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Slepian functions can be tailored to be either band- or space-limited, allowing a 
trade-off between spectral and spatial concentration in the region and leakage 
beyond.  It is only necessary to solve for N Slepian coefficients to optimally 
concentrate the energy of the Slepian functions into the region of interest. N = 

2
(L+1) R/4π, where N is the so-called Shannon Number, L is the maximum spherical 
harmonic degree and R is the area of the region as a fraction of the full sphere. 

We optimally separate the spherical harmonic coefficients of a crustal field model, 
MF7 [2], into its oceanic and continental regions in order to investigate the spectral 
content of each part [3]. The spectral power of each region is examined over degrees 
L = 16-133 (Figure 1). We compare the resulting oceanic spectrum to a forward 
Vertically Integrated Magnetisation model [4] to check the decomposition is 
reasonable (Figure 2).

Similar analyses can be applied to smaller regions (e.g. aeromagnetic surveys).

It is possible to use Slepian functions to describe spatially-limited areas in an efficient 
manner. The upfront cost comes from computing the basis functions (only once). 
Figure 3 shows how to compactly represent the magnetic field for an area of Africa.

Slepian functions can be used to reconstruct a smooth function from a limited set of 
data. Figure 4 shows how the radial magnetic field can be reconstructed from a 
sparsely sampled set of data. The misfit decreases with increasing numbers of input 
data.

Models of the crustal magnetic field are typically represented using 
spherical harmonic coefficients. Rather than spherical harmonics, 
spherical Slepian functions (hereafter just Slepian functions) can be 
employed to produce a locally and also globally orthogonal basis in 
which to optimally represent the data in a region up to a given degree. 
The region can have any arbitrary shape and size [Ref 1]. 

In this poster we show some of the possible applications of Slepian 
functions to aeromagnetic data studies:

   Ÿ    optimally separate a crustal field model into its oceanic and 
         continental regions in order to investigate the spectral content 
         (Figures 1 and 2)
 Ÿ compactly describe regional spherical harmonics in a sparse 
         manner  (Figure 3)
 Ÿ reconstruct a smooth function from a series of input data points
         (Figure 4)

 Spatial and spectral decomposition

 Approximation of a regional model
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Figure 1: 
the field over degree L = 16 -133: (a) input; (b) continental region; (c) oceanic region. The boundary 
between the continental and oceanic crust is outlined in green and includes submarine continental 
shelves. Right panels show the spectral decomposition: (a) unweighted spectra; (b) area-weighted 
spectra. Note there is some ‘leakage’ between the regions, as the trade-off can never be perfect.

Decomposition of the MF7 crustal field model. Left panels show the radial component of 

Figure 2: Comparison of the MF7 area 
weighted oceanic spectrum (red line) to 
the VIM models of Masterton et al. 
(2013) up to degree L = 120. 
For the VIM model, the blue line is the 
remnant magnetisation of the ocean 
crust, grey line is the induced 
magnetisation and the green line 
shows the total magnetisation strength 
per degree. 
The models match reasonably well 
considering they are computed  from 
completely different datasets.
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Figure 3: Global and local representations of the lithospheric magnetic field in the spherical-harmonic and 
Slepian bases. Negative/positive m indicates coefficients multiplying sin/cos (m*ø), where  is longitude. 
(a) Map of the radial component of the internal magnetic field at the Earth’s surface according to the 
POMME4 model [5] bandpassed between spherical harmonic degrees 17 and 72, and (b) the spherical 
harmonic coefficients themselves. In total 5040 coefficients are needed to represent the global field, of 
which 5025 exceed a “1/1000” significance threshold of one thousandth of the maximum absolute value of 
all coefficients. Values below this relative threshold are left white in this and panels (d) and (f). 

(c) Map of the ‘Bangui anomaly’, a highly localized feature in central Africa. The anomaly was obtained by 
multiplying the radial field, low-passed to degree 36, by the Slepian function of bandwidth 36 that is best 
concentrated to the circular area of radius  = 18°, shown in blue. The resulting localized field is now low-
passed as can be seen in (d). Of the 5329 coefficients necessary to represent this anomaly, 4184 exceed 
the “1/1000” threshold. 

(e) An approximation of the same anomaly using the N = 130 best-localized of the 5329 Slepian functions 
concentrated in the region. Of the 130 coefficients only 42 exceed the “1/1000” threshold, as shown in (f), 
which has a truncated axes. The approximation in the region of interest is beyond reproach and the 
representation by the Slepian, compared to the spherical harmonics, is truly sparse. Hence, 
large datasets can be represented very compactly using Slepians.
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Figure 4: Efficient reconstruction of sparsely 
sampled data, illustrated using a bandlimited model 
of the crustal field from the NGDC-720 model [6] 
over degree L = 17-72. The input data are shown in 
(a). The function is randomly sampled within the 
circular region of interest (radius: 15°) with N points, 
as displayed in (b). Reconstruction is achieved by 
generating Slepian eigenfunctions for the region 
and solving for a set of Slepian coefficients from the 
sampled data using Singular Value Decomposition.  
The Slepian eigenfunctions are multiplied by the 
solution coefficients and summed to form the 
reconstruction in (c). The difference between the 
input data and the reconstruction is shown in (d). 
The rms metric is the root mean square of the pixel 
values within the region.
This example shows the method works well close to 
or over a large anomaly (Bangui). A similar 
experiment with spherical harmonic functions would 
generate a very large number of coefficients (i.e. 
like in Figure 3).

Slepian functions can be effectively used in aeromagnetic applications for 
storage and analysis of data sets. Like spherical harmonic modelling, Slepian 
functions retain the long wavelength parts of the signal. Hence, they do not 
work quite so well on restricted bandwidths.
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