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Abstract

Here we demonstrate the ability of stochastic reduced order models to predict
the statistics of non-stationary systems undergoing critical transitions. First,
we show that the reduced order models are able to accurately predict the
autocorrelation function and probability density functions (PDF) of higher
dimensional systems with time-dependent slow forcing of either the resolved
or unresolved modes. Second, we demonstrate that whether the system tips
early or repeatedly jumps between the two equilibrium points (flickering)
depends on the strength of the coupling between the resolved and unre-
solved modes and the time scale separation. Both kinds of behaviour have
been found to preceed critical transitions in earlier studies. Furthermore,
we demonstrate that the reduced order models are also able to predict the
timing of critical transitions. The skill of various proposed tipping indicators
are discussed.

Keywords: Stochastic Modeling, Tipping Points, Model Reduction,
Non-Stationarity, Bifurcation, Critical Transition

1. Introduction1

Many complex dynamical systems exhibit so-called critical transition or2

tipping points in which the system approaches a bifurcation point which can3

lead to sudden and possibly irreversible changes. Even small changes in the4

control parameter or forcing can lead to a large jump to a different state with5

Preprint submitted to Physica D July 11, 2013

*Manuscript



possibly catastrophic outcomes. Examples of such tipping points in the real6

world range from epileptic seizures (McSharry et al., 2003), financial market7

failures (Sornette and Johansen, 1997), ecosystems (Scheffer et al., 2001),8

fisheries (Biggs et al., 2009), abrupt shifts in ocean circulation (Monahan et9

al., 2008), paleoclimatic abrupt changes (Dakos et al., 2008; Lenton et al.,10

2008; Livina et al., 2011, 2013; Cimatoribus et al., 2013), irreversible decline11

of the Greenland Ice Sheet (Ridley et al., 2010) and loss of Arctic sea ice12

extent (Eisenmann and Wettlaufer, 2008; Wadhams, 2012). As these tipping13

points directly affect human well being and the economy it is of utmost14

importance to be able to forecast these sudden shifts in order to either avert15

them or at least mitigate their effects. Thus, the detection of early warning16

signals of imminent tipping points has attracted a lot of attention (Scheffer et17

al., 2009; Biggs et al., 2009; Dakos et al., 2008; Ditlevsen and Johnsen, 2010;18

Held and Kleinen, 2004; Kuehn, 2011, 2013; Lenton et al., 2008; Sieber and19

Thompson, 2012; Livina and Lenton, 2007; Livina et al., 2010, 2011, 2012).20

Most tipping point detection methods are based on the theory of critical21

transitions and critical slowing down. Typical signs of an imminent tipping22

point are that the intrinsic transient response to perturbations slows down23

(Wissel, 1984; Held and Kleinen, 2004; Veraart et al., 2012), an increase in24

autocorrelation (Scheffer et al., 2009), an increase in variance (Ditlevsen and25

Johnsen, 2010) or in skewness (Guttal and Jayaprakash, 2008).26

The slowing down is usually detected by computing the lag-1 autocorre-27

lation value by using a sliding data window (Held and Kleinen, 2004) or by28

a so-called DFA propagator (Livina and Lenton, 2007). Evidence for an im-29

minent tipping point is found when one of the indicators shows an increasing30

trend. Unfortunately this approach is sensitive to the used window length31

and the detrending procedure before the indicators are computed. Further-32

more, the underlying assumption of the detrending procedure is that the time33

series over the window length can be considered to be stationary, which is34

contradictory to the original assumption that the system is approaching a35

bifurcation (Boettinger and Hastings, 2012b). Furthermore, there is also no36

real threshold value which needs to be crossed in order to signal that the37

system approaches the tipping point. Boettinger and Hastings (2012a) argue38

that most previous studies might be biased because they focus only on pe-39

riods with a critical transition. They suggest that model based approaches,40

especially ensemble predictions, are less subject to this bias.41

The above proposed tipping point indicators are all based on the analysis42

of observed time series. Since in most cases tipping points are singular events43
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the ensemble approach is not feasible with just observational data; though44

Cimatoribus et al. (2013) used the Dansgaard-Oeschger events encoded in45

Greenland ice cores in an ensemble sense. However, in many situations tip-46

ping points are singular events which might not have happened or been ob-47

served before. An alternative approach is to use low-order dynamical models48

fitted to the observed data to predict tipping points (Carpenter and Brock,49

2011). Here we will evaluate the possible use of reduced order stochastic50

models in predicting tipping points using an ensemble approach.51

In a series of papers Majda et al. (1999, 2001, 2002, 2005, 2008, 2009)52

developed a systematic framework for the derivation of physics constrained53

reduced order models which are nonlinear and have state-dependent noise.54

Their ability to reproduce the statistics of high dimensional models of such55

quantities as probability density and autocorrelation functions has been shown56

by Franzke et al. (2005) and Franzke and Majda (2006). These systematic57

reduced order models are also skillful in reproducing the extreme value statis-58

tics and the predictability of extreme events of higher dimensional systems59

(Franzke, 2012).60

The idea behind tipping point prediction is that the underlying essential61

dynamics can be represented by a potential well driven by additive white62

noise (Scheffer et al., 2009; Livina et al., 2013). This is based on bifurca-63

tion theory of low-dimensional Ordinary Differential Equations. However,64

in practical situations one has often an one-dimensional indicator time se-65

ries (e.g. data from an ice core, measurement of the Meridional Overturning66

Circulation in the ocean) of a complex high-dimensional system. Using such67

a time series for tipping point prediction implicitly assumes either a weak68

coupling or time scale separation between the indicator time series and the69

remaining variables of the system. In this approach there is also a hidden as-70

sumption of an additive coupling between the observed indicator time series71

and the rest of the system. These approaches do not consider the possibility72

of multiplicative coupling which could lead to a state-dependent noise. For73

instance, this state-dependent noise could create a double well potential on74

its own with the deterministic dynamics playing no role in the creation of75

the double well potential (Sura et al., 2005) (see their figure 1). In such a76

system all transitions are purely noise driven. This illustrates the danger on77

relying upon purely data driven approaches since they are unlikely to be able78

to distinguish the dynamical causes of the potential well. The here proposed79

approach of using dynamical models also provides insight into the underlying80

dynamics and thus gives more confidence in the predictions.81
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In this study we will derive dynamical reduced order models which are82

driven by a slow forcing towards a bifurcation point. After demonstrating83

that the reduced order model reproduce the same tipping point behaviour we84

will elucidate the roles of time scale separation and coupling strength between85

resolved and unresolved modes and how they affect the tipping behaviour:86

whether the systems undergoes a clean tipping or flickers between the two87

equilibrium states. Flickering has recently also been proposed as an indicator88

of an imminent tipping event (Veraart et al., 2012). Both kinds of behaviour89

have been found to preceed critical transitions. So far no explanation has90

been given on which properties of the underlying dynamics they depend.91

To elucidate the conditions under which one can expect a clean tipping or92

flickering is a major motivation of this study.93

We will introduce the stochastic conceptual model which represents a94

minimal prototype climate model in Section 2. We discuss its performance95

when driven by time-dependent forcing in Section 3 and its ability to robustly96

predict tipping points in Section 4. In Section 4 we also discuss the robust-97

ness of the typically used tipping point prediction methods. We provide a98

summary of our results in section 5.99

2. Stochastic Conceptual Model100

In this section we describe the conceptual model which we are using in101

our study of tipping points. A similar version of this conceptual model has102

been used in previous studies (Majda et al., 2005, 2008; Franzke et al., 2007;103

Franzke, 2012). The conceptual model is 4 dimensional and contains the104

essential dynamics of more complex climate models even though it is of much105

lower dimensionality.106

The conceptual model we are using in this study has two slow or cli-107

mate variables denoted by (x1, x2). These two modes evolve slowlier than108

the other two modes (y1, y2). These two fast modes represent turbulent ed-109

dies and convective systems in the climate system which are in many climate110

models not fully resolved. In realistic systems there would be innumerable111

many fast modes, and in order to mimic their combined effect on the two112

slow climate modes we include damping and stochastic forcing −γ
ε
y + σ√

ε
dW113

in the equations for y where W denotes a Wiener process. This approxi-114

mation is motivated by the fact that these fast modes are associated with115

turbulent energy transfers and strong mixing. In this study we do not re-116

quire a detailed description of these processes because we are only interested117
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in their combined effect on the slow resolved modes and not in their detailed118

evolution. The stochastic climate model is given by119

dx1 = ((−x2 (L12 + a1x1 + a2x2) + d1x1 + F1(t)) (1a)

+θ (L13y1 + b123x2y1 + (c131 + c113)x1y1)) dt (1b)

dx2 = ((+x1 (L21 + a1x1 + a2x2) + d2x2 + F2(t)) (1c)

+θ (L24y2 + b213x1y1 + (e242 + e224) x2y2)) dt (1d)

dy1 =
(
−L13x1 + b312x1x2 + c311x1x1 + F3(t)−

γ1

ε
y1

)
dt +

σ1√
ε
dW1(1e)

dy2 =
(
−L24x2 + e422x2x2 + F4(t)−

γ2

ε
y2

)
dt +

σ2√
ε
dW2 (1f)

The parameter ε controls the time-scale separation between the slow and120

fast variables. Energy conservation of the nonlinear operator requires that121

b123+b213+b312 = 0, c131+c113+c311 = 0 and e242+e224+e422 = 0. The linear122

operator matrix L is skew-symmetric. The climate and fast modes are both123

linearly and nonlinearly coupled through triad and dyad interactions. Note124

that the forcing F(t) is time-dependent in contrast to earlier studies (Majda125

et al., 2005, 2008; Franzke et al., 2007; Franzke, 2012). We added a parameter126

θ in (1) with which we are able to control the strength of the interaction127

between the deterministic nonlinear dynamics and the fast unresolved modes.128

To highlight the structural form of our conceptual model (1) we rewrite129

it as130

dz = (F(t) + Lz(t) + B(z(t), z(t))) dt + σdW. (2)

This is the same structural form as climate models have with a forcing F,131

a linear operator L, a quadratic nonlinear operator B and additive noise132

forcing dW. While most current climate models are deterministic there are133

a few numerical weather prediction models which have stochastic terms.134

2.1. Explicit Stochastic Mode Reduction135

We now apply the systematic stochastic mode reduction procedure (Ma-136

jda et al., 1999, 2001, 2002) to the model (1) to obtain explicit reduced137

stochastic equations for the slow variables x. The simplicity of the above138

model allows us to do the stochastic mode reduction directly using the equa-139

tions without transforming it to the corresponding Fokker-Planck equation.140
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The stochastic differential equation (SDE) for the variable y in (1) is141

linear in y. Thus, given x(t) its solution is142

y1(t) = e−
γ1t
ε y1(0) +

∫ t

0

e−
γ1(t−s)

ε [−L13x1(s) + b312x1(s)x2(s)

+c311x1(s)x1(s) + F3(s)] ds + g1(t) (3)

where143

g1(t) =
σ1√
ε

∫ t

0

e−
γ1(t−s)

ε dW1(s) (4)

and144

y2(t) = e−
γ2t
ε y2(0) +

∫ t

0

e−
γ2(t−s)

ε [−L24x2(s) + e422x2(s)x2(s)

+F4(s)] ds + g2(t) (5)

where145

g2(t) =
σ2√
ε

∫ t

0

e−
γ2(t−s)

ε dW2(s) (6)

Inserting (3) and (5) into the first two equations in (1) for the variable x146

yields an exact, non-Markovian system of equations for x(t).147

Since we are interested in the long time statistical behaviour of the climate148

variables x(t) as ε → 0, we consider the asymptotic limit as ε → 0 of the149

three terms on the right of (3) and (5). First we immediately have150

e−
γ1t
ε y1(0) → 0 (7)

e−
γ2t
ε y2(0) → 0 (8)

Second, using integration by parts we find151

∫ t

0

e−
γ1(t−s)

ε [−L13x1(s) + b312x1(s)x2(s) + c311x1(s)x1(s) + F3(s)] ds

→ ε

γ1
[−L13x1(t) + b312x1(t)x2(t) + c311x1(t)x1(t) + F3(t)] (9)

∫ t

0

e−
γ2(t−s)

ε [−L24x2(s) + e422x2(s)x2(s) + F4(s)] ds

→ ε

γ2

[−L24x2(t) + e422x2(t)x2(t) + F4(t)] (10)
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Finally, it can be shown that g1(t) and g2(t) are itself approximatively white152

noise as ε→ 0 (Majda et al., 2001)153

g1(t)dt →√
ε
σ1

γ1

dW1(t) (11)

g2(t)dt →√
ε
σ2

γ2
dW2(t) (12)

for this we use the fact that g1(t) and g2(t) are Gaussian and the two prop-154

erties for any test function η155

E
(

1

ε

∫ ∞

0

η(t)gj(t)dt

)
= 0 (13)

and156

E
(

1

ε

∫ ∞

0

η(t)gi(t)dt

) (
1

ε

∫ ∞

0

η(t)gj(t)dt

)
→ ε

σ2
j

γ2
j

δij

∫ ∞

0

η2(t)dt (14)

We note, however, that, as an approximation of a process with finite corre-157

lation time, dWi(t) has to be interpreted in the Stratonovich sense (Gardiner,158

1985).159

Combining these formulas in the first two equations of (1), we obtain the160

following SDE transformed to Itô form with the noise induced drift (Gardiner,161
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1985):162

dx1(t) = (−x2(t) (L12 + a1x1(t) + a2x2(t)) + d1x1(t) + F1(t)) dt

+θ

(
ε

γ1

(L13F3(t)− L13L13x1(t) + b123F3(t)x2(t)

+L13b312x1(t)x2(t)− L13b123x1(t)x2(t) + L13c311x
2
1(t)

+b312b123x1(t)x
2
2(t) + b123c311x2(t)x

2
1(t) + (c131 + c113)(

c311x
3
1(t)− L13x

2
1(t) + b312x

2
1(t)x2(t) + F3(t)x1(t)

))
dt

+ε
1

2

σ2
1

γ2
1

(b213b123x1(t) + (L13 + b123x2(t)

+ (c131 + c113)x1(t)) (c131 + c113)) dt

√
ε
σ1

γ1

(L13 + b123x2(t) + (c131 + c113) x1(t)) dW1(t)

)
(15a)

dx2(t) = (x1(t) (L21 + a1x1(t) + a2x2(t)) + d2x2(t) + F2(t)) dt

+θ

(
ε

γ2

(
L24F4(t)− L24L24x2(t) + L24e422x

2
2(t)

+ (e242 + e224)
(
e422x

3
2(t)− L24x

2
2(t) + F4(t)x2(t)

))
dt

+
ε

γ1

(
−b213L13x1(t)x1(t) + b213c311x

3
1(t)

+b213b312x1(t)x1(t)x2(t) + b213F3(t)x1(t)) dt

+ε
1

2

σ2
1

γ2
1

(b213b123x2(t) + L13b213 + (c131 + c113) b213x1(t)) dt

+ε
1

2

σ2
2

γ2
2

(L24 + (e242 + e224) x2(t)) (e242 + e224) dt

+
√

ε
σ1

γ1
b213x1(t)dW1(t)

+
√

ε
σ2

γ2
(L24 + (e242 + e224) x2(t)) dW2(t)

)
(15b)

Note that coarse graining time as t → t
ε

amounts to setting ε = 1 (Majda163

et al., 1999, 2001; Franzke et al., 2005; Franzke and Majda, 2006).164

To highlight the structural differences we rewrite the reduced model in165

the following form166

dx

dt
= F̃(t)+L̃x(t)+B̃(x(t),x(t))+M̃(x(t),x(t),x(t))+σ1dW1(t)+σ2(x(t))dW2(t).

(16)
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The qualitative new terms are the deterministic cubic operator M̃ and the167

state-dependent noise σ2(x). In general the deterministic cubic operator acts168

as effective damping while it also allows the system to be linearly unstable169

(Majda et al., 2009).170

2.2. Nonlinear Deterministic Dynamics171

The nonlinear deterministic dynamics for the climate variables x1 and x2172

of the conceptual climate model (1) is given by173

dx1

dt
= −x2(L12 + a1x1 + a2x2)dt + d1x1dt + F1dt (17a)

dx2

dt
= x1(L21 + a1x1 + a2x2)dt + d2x2dt + F2dt. (17b)

Here we set y1 = y2 = 0 in order to explore the bifurcation behaviour of the174

climate modes.175

By varying the forcing F the system (15) undergoes several bifurcations176

as shown by Majda et al. (2005). By decreasing F1 starting from -0.1 the177

system undergoes first a saddle-node bifurcation with two stable states, at178

the second bifurcation point a homoclinic orbit appears before it undergoes a179

supercritical Hopf bifurcation. For more details about the bifurcation struc-180

ture of the nonlinear deterministic dynamics (17) see Majda et al. (2005)181

(See their Fig. 3.2 for the bifurcation diagram).182

2.3. Model Integration Details183

A 5000 member ensemble is created by integrating the model for 105
184

time units starting from 5000 different initial conditions which were chosen185

randomly and using different stochastic noise realizations. To integrate the186

model we are using a fourth order Runge-Kutta scheme for the deterministic187

part and an Euler forward scheme for the stochastic part. We use a time188

step of 10−4 time units and save output every 1
8

time unit.189

Furthermore, we use the three time scale separation values ε = 0.1, 0.5190

and 1.0. These three cases correspond to time scale separation (ε = 0.1),191

moderate time scale separation (ε = 0.5) and no time scale separation192

(ε = 1.0). The reduced order model is only valid in case of time scale sep-193

aration but in most natural system we have only moderate or no time scale194

separation. For instance, the atmospheric circulation has ε values between195

0.6 and 1.0 (e.g. Franzke et al. (2005); Franzke and Majda (2006)). Thus,196

we also have to test how well the method works in these more realistic cases.197
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A series of studies has shown that the stochastic mode reduction performs198

reasonably well also for moderate or no time scale separation (Majda et al.,199

2002, 2005, 2008; Franzke et al., 2005; Franzke and Majda, 2006; Franzke,200

2012).201

3. Prediction of non-Stationary Dynamics202

In this section we will evaluate how well the reduced stochastic models203

reproduce the full dynamics when driven by a time-dependent forcing F(t).204

First we use F1(t) = −0.2 + 0.4 ∗ sin(t/5000) which is a periodic forcing205

on a very slow time scale. The forcing has been chosen in such a way that206

it passes through all bifurcation points. Typical realizations can be seen207

in Fig. 1 for three different time scale separations. As can be seen the208

conceptual model exhibits different dynamical regimes for different forcing209

values. Furthermore, the reduced model captures this behavior very well210

for all three time scale separation values ε. This is further confirmed by the211

autocorrelation function and the PDF. The reduced order model captures the212

decay of the autocorrelation function (Fig. 2) and of the PDFs (Fig. 3) very213

well for all time scale separations. For ε = 0.1 the full and reduced dynamics214

are almost indistinguishable. The shape of the highly non-Gaussian PDFs215

are very well captured for both the marginal and joint PDFs by the reduced216

model (Fig. 4) for all three values of ε. Also in the case with no time scale217

separation ε = 1.0 the PDF is very well captured which is a very promising218

result since in realistic systems one rarely has time scale separation.219

Now we evaluate how well the reduced model performs if the time periodic220

forcing drives one of the fast modes. We use F3(t) = −0.2 +0.4 ∗ sin(t/5000)221

which is a slow periodic driving of the fast mode y1. Also in this case the222

reduced stochastic model reproduces the statistics of the full dynamics very223

well. Again the autocorrelation function is extremely well captured for ε =224

0.1 and still well for ε = 0.5 and ε = 1.0 (Fig. 5). To put this into context, the225

stochastic mode reduction strategy is strictly valid only in the limit ε→ 0 but226

as our empirical results show it still performs well in cases with no time scale227

separation at all. This is a promising result suggesting that our proposed228

approach will also work for observed data which likely has only moderate229

time scale separation.230

10



4. Prediction of Tipping Points231

In this section we discuss the role of time scale separation and coupling232

strength and how well the reduced order models predict tipping points by233

driving the models with a linearly increasing forcing F1(t) = −0.5+0.00002∗t.234

In figure 6 we display two example trajectories one for weak (θ = 0.1) and one235

for strong (θ = 1.0) coupling between climate and fast modes. In both cases236

we set ε = 0.1. The here relevant major difference between the two cases is237

the level of variability; for weak coupling the variability is much smaller and238

the system tips later. Furthermore, the reduced dynamics capture the full239

dynamics again very well.240

Another way of looking at the non-stationary evolution of the conceptual241

model is to compute time evolving PDFs. Here we compute the PDF at a242

fixed time t over the 5000 member ensemble. This will reveal how narrow243

the window of tipping is and how well the reduced dynamics captures this244

essential part of the non-stationary behavior.245

A comparison of the time evolving marginal PDFs (Figs. 7 and 8) shows246

that for weak coupling there is a rather sharply defined tipping time because247

the PDFs are very narrow and do not overlap during the state transition.248

This is also very well captured by the reduced dynamics. This is different249

in the case of strong coupling (Fig. 8) where the PDF is much broader and250

there is a rather smooth transition between the two states indicating that the251

tipping time is not well defined and the system tends to tip early or jumps a252

couple of times between both equilibrium states before it settles down on the253

surviving equilibrium state. However, in the case of time scale separation254

(ε = 0.1) the PDF is much sharper, though not as sharp as for the weak255

coupling case. Also the time window when the system tips is much narrower256

than for moderate time scale separation. This shows that the typical tipping257

point prediction methods are likely to only robustly work in the case of time258

scale separation and weak coupling. In other situations, which are likely259

more realistic, the system might not undergo a clear critical transition and260

flickers between the two equilibrium states.261

The reduced dynamics reproduces the full dynamics very well in the case262

of time scale separation (ε = 0.1) and reasonably well in the other two cases263

for both weak and strong coupling. This shows the reduced order models can264

play a useful role in predicting tipping points.265

The traditional tipping point indicators are sensitive to the way the time266

series is detrended and the length of the window length. Here we can use267
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the ensemble to test whether ensemble averaging detects the critical slowing268

down signal. For this purpose we compute the lag-1 correlation coefficient269

< x(t)x(t − 1) > as used in the AR(1) tipping indicators and the variance270

< x(t)2 > at time t, where <> denotes an ensemble average. This approach271

has the advantage that no detrending is necessary, since any trend between272

two consecutive time points will be negligibly small, and we also do not have273

to define a window length for the averaging.274

Fig. 9 shows one time series realization for both climate modes in the275

case of weak coupling which we consider to be the truth here together with276

the ensemble lag-1 correlation and variance tipping point indicators averaged277

over 1000 ensemble members. The variance indicator increases in magnitude278

when approaching the tipping time. The amount of time scale separation279

determines when the variance reaches its maximum. For ε = 0.1 the variance280

reaches its maximum at about the time of tipping while for ε = 1.0 it reaches281

its maximum before the time of tipping and actually already decreases before282

the tipping. On the other hand, the lag-1 indicator increases in value only283

for ε = 0.1. In this case it also reaches its maximum before the tipping284

time and starts the decrease by the time of tipping. For the other two285

cases the lag-1 indicator is rather flat or only minimaly increasing. Thus,286

our model results suggest that the amount of time scale separation and the287

coupling strength between resolved and unresolved modes determine whether288

the critical transition is due to critical slowing down or flickering.289

In the case of strong coupling both indicators increase before the time290

of tipping in the case of ε = 0.1 whereas in the other two cases, with only291

moderate or no time scale separation, the system jumps a few times between292

both equilibrium states (Fig. 10). But in these two cases both indicators293

seem to peak at about the time that the start of the transition to the other294

equilibrium point becomes visible in the PDF (Fig. 8). This suggests that295

the ensemble approach can still be useful in predicting the onset of the switch296

to another equilibrium point even though it is not a clear tipping point but297

flickering. This suggests that the ensemble approach might be useful as an298

early warning system even though there will be no clear or unique time of299

tipping.300

Now we discuss how well the traditional tipping point indicators perform.301

In Fig. 11 we display the results of the full dynamics simulations from us-302

ing 4 typical tipping point indicators: AR(1), variance, skewness and linear303

decay rate derived from the quasi-stationary density (Gardiner, 1985; Livina304

et al., 2012; Sieber and Thompson, 2012). To compute these indicators we305
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use a sliding window of length 1000 and then linearly detrend the time series306

in each window. Here we average over the window length and not the en-307

semble. While the AR(1), variance and skewness are standard quantities the308

quasi-stationary density involves the Fokker-Planck equation. This indicator309

assumes that the deterministic dynamics of the detrended time series evolves310

in a potential well U(x) (Gardiner, 1985; Sieber and Thompson, 2012). The311

linear decay rate κ can then be computed via312

1

2
∂xp(x) = −κxp(x) + c (18)

where p(x) denotes the empirical density and c a constant. We approximate313

the derivative of the density with finite differences. We apply these 4 indi-314

cators to 100 ensemble time series for the weak coupling and ε = 0.1 case315

which can be considered to be the best case scenario for tipping point pre-316

dictions. During the displayed time range in Fig. 11 both stable equilibria317

exist (compare with Fig. 6).318

The results display a wide variety of tipping indicator behavior. It is319

clearly visible that, even though the PDFs (Fig. 8c) show a very narrow tip-320

ping time range, the indicators do not seem to robustly signal the imminent321

tipping point in our model experiments. For some realizations the indicators322

do not predict a tipping at all while when they predict a tipping the timing323

varies widely (Fig. 11). This is the case for all 4 tipping point indicators.324

At least for this model experiment our proposed ensemble model prediction325

system seems to perform more robustly and reliably.326

5. Summary327

Using a conceptual model mimicing aspects of complex climate mod-328

els we elucidated the tipping point behaviour and how it depends on time329

scale separation and the coupling strength between resolved and unresolved330

modes. We find that for model experiments the theory of critical slowing331

down applies best to the case of large time scale separation and weak cou-332

pling between resolved and unresolved modes. In this situation there is a333

clear and distinct tipping event. For moderate or small time scale separation334

and strong coupling the model flickers between the two equilibrium states.335

Both critical slowing down (Scheffer et al., 2009; Sieber and Thompson, 2012;336

Livina et al., 2012) and flickering (Scheffer et al., 2009; Lenton, 2011) have337

been proposed as indicators of imminent tippings and here we have shown338

13



which properties of the underlying dynamics are responsible for these two339

distinct behaviours preceeding a critical transition.340

Furthermore, we have shown that reduced order models are able to repro-341

duce the tipping point behaviour of more complex models. Our model results342

suggest that predicting the time of tipping works best for systems with time343

scale separation and weak coupling between the resolved and the unresolved344

part of the system. As can be seen in Fig. 10 for strong coupling and lack of345

time scale separation the system flickers between the two equilibrium states.346

The reduced order models well reproduce this flickering.347

A potential advantage of the proposed dynamical tipping prediction ap-348

proach is that the reduced order models can be run in forecast mode with349

extrapolation of the forcing. These ensemble predictions will provide a prob-350

abilistic forecast of the tipping time which can then be used in integrated351

assessment and decision making models. This is not possible with the diag-352

nostic tipping indicators which cannot provide any estimate of the tipping353

time other than that the system might approach the tipping point. Further-354

more, the extrapolation can be done also with an ensemble of possible and355

plausible forcings or control parameters. This ensemble can then be used to356

make probabilistic forecasts about whether a tipping is imminent or not.357

The stochastic mode reduction approach described here requires the knowl-358

edge of the dynamical equations of the system of interest. For the climate359

system the normal forms of stochastic climate models have been derived by360

Majda et al. (2009). In order to estimate the necessary parameter values361

of the stochastic differential equation from data one can use Bayesian infer-362

ence methods which also takes proper account of all uncertainties (Peavoy363

et al., 2013). However, these approaches need to be extended to work in a364

non-stationary setting. Conceptually this is straight forward by treating the365

forcing or the control parameter as an additional equation. This forcing or366

the control parameter are not necessarily directly observationable. In this367

case it can be treated as a latent variable in Bayesian inference (Peavoy et368

al., 2013). This dynamical model fitting approach also offers the possibility369

of further insight into the underlying mechanisms of observed critical tran-370

sitions. For instance, the structure of the additional equation describing the371

forcing could either be an increasing or decreasing function or a noise driven372

stationary process. In the latter case all critical transitions would likely be373

noise induced.374

In many areas of science the evolution equations are not known. In this375

situation one can use non-parametric approaches to estimate the evolution376
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equations just from observed data (Crommelin and Vanden-Eijnden, 2006;377

Carpenter and Brock, 2011) or fit a potential well type equation with ad-378

ditive noise (Livina et al., 2010, 2011; Sieber and Thompson, 2012). These379

approaches are more general and can be applied to many observational data380

sets.381

Our results suggest that any early warning system of tipping points should382

include an ensemble approach using dynamical models. This would allow for383

a probabilistic prediction of imminent tipping points and would provide an384

estimated range of tipping times which might be useful to decide on the best385

avoidance or mitigation strategies by taking all uncertainties into account.386
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Figure 1: Section of one time series realisation for model simulations with forcing of re-
solved mode x1: Black line: full dynamics; blue line: reduced dynamics; red line: Forcing.
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Figure 2: Autocorrelation function of model simulations with forcing of resolved mode x1:
Black line: full dynamics; Red line: reduced dynamics.
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Figure 3: Marginal PDFs of model simulations with forcing of resolved mode x1. Black
line: full dynamics; Red line: reduced dynamics.
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Figure 4: Joint PDFs of model simulations with forcing of resolved mode x1: a) ε = 1.0,
b) ε = 0.5, c) ε = 0.1. Left column: full dynamics, Right column: reduced dynamics.
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Figure 5: Autocorrelation function of model simulations with forcing of unresolved mode
x3:; Black line: full dynamics; Red line: reduced dynamics.
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Figure 6: Time series of full dynamics (black line), reduced dynamics (red line) and
forcing F1(t) (blue line) for ε = 0.1. The green lines indicate the equilibrium solutions of
the nonlinear deterministic system (17).
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Figure 7: Marginal PDFs of x2 from 5000 member ensemble at time t for weak coupling
of resolved and unresolved modes. Left column: full dynamics; Right column: reduced
dynamics.
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Figure 8: Marginal PDFs of x2 from 5000 member ensemble at time t for strong coupling
of resolved and unresolved modes. Left column: full dynamics; Right column: reduced
dynamics.
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Figure 9: Ensemble indicator for weak coupling simulations. Left column: full dynamics;
Right column: reduced dynamics. Black line: x1, Red line: x2, Blue line: ensemble vari-
ance of x1, Green line: ensemble variance of x1, Magenta line: ensemble AR(1) indicator
of x1, Yellow line: ensemble AR(1) indicator of x2.
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Figure 10: Ensemble indicator for strong coupling simulations. Left column: full dynamics;
Right column: reduced dynamics. Black line: x1, Red line: x2, Blue line: ensemble vari-
ance of x1, Green line: ensemble variance of x2, Magenta line: ensemble AR(1) indicator
of x1, Yellow line: ensemble AR(1) indicator of x2.
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Figure 11: Tipping indicators applied to linearly detrended data from the full dynamics
simulations over moving windows of length 1000 time units.
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