a 3-week period prior to mean egg–laying date were the best predictor of variation in 

timing of breeding [65]. As birds were fed ad libitum and were maintained under artificial 

conditions that limit the array of environmental cues available, these results demonstrated 

that temperature does have a direct, causal effect on the onset of breeding in great tits. 

Furthermore, for a number of individual females, we had laying dates both from the 

aviaries and from the wild (either from the year(s) before they were brought into captivity 

or the year(s) after they were released at the end of the experiment). Overall those females 

laid later in captivity than in the wild, but there was a strong correlation between the laying 

dates recorded in the two kinds of environments: females that laid early in captivity also 

laid early in the wild [65]. This result helped validate investigations of reproduction of wild 

birds in captivity.    144 

145 

An increasing temperature is the critical cue 146 

147 

At the time when the direct influence of ambient temperature on timing of breeding in 148 

great tits was demonstrated, the precise characteristics of the seasonal temperature profiles 149 

modulating a bird's decision to lay was still unknown. Most observational and 150 

experimental studies on the effect of temperature on reproduction use the mean value of 151 

temperature in their analyses. Correlational studies conducted in the wild generally 152 

calculate the average temperature or "warmth sums" of daily minimal, mean or maximal 153 

temperatures over fixed periods of time, and relate these temperature values with the 154 
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169 

phenotypic traits of interest [3,4,12,32,57]. Experimental studies in captivity generally use 

temperatures that do not vary in time and are therefore set to remain constant around an 

average value [e.g. 30,50,72]. As a consequence, we first experimentally tested whether it 

is the mean absolute value of ambient temperature that Dutch great tits use to time their 

breeding period. Pairs of birds were exposed to two temperature treatments that increased 

stepwise by 0.65°C per week throughout the spring but constantly differed by 4°C between 

the two groups (the same overall temperature difference that allowed the demonstration of 

a direct effect of temperature in the earlier experiment) (Fig. 1B). In this experiment, the 

laying dates did not differ between the two groups, suggesting that the average temperature 

value is not the critical temperature characteristic for the onset of egg laying in great tits. 

However, the birds terminated laying and started molting earlier when exposed to warm 

temperatures. A similar early shutting down of the reproductive machinery under warm 

temperatures was shown in European starlings (Sturnus vulgaris) [16] and other 

populations of great tits [50]. Although the evolutionary significance of such an effect 

remains to be discovered, it suggests that in a warmer climate, birds' breeding seasons 

might become shorter, resulting in fewer offspring produced [25].   170 

171 

172 

173 

174 

175 

176 

177 

178 

179 

180 

In addition to the absolute temperature not playing a role, the daily amplitude of 

temperature variation also does not seem to be used as a cue for breeding. In temperate 

zones, the difference between daily minimum and maximum temperatures increases 

progressively during spring. Sensing this variation in daily amplitude could thus be a 

relevant time-cue for seasonally breeding birds. We exposed great tits to temperatures that 

presented either a high or a low daily fluctuation around two different mean temperatures 

(Fig. 1C). The temperature profiles remained the same throughout spring, i.e. no seasonal 

variation in temperature. Such temperature treatments did not influence when birds 

initiated and terminated laying, suggesting that the daily variation in temperature is not 

relevant for predicting the annual optimal breeding window [47].  181 

182 

183 

184 

185 

186 

187 

The relevant temperature information that female great tits use to time their breeding 

period seems to reside in the pattern of increase in temperature. From the different 

experiments in which great tits were exposed to artificial patterns of temperature variation, 

it appeared that females started laying earlier when they were exposed to a temperature 

increase at specific times during their pre-breeding period. A sharp temperature increase 

around 15 and 45 days prior to laying (black and blue lines on Fig. 1D) did significantly 188 
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190 

191 

192 

193 

194 

195 

advance the laying of the first egg compared to no increase at all (dashed-red and -grey on 

Fig. 1D). A moderate and progressive increase one month before laying (red and light-blue 

lines on Fig. 1E) was more influential than increases occurring earlier in the pre-breeding 

season (orange and dark-blue lines on Fig. 1E). How the temperature rise influenced the 

onset of laying was also highly dependent on the genetic background of the females (see 

below). The importance of a temperature increase relatively close to breeding resembles 

findings  by Meijer et al [34], who observed that pairs of starlings started laying as soon as 

one week after a 5°C temperature increase at different dates in April.  196 

197 

No effect of temperature on pre-breeding physiology 198 

199 

Reproduction is preceded by a cascade of neuro-endocrine reactions triggered by the 200 

stimulatory effects of various environmental cues that forecast the optimal timing for 201 

breeding. When the environment changes, one could thus predict that it is not so much the 202 

trait value itself (i.e. onset and termination of breeding) that natural selection acts on, but 203 

rather the neuro-endocrine response mechanisms underlying the phenotype [63]. The effect 204 

of temperature that we observe on timing of reproduction would thus be mediated through 205 

its influence on the hypothalamo-pituitary-gonadal (HPG) axis, and the selective pressures 206 

of a warming climate would operate on its components.  207 

208 

Demonstrating an effect of ambient temperature on the activity of the HPG axis in great 209 

tits has proven difficult. In most of the experiments described earlier, monthly 210 

measurements of luteinizing hormone (LH), prolactin (PRL) and/or gonadal size (male 211 

testis and female follicle volumes) were performed. Overall, no convincing effect of 212 

temperature was found on any of these physiological mechanisms preceding breeding, 213 

even in the cases where temperature had been shown to influence the onset of laying [47] 214 

or the basal metabolic rates [11]. The only temperature effects that were found on the HPG 215 

axis were on the mechanisms associated with termination of breeding: in some 216 

experiments, warm temperatures (especially when held constant) were shown to accelerate 217 

testis regression and LH level decrease [47,67] in a similar fashion as previously described 218 

in other studies [16,49,50].  219 

220 

Thus, although ambient temperature does influence the onset of breeding, it does not seem 221 

to reliably impact the underlying physiological mechanisms. This suggests that the 222 
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225 
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229 

230 

231 

232 

233 

234 

235 

236 

237 

238 

239 

240 

241 

242 

decision of when to start breeding and the neuro-endocrine pathways that lead to breeding 

are modulated by different environmental cues. The temperature information that is 

perceived and integrated by the central nervous system would influence the laying decision 

without affecting the HPG axis. In contrast, the seasonal recrudescence of the HPG axis 

activity would be regulated by other environmental cues, such as photoperiod and 

maintained in a close-to-ready state until the decision of when to start laying is taken and 

the final maturation of the female follicles takes place. This hypothesis was supported by 

studies in blue tits that have shown a disconnection between the spring activation of the 

reproductive system and the actual breeding period [8,9]. Alternatively, temperature might 

affect components of the HPG axis that were not measured here. It has for example 

recently been hypothesized that the physiological regulation of reproduction could lie at 

the level of the gonads, particularly at the level of the female ovary [7,71], where receptors 

for GnRH and GnIH have been identified [56]. The temperature influence on timing of 

breeding might thus be mediated via a pathway that directly connects the temperature 

perception and integration at the brain level to the female ovary. This hypothesis and more 

generally, the pathways linking temperature to seasonal timing, still need to be tested [10]. 

However, in great tits temperature does not seem to affect gonadal development in males 

and females, and gonadal growth is hardly related to timing of breeding (see below). How 

the environment controls the HPG axis has mostly been studied in relation to photoperiod, 

and we urgently need to better understand how other, non-photic cues such as temperature 

influence the pre-breeding physiology [e.g. 51,75,76].     243 

244 

No link between pre-breeding physiology and timing of breeding 245 

246 

247 

248 

249 

250 

251 

252 

253 

254 

255 

Given that ambient temperature was found to modulate the onset of egg-laying, but not its 

underlying mechanisms (gonadal size, hormonal concentrations, etc.), one could argue that 

these mechanisms do not reliably predict the onset of reproduction. Most physiological 

studies on avian reproduction do not measure timing of breeding directly but rather 

measure the underlying mechanisms, generally in males [5,6], assuming that they mirror 

the successive breeding stages [46]. Few attempts have been made to validate these 

physiological proxies against the actual breeding dates [24,37,45,63]. Using the data we 

collected in great tits breeding in captivity, we have tried to validate some of these proxies, 

and found very few reliable correlations with the onset of laying [46]. Figure 2 illustrates 

the relationship between follicle size and laying dates from 28 individual females that were 256 
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used in an experiment testing for the effect of different absolute temperature values on the 257 

onset of breeding (see Fig. 1B). Individual laying dates did not correlate with the overall 258 

size of the largest follicles (i.e. intercept on Fig. 2B), nor with the rate of follicle 259 

development (i.e. slope on Fig. 2C), meaning that females that have large or fast growing 260 

follicles are not necessarily the first to initiate laying. On very few occasions, the different 261 

physiological measurements were found to correlate with each other or with laying dates at 262 

one particular sampling period, but overall no robust trend was described, meaning that 263 

laying dates can hardly be predicted based on these commonly used physiological proxies [ 264 

but see 37,46]. Recording laying dates in the wild and in captivity thus seems to be 265 

necessary in studies investigating the physiological orchestration of breeding.    266 

267 

Genetic effects on timing of breeding and the HPG axis 268 

269 

270 

271 

272 

273 

274 

275 

276 

277 

278 

279 

280 

281 

282 

283 

284 

Both in the wild and in captivity, the observed variation in timing of breeding in response 

to variation in temperature is largely due to individual phenotypic plasticity: the same 

individual starts breeding at different times under different climatic conditions [41]. In 

response to global warming, birds have often been shown to use their phenotypic plasticity 

to adjust to the new environmental conditions [12,31]. However, there are also consistent 

differences among individual birds, some individuals always breed earlier than others 

and/or advance breeding more when spring is warmer [36]. These individual differences 

reflect genetic variation in the energetic costs associated with laying [13,40] or in the way 

they respond to environmental cues [36]. Such genetic variation is a necessary substrate for 

natural selection to operate and micro-evolution to occur, in response to a changing 

environment [61]. To estimate the rate of micro-evolution under climate change, we need 

to understand to what extent individuals consistently differ in their timing of reproduction 

and where the genetic variation lies within the neuro-endocrine cascade that mediates 

timing [33,63]. The importance of micro-evolutionary responses of physiological 

mechanisms is starting to be acknowledged, and recent years have seen an upsurge of 

interest for studies addressing that question [21,27,33,59] . 285 

286 

Most of the experiments that we performed to test for an effect of temperature on seasonal 287 

timing of reproduction in great tits used animals of known genetic background, including 288 

siblings, that were allocated across the different treatments. By comparing the pre-breeding 289 

physiology and laying dates between birds exposed to different temperatures, but with ad 290 
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291 

292 

293 

294 

295 

296 

297 

298 

299 

300 

301 

302 

303 

304 

libitum food (to exclude potential genetic variation in the energetic costs of laying), we 

could determine if birds differed genetically in cue sensitivity or in the way these cues are 

transduced in physiological pathways. We found clear differences between families of 

birds (each year we collected whole broods of chicks in the wild from early- or late-laying 

maternal lines, and we compared those siblings in captivity, see [47,67] for details) in the 

onset and termination of breeding, as well as in the underlying physiological mechanisms. 

For example, females that have mothers that lay early in the wild laid early themselves in 

the aviaries, and some families of males had larger testis volumes than others. Overall, and 

even if the results were not always consistent across successive experiments and traits, we 

found some genetic effects in all the physiological measures that we performed: LH, PRL, 

testis and follicle volumes [47,67, unpub. data]. Interestingly, some of these effects were 

influenced by the temperature treatments to which the birds were exposed. For instance, 

the effect of a temperature increase on the advancement of laying was mostly visible in 

females originating from genetically early families, demonstrating genetic differences in 

how birds perceive or respond to temperature variation [47].  305 

306 

Is microevolution the only emergency exit in a warming world? 307 

308 

In conclusion, temperature has a direct effect on timing of breeding [34,65], which in itself 309 

is an important step towards assessing the implication of climate change on seasonal 310 

timing. In addition, we showed that the most important temperature characteristic that great 311 

tits use to time their reproduction is its pattern of increase [47]. Originally we thought that 312 

this effect of temperature on timing would be mediated via the HPG axis, meaning that a 313 

temperature increase in spring would elevate the concentrations of the gonadotropins in the 314 

blood and stimulate the growth of the gonads. Temperature does however not seem to 315 

influence these commonly studied mechanisms [16,39,47,67], and we found no convincing 316 

evidence for a relationship between the development of the HPG axis and the onset of 317 

laying [46]. This suggests that the effector pathways by which temperature acts on timing 318 

by-pass some major components of the reproductive system, and that timing of breeding 319 

and its underlying mechanisms are regulated by different environmental cues. It implies 320 

that, under global warming, great tits could use temperature information to adequately 321 

advance their laying period, but that this advancement of phenology might at some point 322 

become constrained by the lack of responsiveness of the HPG axis to an increasing 323 

temperature.    324 
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325 

However, we found some genetic variation both in the onset and termination of laying, and 326 

in the underlying mechanisms, sometimes in interaction with temperature [47,67, unpub. 327 

data]. This suggests that some families of birds will be able to respond more quickly than 328 

others to the increasing temperature, which will lead to difference in fitness between 329 

families [36]. Such heritable genetic variation in cue sensitivity (this could be temperature 330 

or photoperiod) will allow natural selection to modulate a bird's response to the 331 

information coming from its environment. In the case of birds breeding too late in an 332 

advancing season, this should lead to an increase in their sensitivity to these cues, i.e. they 333 

would start breeding under shorter photoperiods or cooler temperatures. And if phenotypic 334 

plasticity becomes insufficient to face the changes, which has already been observed in 335 

some populations [31], the only way birds might be able to restore the synchrony between 336 

their timing of breeding and the changing optimal period for rearing chicks, would be via 337 

microevolution. But microevolution is generally a slow process and the pivotal question 338 

now is whether adaptation will be fast enough [23,61]. 339 
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Figure 1: Temperature profiles used during experiments conducted in climate-controlled 

aviaries. A: Temperature fluctuations mimicking actual patterns of a "warm" (red line) and 

a "cold" spring (blue line) during which wild great tits respectively bred exceptionally 

early (1998) and late (1986). On average the two treatments differed by 4°C. B-E: 

Artificial patterns of temperature variation. B: Stepwise increase of temperature throughout 

spring (increase of 0.65°C per weak) with a constant 4°C difference between the two 

treatments. C: Variation in the daily amplitude of temperature. Birds were exposed to one 

of four temperature treatments, each composed of a high or low mean temperature (14 vs. 

8°C) with either a high or low day-night amplitude (6 vs. 2°C). Note that the x-axis only 

ranges over 24h, i.e. there was no seasonal variation. D: Variation in the onset and 

termination of a cold period. Birds were kept at 15°C from December onwards. One group 

remained at 15°C for the whole spring (dashed red), while the other three groups were 

temporarily exposed to a lower temperature (7°C) in February (black), March (light blue) 

or April (dashed grey). This latter group remained at 7°C until laying. E: Variation in the 

onset and the rate of increase of temperature. Four groups of birds were exposed to two 

consecutive temperature increases. A first increase occurred either in early (orange and 

red), or late (light and dark blue) February. A second increase occurred either in early (red 

and light blue) or late (orange and dark blue) March. Temperatures increased at different 

rates in February, but not in March. A day-night fluctuation of 2°C was superimposed to 

each of the four temperature profiles. Adapted from [46,47,65,67]. 581 
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Figure 2: Relationship between female ovarian follicle size and onset of laying in captive 

great tits. A: Individual ovarian follicle growth profiles of 28 females. Each line represents 

the regression obtained based on the laparotomy data collected on four different occasions 

(once per month). B. Relationship between the size of the follicles and the onset of laying. 

The y-axis represents the elevation (calculated at the middle point of each regression line) 

of the regression lines in panel A, each point represent one individual female. Females that 

have large follicles (high elevations) do not necessarily lay earlier (i.e. no correlation 

between the variables). C. Relationship between the rate of follicle growth and the onset of 

laying. The y-axis represents the slopes of the regression lines in panel A, each point 

represent one individual female. Females that have fast growing follicles (steep slopes) do 

not necessarily lay earlier (i.e. no correlation between the variables).    593 
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