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A PU.OT HEAT AND MOMENTUM FLUX STUDY FOR THE NORTH 

ATLANTIC • BASE CLIMATOLOGY 

Simon Josey ( Room 254/31, James Rennell Division, Southampton Oceanography 

Centre, Empress Dock, Southampton S014 3ZH) 

l. INTRODUCTION 

Heat and momentum flux fields for the North Atlantic, determined from a large dataset of 

ship reports for the period 1980 - 91, are presented in this report. They have been calculated as part 

of a pilot study for a global flux climatology (Josey, 1995a) and the aim at this stage has been to 

produce a first set of climatological fields ( subsequently termed the 'base' climatology) rather than 

a final product. In the next phase of the study, the fields will be refined to include recent additions 

to the ship dataset, corrections to several meteorological variables at the level of individual reports 

and a full objective analysis treatment. 

The data source for the fields is detailed in the next section. This is followed by a description 

of the flux calculation scheme in Section 3. Climatological mean fields derived from the individual 

flux values are presented in section 4. Finally, the climatologically implied ocean heat transport in 

the North Atlantic is calculated and some conclusions are drawn following a comparison with direct 

hydrographic estimates. 

2. DATA SOURCE 

The ship reports used in this study are a subset of the global Comprehensive Ocean­

Atmosphere Dataset (GOADS) Release !a (Woodruff et al., 1993) for the region (0- 90° N, 100° W-

400 E) and time period 1980 - 1991. The full global set contains some 40 million reports of which 

about half lie in the region under consideration. Climatological heat flux fields have not previously 

been calculated using Release la. da Silva et al.(l994) have produced a global flux climatology 

covering the period 1945 - 1989, for which an earlier version (the 'interim product') of Release !a 

was used for 1980- 1989. However, Release !a contains a significantly greater number of reports 

than the interim product ( an increase of 30 - 40% in the mid-1980's) and so we expect improved 

spatial coverage and reduced sampling errors in our analysis for this period. Recent revisions and 

extensions to Release !a which cover the period 1992 - 93 and January- May 1988 (Worley, S. 

personal communication) have not been included at this stage but will be in the next phase of the 

climatology. 
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3. SHIP REPORT CORRECTIONS AND FLUX DETERMINATION METHOD 

3.1. Corrections to Reported Variables 

Prior to calculating the fluxes, visual estimates of the wind speed have been corrected for 

biases arising from the use of the WMO Code II 00 wind scale as described below. Further 

corrections to the reported variables as discussed in Kent et al.(l993) will be included in the next 

phase of the climatology. 

3 .I. I. Beaufort Scale Correction 

The visual estimates of wind speed reported in CO ADS I a were originally calculated using 

the WMO Code 1100 Beaufort equivalent scale which is known to have systematic biases at both low 

and high wind speeds. A correction scheme for these biases proposed by da Silva eta! (1994) has 

been used in this study. In the scheme, visual winds are corrected according to the following 

formula, 

where UN and u 0 are the corrected and uncorrected wind speeds at 20m. 

Preliminary results from a comparison of several different scales using data from the 

Voluntary Observing Ships Special Observing Project for the North Atlantic (Kent, 1995) indicate 

that an alternative scheme proposed by Lindau (1995) gives better agreement between measured 

and estimated wind speed distributions than the da Silva scheme and, subject to the results of the 

ongoing evaluation study, it will be used in subsequent analyses. 

3.2. Flux Calculation Scheme 

Turbulent and radiative heat fluxes and the wind stress have been calculated using a version 

of the program BFORM (Taylor, 1995) that has been extended to include a treatment of the radiative 

terms. Stability and height corrections are included in the flux calculations using Monin - Obukhov 

similarity theory. The following platform dependent default heights for the wind and temperature 

sensors have been assumed for the calculations: 

i.) Platform type (PT) code =0 - 5 (US Navy, merchant ship, foreign military, ocean station 

vessel, lightship, ship, 'deck' log or unknown). Sensor height = 20m. 

ii.) PT = 6- 8 (moored, drifting or ice buoy). Sensor height= Sm. 

iii.) PT = 9 - 10 (manned ice station or oceanographic station). Sensor height = 20m. 

iv.) PT = 13 -14 (Coastal- Marine Automated Network or other coastal/island station). Sensor 

height = !Om. 

v.) PT = 15. Fixed ocean platform. Sensor height= 80m. 
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F1uxes have been determined for each ship report for which the necessary basic variables 

are available and the full set of basic and diagnosed variables has been archived on Exabyte tape 

CLOO I. The choice of bulk formulae for the flux calculations is described in the following sections. 

3.2. I. Wind Stress 

The wind stress, r, has been calculated using the bulk formula, 

2 r=pcDu 

where p is the density of air; CD, the stability dependent drag coefficient, and u the wind speed 

(corrected as described in 3.1.1. if based on a visual estimate). The drag coefficient scheme of Smith 

(1988) which is based on direct measurements of the wind stress at sea has been employed. 

However, tn a recent study of wind stress measurements made tn the Southern Ocean, Yelland and 
Taylor (1995) found neutral values of CD at wind speeds above 6 rnls which were about 10% higher 

than those from previous open ocean studies and the revised formulation that they suggest may be 

employed in the next phase of the climatology. 

3.2.2. Turbulent Heat Fluxes 

The sensible and latent heat fluxes, QH and QE, have been calculated ustng the following 

bulk formulae, 

where cP is the specific heat of air at constant pressure; L, the latent heat of vaporisation; Ch and 

c., the stability dependent transfer coefficients for sensible and latent heat respectively; T
3

, the sea 

surface temperature; T a, the potential air temperature; <is, 98% of the saturation specific humidity 

at sea surface temperature, and qa the atmospheric specific humidity. Transfer coefficients for the 

turbulent heat flux have also been taken from Smith(l988). Recent work by Kent and Taylor (1995) 

suggests that the use of artificially increased transfer coefficients tn many earlier studies, for 

example Oberhuber (1988), cannot be justified on the grounds of errors in ship reported variables 

or by a falr-weather bias. 

3.2.3. Shortwave F1ux 

The net shortwave flux has been determined ustng two tecimiques, the first is employed tn a 

sampltng sense, returning a value for each report, the second makes use of monthly average 

quantities and returns the mean field. 

The sampling estimate, Q8 , is obtained ustng the simple 'okta' model of Dobson and Smith 

(1988), 

Os = (l- a)Q0 sin8(A, +B,sin8) 
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where a is the albedo; Q0 , the solar constant taken to be 1368 Wfm2 (Frohlich and London, 1986) 

; Ai and Bi. empirically determined coefficients for each category of reported total cloud amount in 

oktas (note that there are 10 categories in all, ranging from 0 - 9, with 9 being the code for 'sky 

obscured'); e' the solar elevation, given by the following formula, 

with, 

sine = sin¢2 sino+ cos¢2 cos 8 cosh 

8 = -23.5 sin(80-D) 

h=l5(12-t)-¢1 

where 8 is the declination; ¢1 and ¢2 , the longitude and latitude; h, the hour angle; t, Greenwich 

Mean Time at the observing location and D, the Julian day. 

Dobson and Smith (1988) have assessed the performance of estimates made with several 

different bulk formulae against time series of direct solar radiation measurements, covering periods 

of tens of years, from five weather ships in the North Atlantic and North Pacific. They find that the 

'okta' model provides as good an estimate of the shortwave flux at a given time as more complicated 

models which include a dependence on cloud type. The main disadvantage with using this formula 

is that derived monthly means may be in error if there is a significant diurnal bias in the number of 

reports (see 4.1). However, even if it proves unsuitable for calculating monthly mean estimates, the 

formula will still be employed in future analyses in order to make the solar heating correction to 

reported air temperatures suggested by Kent et al.(l993). 

The alternative approach is to make use of the formula proposed by Reed (1977) which is 

based on an analysis of weather ship and coastal station measurements, according to which the 

monthly mean net shortwave flux, 

Os = (1- a)QJl-0.62 n+0.0019 ON] 

where Oc is the clear- sky solar radiation, n is the monthly mean fractional cloud cover and ON is 

the monthly mean local noon solar elevation ( which has been approximated by the local noon value 

on the middle day of the month as determined from the earlier formula for sine with cos h set 

equal to I ; this approximation will be replaced by the average over all days in the month in the next 

phase of the climatology). 

Dobson and Smith (1988) found that estimates of the long term mean insolation made at 3 

marine stations using the Reed formula were accurate to within 12 Wtm2, while those determined 

using other bulk formulae were significantly worse, and for this reason we have adopted it for the 

current study. Values for the albedo for use with both the Reed formula and the 'okta' model have 

been taken from Payne (1972). For the clear sky radiation, we have made use of the expression 

suggested by Seckel and Beaudry (1973), 

Oc = a 0 + a1cos<l> + b 1sin<l> + apos2<1> + b 2sin2<1> 

where, 

<I>= (360/ 365)(D-21) 

and the coefficients ai, bi depend on latitude as follows: 

i.) Latitude zooS to 4QO N 
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ii.) Latitude 400 N to 600 N 

5 

a
0 

= -15.82 + 326.87 cos¢2 

a1 = 9. 63 + 192. 44cos( 1/12 + 90) 

b 1 = -3.27 + 108. 70sin¢2 

a2 = -0.64 + 7. 80sin2( 1/12 - 45) 

b 2 = -0.50 + 14. 42cos2( ¢2 - 5) 

ao = 342.61-1.97¢2 -0.018¢/ 

a1 = 52.08-5.86¢2 +0.043¢2
2 

b 1 = -4.80 +2.46¢2 -0.017¢2
2 

a2 =1.08-0.47¢2 +0.011¢2
2 

b 2 = -38.79 + 2. 43¢2 -0.034¢2 
2 

It has been assumed that the formulae for 40 - 60° N may be employed at latitudes up to 80° N . 

This assumption does not have a significant impact on the climatologically derived ocean heat 

transport (see 4.3) as the surface area of the ocean at high latitudes is relatively small but a more 

accurate treatment, possibly based on the Lurnb (1964) formula, needs to be taken in the next phase. 

The method by which Seckel and Beaudry obtained their clear sky expression is not clearly 

documented in the literature but we have chosen to use it primarily because Reed employed it in 

deriving his formula. 

Gilman and Garrett (1994) have commented that the Reed formula has been used 

inappropriately under conditions of low cloud cover, in which case the estimate of the mean 

incoming shortwave can become greater than the clear-sky value if eN is sufficiently large. We 

follow their suggestion that the incoming shortwave be constrained to be less than or equal to Q
0

, 

while noting that the impact of this constraint is likely to be low given the typically high cloud cover 

in the North Atlantic. Gilman and Garrett also suggested that attenuation of shortwave radiation by 

aerosols may cause a significant reduction in the surface insolation but we have not attempted to 

include a treatment of this effect at this stage as the climatological distribution of aerosols over the 

Atlantic is not well known. 

3.2.5. Longwave Flux 

Bulk formula parameterisations of the net longwave flux have been developed by 

considering the difference in the upwelling blackbody radiation from the sea surface and the 

downwelling component from the atmosphere. The performance of a number of bulk formulae 

(Brunt (1932); Anderson (1952); Berliand (1960); Efimova (1961); Swinbank (1963); Clark et a!. 

(1974); Bunker (1976); Hastenrath & Lamb (1978)) has been assessed against direct measurements 

by Katsaros (1990) and more recently by Bignami et al (1995). Katsaros considered just the 

downwelling radiation using open ocean measurements from the GATE, JASIN, STREX, FASINEX and 

Tropic Heat II experiments. She found a similar degree of accuracy from most of the formulae, the 
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mean error in the daily averaged downwelling flux was less than 6 Wtm2 with the exception of the 

Berliand, Bunker and Efimova estimates for which it was about I 0 Wtm2. 

More recently, Bignami et al (1995) have used data from seven cruises in the Western 

Mediterranean over the period September 1989 to August 1992 to assess estimates of the net 

longwave flux (upwelling - downwelling) from the same set of bulk formulae. They find that all of 

the formulae ( with the exception of that of Hastenrath & Lamb which is biased high by 36 W/m2) 

underestimate the net longwave by 20 - 30 W/m2. They suggest that the low bias is due to an 

overestimation of the amount of columnar water vapour in the atmosphere, resulting from the use of 

land-based bulk formula coefficients in a marine environment, and develop a corrected formula 

based on the Mediterranean observations which has a mean bias error of just 0.3 W/m 2. 

Of the earlier formulae, that of Clark. et al (1974) performs well in both the Katsaros and 

Bignami analyses and we have chosen to use it for our calculations. We have also examined the 

possibility that the results of Bignami et al are applicable to larger ocean basins and have used their 

formula to calculate parallellongwave estimates for each report. The two formulae are given below: 

a.) Clark et al. (1974) 

QL = £0'"' T, '(0.39 -0.05ev2 )(1- 0.69n2
) + 4£0'30T,3 (T,- Ta) 

b.) Bignami et al. (1995) 

QL = EO'"'T:- 0'30T: (0.653+0.00535e)(l +O.l762n2
) 

where £ is the emittance of the sea surface, taken to be 0.98 ; 0'
30

, the Stefan - Boltzmann constant, 

equal to 5.7 x w-8 W m-2 K-4 ; e, the water vapour pressure; n, the fractional cloud cover and T, 
and T a are in degrees Kelvin. 

(Note that the performance of the various longwave formulae is being assessed in an 

ongoing study using measurements from several cruises. Preliminary results from this study and a 

detailed review of the bulk parameterisations for the longwave may be found in Josey (l995c).) 

4. CLIMATOLOGICAL FIELDS 

In this section, climatological annual mean flux fields calculated from the individual flux 

estimates are presented. The filtering procedure used to remove outliers is described in 4.1 prior to a 

discussion of the fields in 4.2. A comparison of the climatologically implied ocean heat transport 

with direct hydrographic estimates is then given in 4.3. 

4 .l. Filter & Binning Procedure 

Outliers have been removed from the set of fluxes prior to determining the mean fields 

using trimming flags that are included within Release la for the zonal and meridional wind speed, 

sea surface and air temperatures, humidity and sea level pressure. For Release la, a climatological 

analysis was used to determine smoothed medians and lower and upper median deviations ( first 

and fifth sextile limits) for each month, variable and 2° x 2° box. A flag was then set for each of the 

basic variables in each report according to whether it lies within 2.8, 3.5 or 4.5 deviations ( 0') from 
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the median (Slutz et al.(l985) and 'stat' document- available from GOADS internet site- for details). 

The 4.5 0" flag has been added to Release Ia (it was not present in earlier versions of GOADS) in 

order to allow the effects of extreme climatic events to be included in derived mean fields and it is 

this flag that has been used to construct the filter in the current study. da Silva et al. (1994) had to 

make use of the more restrictive 3.5 0" flag in their study and imposed a stronger 2.8 0" constraint to 

reduce noise in climatologically ice covered regions. Our approach has been to use the 4.5 0" flag in 

order to retain as much information as possible. In subsequent analyses, the objective analysis 

scheme detailed in Josey (l995b) will be used to reduce noise in the raw fields. 

The filter rules are summarised in Table l which shows the variables for which both the 

upper and lower deviation flags must lie within 4.5 0" in order for a given field to be accepted. 

Field Name Variables for Which 4.5 O"F1ags 

Must Be Satisfied 

T, T, 

T. T. 

Tdew Tdew 

p p 

Uo' UN liz' Urn 

Uw, u. , 1", QH , lOlL u, ' urn, T., T, 

QE u,' urn, T., T,, Tdew 

QL T. , T, , Tctew 

Table l, 4.5 0" F1ags That Must Be Satisfied For The Given Fields to be Accepted 

Here, Tctew is the dewpoint temperature; P, the pressure; u,, the zonal wind speed; urn, the 

meridional wind speed; ulD' the wind speed at lOrn; u., the friction velocity and L, the Monin­

Obukhov length in metres. 

In addition to these climatological filters, the cloud cover observation is not included in the 

calculation of the mean if it is set to 9 (the code for sky obscured or observation not possible). 

Using the filter described above, l o x l 0 mean fields for the basic variables and derived 

fluxes were calculated for each month in the period 1980 - 91 ( excepting April 1980 and February, 

March and August 1985 which were excluded from the analysis due to a pstar processing problem 

that has now been rectified). The mean fluxes have been determined by the sampling method (i.e. 

averaging over individual flux values) as opposed to the classical method (calculating the mean 

fluxes from the monthly mean meteorological variables). The decision to use the sampling method 

was based on an earlier study Gosey et al., 1995) which showed that correlations between 

meteorological variables, particularly during the passage of mid-latitude storms, can lead to the 

classical mean latent heat flux being biased high by up to 15%. The individual monthly fields were 

then binned by month of the year and averaged over to produce climatological monthly means for 
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the whole period. Finally, an average over the latter fields was taken to give the climatological 

annual mean fields presented in the next section. 

The possibility of a diurnal bias in the number of reported observations ( suggested by the 

analysis of the shortwave fields to be discussed in 4.2.2) has been investigated using data for January 

1986 for the whole of the North Atlantic binned by the hour (reported as GMT) at which the report 

was made. The number of observations peaks at the reporting hours 0000,0600,1200 and 1800 hr, 

as expected, dropping to about 15% of the maxima at the mid-point of each 6-hour interval, and just 

1-2% at other times. The total number of reports, together with the number of observations N(x), for 

several of the met variables and diagnosed fluxes in one hour intervals about the reporting hours are 

given in Table 2 (note that the number of sensible heat flux estimates, not tabulated, is the same as 

that for the latent heat flux). 

Time Total N(u) N(l'a) N(l'd) N(Osl N(QL) N(QE) 

0000 20175 19669 19754 11330 17439 8857 9423 

0600 20356 19766 19863 11479 17566 8941 9563 

1200 23012 22384 22334 12997 20751 10754 10944 

1800 22394 21695 21617 12403 19840 10163 10451 

Table 2. Total Number of Ob servations and Frequencies of Particular Fields 

in One Hour Inte rvals About Specified Times 

A bias towards reporting at 1200 and 1800 is obvious, there being a reduction of 12 % in 

the total number of reports at 0000 relative to 1200. This pattern is also seen in the number of 

reported met variables and diagnosed fluxes. For the shortwave flux the reduction is 16 % and this 

will clearly lead to the monthly mean being an overestimate if it is calculated as a simple sampling 

mean from all available values with no correction for the diurnal bias. This can be avoided if the 

Reed (1977) formula is used. Diurnal variations in the other components of the heat flux are 

obviously not as dramatic as that in the shortwave but it may be necessary in subsequent analyses to 

correct these terms for the reporting bias, possibly by forming climatological six-hour mean fields 

which would then be combined to give the overall mean. 

4.2. Climatological Annual Mean Fields 

4.2. I. Meteorological Variables 

Raw climatological annual mean fields for the reported meteorological variables are shown 

in Fig. 1 and corresponding frequency distributions in Fig.2. Note that the fields have not been 

corrected for seasonal variations in the area sampled, hence at latitudes north of 60° N they are 
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likely to become increasingly summer-biased. The main features of each field are discussed briefly 

below. 

The dry bulb and sea surface temperature fields have a very similar spatial variation, with 

the difference between the two lying in the range 0-!.5° C over much of the basin. Notable 

exceptions to this are the Gulf Stream and Norwegian Sea, where the sea is up to 4° C warmer than 

the air, and the Grand Banks and upwelling regions off the coasts of West Africa and Venezuela, 

where it is up to 20 C cooler. The temperature distributions are bimodal and there is a sharp cut off 

above 300 C in each. The dewpoint temperature field has a broadly similar spatial variation to the 

dry bulb, although there is a noticeable region of dry air off the coast of North-West Africa. The 

pressure field exhibits the well-known Azores High - Iceland Low dipole structure. Wind fields 

obtained using both the old WMO !!00 and da Silva eta!. (!994) scales for visual winds are shown 

in Figs. lf-g and 2f-g. The latter field is somewhat stronger, although the diflerence between the two 

scales will have been moderated by the high proportion of anemometer winds. The annual mean 

cloud cover field shows that the fractional cloud cover is greater than 5/8 virtually everywhere north 

of 350 N and only drops below 3/8 in the Mediterranean and Red Seas and along narrow coastal 

strips. Hence, the Gilman and Garrett (!994) modification of the Reed shortwave formula under 

conditions of low cloud cover is unlikely to have a significant impact over much of the open ocean. 

Finally, note that the Inter-Tropical Convergence Zone is evident as a band of relatively high cloud 

cover at 5° N. 

4.2.2. Air- Sea F1uxes 

Climatological annual mean fields, in both raw and contoured format, together with 

histograms of the various air - sea fluxes are shown in Figs. 3 - 5. The sign convention followed is to 

treat the individual components of the heat flux as being positive according to the dominant 

transport direction i.e. the latent, sensible and longwave fluxes are positive for heat loss by the ocean 

to the atmosphere while the shortwave is positive for heat gain by the ocean. When formulating the 

net heat flux this inconsistency has been removed by subtracting the sum of the latent, sensible and 

longwave fluxes from the shortwave. Hence, the net heat flux is positive for a heat gain by the ocean 

and negative for a heat loss. 

The latent heat flux field has the expected features : a band of strong heat loss of up to 230 

W/m2 over the Gulf Stream, a broader region of less intense heat loss, up to !40 Wtm2, under the 

Trade Wind belt and very weak heat loss or slight heat gain over the Grand Banks region. 

Comparison with the corresponding field reported by Isemer and Hasse (!987), which was adjusted 

to match oceanographic constraints, indicates that the new field typically has a heat loss of order 30 

Wtm2 less than the adjusted values over most of the basin. 

The main region of sensible heat flux loss is also over the Gulf Stream with peak values of 40 

- 50 W/m2, with a second region occurring over the Norwegian Sea (note that the field in this 

region is probably biased towards summer values). Heat loss in the latter area has been recognised 

as being due to very cold air being advected from the neighbouring continent Bunker (!976). In 

comparison, the adjusted Isemer and Hasse (!987) field is again higher over most of the basin, 

although the difference is now only of order !0 Wtm2. 

The longwave field calculated using the recent Bignami et a! (!995) bulk formula has !0 -

20 W/m2 greater heat loss than that obtained with the Clark et a! (!974) parameterisation over 

much of the North Atlantic. The Clark derived field is in best agreement with that found by Isemer 
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and Hasse (1987) who made use of the formula of Efimova (1961) which, it should be noted, 

performed poorly in both the Katsaros (1990) and Bignami et a! (1995) analyses of cruise data. 

Similar spatial features are observed in both fields, local maxima over the Gulf Stream, where the 

sea - air temperature difference peaks, and in a zonal band extending westward from the coast of 

NW Africa, where the air is relatively dry. A minimum is seen under the ITCZ where the 

downwelling component is increased due to the enhanced cloud cover. It is noticeable that the 

overall variation is relatively small, in the range 50 - 80 WtmZ or 30 - 60 WtmZ over much of the 

basin depending on the choice of formula. 

The shortwave fields obtained with both the Dobson and Smith (1988) and Reed (1977) 

formulae are in fairly good agreement in the heavily sampled mid-latitude region. However, the 

Dobson & Smith field becomes increasingly noisy and biased high relative to the Reed field in the 

more poorly sampled tropics. The cause of the increase in noise is the diurnal variation in sampling 

frequency discussed in Section 4.1., which in a poorly sampled region leads to a bias of the mean 

towards high daytime estimates of the shortwave. Thus, it is clear that care needs to be taken when 

calculating sampling mean shortwave fields to allow for such diurnal variations. The field obtained 

with the Reed formula, which makes use of monthly mean cloud cover, is much smoother and is 

found to be in good agreement with that of Isemer and Hasse (1987), although this is not surprising 

as they made use of a slightly modified version of the formula. It is primarily zonal, with peak values 

in the range ZZO - Z40 WfmZ between I oo - Z0° N, dropping to ZOO WtmZ under the influence of 

the ITCZ just north of the equator. (A contoured version of the Dobson & Smith shortwave field has 

not been shown because the high level of noise obscures the contouring). 

The wind stress field is shown for completeness but as the calculated values are scalar as 

opposed to vector averages it is a little misleading. Maxima under the main westerly wind belt 

between 45 - 65° N and under the Trades between l 0 - Z0° N are evident with the former region 

dominant. However, if vector averages are taken the strength of the two gyres should become more 

equal as found by Isemer and Hasse (1987). 

The net heat flux has been calculated using the Reed shortwave fields with both the Bignami 

and the Clark longwave fields. For both fields the main area of heat loss is a band extending north­

eastward from the Gulf Stream to the Norwegian Sea, with peak values of about ZOO WtmZ. Over 

much of the mid-latitude ocean there is very little net heat transfer, while the main heat gain region 

is in the sub-tropics. The heat loss regions are noticeably broader and more intense if the Bignami 

formula for the longwave is used. The primary difference between the base climatology net heat flux 

fields and the adjusted field presented by Isemer and Hasse (1987) is that in the latter analysis the 

line of zero net heat flux lies further to the south (mainly because of the difference in the latent heat 

flux fields) and encompasses a significantly greater fraction of the ocean surface. 

4.3. Zonal Mean Variation 

The zonal mean variation of each of the air - sea heat fluxes has been calculated by 

averaging over I 0 strips, see Fig. 6. For the turbulent terms, the latent heat flux dominates over most 

of the North Atlantic, averaging between 100 and !ZO WtmZ from the equator to 4QO N. However, 

the sensible heat loss becomes more important towards higher latitudes as the latent heat flux 

declines and the Bowen ratio tends towards l at 80° N. The roughly constant value of the zonal mean 

latent heat flux loss from l 0 - 40° N, reflects the fact that the broad region of secondary heat loss 
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under the Trade Winds is as important in terms of overall heat transfer as the narrower region of 

primary heat loss over the Gulf Stream. The longwave flux estimates show little zonal variation north 

of 30° N although there is a slight reduction at lower latitudes. The difference between the Bignami 

et a! and Clark et al values also decreases towards the equator. The zonal mean shortwave flux 

calculated with the Reed formula exhibits a smooth poleward decline with the exception of a local 

minimum due to the ITCZ at 5° N. A transition from net heat gain to loss between 330 and 350 N 

(depending on the longwave estimate used) is evident in the net heat flux curves. The net heat loss 

per I o strip has also been calculated (this takes into account variations in basin width with latitude) 

and is shown in Fig. 7. The difference between the net heat flux calculated with the Bignami and 

Clark schemes is seen to be about 0.0 I PW I I 0 strip and this results in a strong divergence between 

the derived ocean heat transport obtained with the two formulae which is discussed in the next 

section. 

4.4. Implied Ocean Heat Transport 

The climatologically implied ocean heat transport as a ftmction of latitude may be calculated 

by integrating the heat loss over successive zonal strips, provided the transport across a particular 

latitude is known and the assumption is made that there is no net heat storage in the ocean on the 

decadal timescale covered by the climatology. Aagaard and Greisman (1975) have suggested that 

the poleward heat transport across sao N is 0.1 PW based on the results of a heat budget analysis for 

the Arctic Ocean and we take this value as a northern boundary condition for the heat transport 

calculation. Isemer and Hasse (1987) made use of the same constraint but applied it at 65° N, which 

was the northern limit of their climatology. However, their choice does not appear to be appropriate 

if one considers the details of the Aagaard and Greisman analysis. 

The implied heat transport has been calculated using net heat flux estimates obtained with 

both the Bignami and Clark longwave formulae, it is shown in Fig. 8. Also shown are direct 

hydrographic estimates at 24° N (Bryden, 1993) and 60° N (Bacon, 1995) and the implied heat 

transport obtained by Isemer and Hasse (1987) before they adjusted it to match the oceanographic 

constraints. Ali three inferred heat transport curves are in fairly good agreement with the direct 

estimate at 60° N, with the Bignami based one perhaps slightly high. However, the Bignami and 

Clark curves diverge rapidly thereafter to the extent that the Clark based estimate reverses sign at 

20° N and implies a southward heat transport of 0.8 PW across the equator. In contrast, the 

transport obtained with the Bignami formula is more reasonable, reaching a peak value of 0. 92 PW 

at 320 Nand then falling to 0.81 PW at 24° N which, however, is still 0.29 PW less than the lower 

limit on the hydrographic estimate. There are several possible reasons for the remaining difference: 

i.) Errors in ship reports of the dew point temperature, may result in the latent heat flux 

being underestimated by up to l 0 W/m2 (Kent and Taylor, 1995) and this would integrate to an 

extra 0.2 PW of poleward heat transport at 240 N. 

ii.) The direct estimate of the transport at 24° N is not representative of the annual average. 

Lamb and Bunker (1982) suggested that there is a significant seasonal variation in the heat transport 

in the North Atlantic based on a combined analysis of the surface heat loss fields and internal heat 

storage calculated from sounding data. Sections across 240 N have been taken on three separate 

occasions (in 1957, 1981 and 1992) but all were at a similar time of year, two in August and the 
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other in October, so the derived heat transport from hydrography may not reflect the annual average 

if there are strong seasonal variations. 

iii.) The direct estimate of the transport used as a boundary condition at 800 N may be too 

low. Again, seasonal variations may be important and the estimate at this latitude is based on a 

tenuous analysis of one-time data which is likely to have an uncertainty of at least 0.1 PW. 

iv.) The estimates of the shortwave flux are too high. As noted earlier, Gilman and Garrett 

(1994) have suggested that aerosols may cause a significant reduction in the incident shortwave but 

no attempt has been made to correct for this in the current analysis. 

v.) The turbulent heat flux transfer coefficients are too low. Significant upward revision of the 

experimentally determined values has been argued for in past analyses e.g. Oberhuber (1988) on 

the grounds of reporting error and fair weather bias but this can no longer be justified (Kent & 

Taylor, 1995). 

vi.) The assumption of no net heat storage in the ocean on decadal timescales is not valid. 

Further consideration of the above possibilities is required before a meaningful inverse analysis 

adjustment of the climatological fields using hydrographic estimates of the heat transport as 

constraints can be carried out. 

5. CONCLUSIONS 

A base set of climatological heat and momentum flux fields has been calculated for the 

North Atlantic as part of a pilot study for a global climatology. It should be stressed that the fields 

are the result of a preliminary analysis and that in the next phase of the study a repeat analysis will 

be carried out using recent additions to the dataset, a correction scheme for reporting errors on a 

ship by ship basis and a full objective analysis treatment Oosey, l995b). The analysis will also be 

extended to the South Atlantic in order to allow additional recent hydrographic estimates (Saunders 

and King, 1995) to be employed in the assessment of the implied heat transport. 

The base climatological fields are qualitatively reasonable. Comparison with the fields of 

Isemer and Hasse (1987), which have been adjusted to match oceanographic constraints, indicates 

that the net heat loss in the base climatology is too low by between 10- 30 W/m2 over most of the 

North Atlantic basin if the constraints are representative of the long-term mean ocean heat transport. 

The deficit arises mainly as a result of differences between the latent heat flux fields, the shortwave 

fields are in very good agreement. Our best value for the implied ocean heat transport at 24° N 

(calculated using the Bignami et al. (1995) formula for the longwave flux) is 0.29 PW less than the 

lower limit on the hydrographic estimate (Bryden, 1993). Possible reasons for this discrepancy have 

been discussed and at present it is not clear whether the problem lies in the calculation of the fluxes 

or inappropriate use of the hydrographic estimates as constraints. If the older formula of Clark et al 

(1974) is used, clearly unrealistic estimates for the heat transport are found and this highlights the 

need for an evaluation of the two formulae using cruise data taken over the open ocean. 

A diurnal bias in the number of ship reports has been highlighted. The shortwave field 

calculated using the sampling method is found to be noisy and biased high in poorly sampled areas 

and it is suggested that this is due to the higher frequency of daytime reports. A correction for the 

bias (possibly by calculating six-hour means and then averaging) is necessary before a meaningful 
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sampling mean shortwave flux can be determined. The problem may be avoided by using the Reed 

(1977) formula for the shortwave which makes use of monthly mean estimates of the cloud cover 

and the mean noon solar elevation. The effect of the diurnal bias in reporting frequency on 

sampling mean estimates of the other heat flux components may also need to be considered. Finally, 

note that the wind stress fields have only been briefly considered in the current study; vector 

averaged means will be calculated in the next phase and the potential use of derived quantities such 

as the Elanan transport for evaluating the climatology assessed. 
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nGURE CAPTIONS 

Fig. 1. Raw l o x l o Annual Mean Meteorological Fields. 

a.) Dry bulb temperature ; b.) Sea surface temperature ; c.) Sea surface temperature - dry bulb 

temperature ; d.) Dewpoint temperature ; e.) Pressure ; f.) Wind speed (WMO 1100 visual wind 

scale) ; g.) Wind speed (da Silva(l994) visual wind scale) and h.) Cloud cover. 

Fig. 2. Frequency Distributions of the Raw l 0 x l 0 Annual Mean Meteorological Fields . 

Fig. 3. Raw l o x l 0 Annual Mean Air - Sea Flux Fields 

a.) Latent heat flux ; b.) Sensible heat flux ; c.) Longwave flux - Bignarni et al (1995) formula ; d.) 

Longwave flux - Clark et al (197 4) formula ; e.) Shortwave flux- Dobson & Smith (1988) formula ; f.) 

Shortwave flux- Reed (1977) formula ; g.) Total turbulent heat flux (calculated with Bignami et al 

longwave ; h.) Total turbulent heat flux (calculated with Clark et allongwave and Reed shortwave) 

and i.) Wind stress. 

Fig. 4. Contoured Annual Mean Air - Sea Flux Fields 

a.) Latent heat flux ; b.) Sensible heat flux ; c.) Longwave flux - Bignami et al (1995) formula ; d.) 

Longwave flux- Clark et al (1974) formula ; e.) Shortwave flux- Reed (1977) formula ; f.) Total 

turbulent heat flux (calculated with Bignami et allongwave ; g.) Total turbulent heat flux (calculated 

with Clark et allongwave and Reed shortwave) and h.) Wind stress. 

Fig. 5. Frequency Distributions of the Raw l 0 x 1° Annual Mean Air - Sea Flux Fields. 

Fig. 6. Annual Zonal Mean Air- Sea Heat Fluxes 

a.) Latent and sensible heat flux ; b.) Longwave flux ; c.) Shortwave flux- Reed ; d.) Net heat flux. 

Fig. 7. Net Heat Flux per l 0 Zone. 

Fig. 8. Variation in Climatologically Implied Ocean Heat Transport with Latitude. 
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